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Ecological cruising control methods of vehicles have been extensively studied to further cut down energy consumption by
optimizing vehicles’ speed profiles. However, most controllers cannot be put into practical application because of future terrain
data requirements and excessive computational demand. In this paper, an eco-cruising strategy with real-time capability utilizing
deep reinforcement learning is proposed for electric vehicles (EVs) propelled by in-wheel motors. The deep deterministic policy
gradient algorithm is leveraged to continuously regulate the motor torque in response to road elevation changes. By comparing
the proposed strategy to the energy economy benchmark optimized with dynamic programming (DP), and traditional constant
speed (CS) strategy, its learning ability, optimality, and generalization performance are verified. The simulation results show that
without a priori knowledge about the future trip, the proposed strategy provides 3.8% energy saving compared with the CS
strategy. It also yields a smaller gap than the globally optimal solution of DP. By testing on other driving cycles, the trained
strategy reveals good generalization performance and impressive computational efficiency (about 2 ms per simulation step),
making it practical and implementable. Additionally, the model-free characteristic of the proposed strategy makes it applicable
for EVs with different powertrain topologies.
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1 Introduction

According to the United States Energy Information Admin-
istration, the transportation sector consumed approximately
26% of energy use in the United States in 2020 [1]. Among
diverse energy sources, petroleum products contribute about
90% of the U.S. transportation sector’s energy consumption.
The exhaustion of non-renewable resources and growing
environmental issues necessitate the reduction of fuel con-
sumption of ground vehicles and greenhouse gas emissions.
However, vehicle electrification offers an alternative way to
cut down the dependency on fossil fuels. Consequently,
electric vehicles (EVs) are regarded as a crucial tool in

emissions reduction and energy conservation [2]. In addition
to the development of new powertrain systems with higher
efficiency, eco-driving, which is the optimization of vehicle
longitudinal dynamics, has been regarded as a feasible
method for reducing the impact of transportation on the en-
vironment over the past few years [3]. According to the
NEXTCAR program [4], eco-driving can improve energy
efficiency to about 11.4%, with relatively higher commer-
cialization potential. The eco-driving controller optimizes
the driving speed profile to enable the most energy-efficient
operation of the vehicle. Recently, the penetrations of con-
nection and automation techniques have provided vehicles
with access to surrounding information and future driving
conditions, thus, broadening the possibilities of speed plan-
ning for EVs [5]. Since daily driving largely comprises
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cruising, many related studies emphasized cruising scenar-
ios.
Generally, eco-driving strategies are classified into rule-

based, optimization-based, and learning-based strategies.
Rule-based methods are the most widely used strategies due
to their simplicity and real-time capability [6]. Moreover,
input state variables can be mapped into corresponding
output control variables using predefined thresholds and
logic rules. However, limited optimality, massive calibration
efforts, and poor flexibility impede its further applications
[2].
To solve the cruising speed profile with optimal energy

consumption characteristics, researchers usually construct
the energy consumption of a vehicle as an optimal control
problem (OCP). The optimal energy consumption problem is
a nonlinear optimization problem with time-varying con-
straints. Optimization methods can be further subdivided into
analytical and numerical-based ones. A typical analytical
method called Pontryagin’s minimum principle (PMP) is
used to derive the optimal control law with respect to vehicle
speed. Saerens and Van den Bulck [7] used PMP to obtain the
driving principle with the least fuel consumption for a sim-
plified vehicle model, which was treated as a point mass. The
fuel-saving potential of a passenger car was exploited by
employing PMP to analytically derive an optimal periodic
control method [8]. Dynamic programming (DP) is another
method used to numerically calculate the global optimal
solutions [9]. Considering the waiting queue at signalized
intersections, a collaborative eco-driving strategy was de-
veloped to cut down the overall fuel bill using time-based DP
to obtain the energy-optimal velocity [10]. Zhuang et al. [11]
developed a hierarchical framework to enable eco-cruising
on slope-varying highways. They used DP to calculate the
optimal vehicle speed considering energy efficiency and
battery aging. However, DP does not scale well to real-time
implementation since the computational cost grows ex-
ponentially with state complexity [12]. In light of this, real-
time optimization approaches, such as model predictive
control (MPC), have been proposed [13]. For a dual-mode
hybrid electric vehicle (HEV), Xiang et al. [14] proposed an
MPC-based control method with adaptive Markov-chain
prediction. An improvement of about 16% in fuel economy
can be obtained against a rule-based strategy. With the pe-
netration of connected HEVs, Zhuang et al. [15] proposed an
MPC-based cooperative control scheme to achieve safe and
efficient platoon formation. Simulation results show that the
proposed cooperative control strategy can achieve safe and
efficient platoon formation. Nevertheless, the above methods
have limitations, such as great computation expense, inferior
optimality, and less adaptability to complex driving en-
vironments.
More recently, the emerging learning-based methods have

offered a promising solution, e.g., reinforcement learning

(RL) algorithms. In contrast to supervised learning that
learns from labeled data, RL algorithms can obtain the
control policy from raw observation input and scalar reward
feedback directly [16,17]. RL has been widely used in sev-
eral fields, such as lane-change decision-making [18],
power-split for HEVs [19], and on-ramp merging [20]. The
application of RL in eco-driving has recently attracted sig-
nificant attention. Shi et al. [21] employed Q-learning to
improve traffic performance and reduce exhaust emissions at
signalized intersections. However, in this tabular method, the
discretization requirements of state and action spaces may
lead to the curse of dimensionality, making it challenging to
handle situations with complex inputs and outputs [22].
Therefore, combined with deep learning, deep RL (DRL)
algorithms can partially or completely eliminate the need for
discretization. For connected and automated vehicles navi-
gating through signalized intersections, Guo et al. [23] pro-
posed a hybrid eco-driving control framework comprising of
longitudinal (accelerate/brake) and lateral (lane-change)
operational control. Two representative RL algorithms were
used to control the longitudinal and lateral maneuvers si-
multaneously, saving energy by about 46% with traveling
time slightly or not at all lengthened. In ref. [24], a partially
observable Markov decision process was used to formulate
the eco-driving problem solved using the proximal policy
optimization algorithm. The controlled vehicle can autono-
mously pass signalized intersections and enhance the aver-
age fuel efficiency by 17.4% while maintaining comparable
travel time.
However, most of the above studies presume that vehicles

drive on flat routes, ignoring that road grade factors have a
remarkable influence on energy consumption. Results show
that overall fuel economy on flat routes is estimated by about
15%–20% better than that on hilly routes [25]. Lee et al. [26]
employed a model-based Q-learning algorithm to realize
eco-cruising for EVs considering road slope. However, Q-
learning can only deal with discrete action space, inevitably
leading to discretization error. Thus, in this paper, speed
profile optimization for EVs considering road slope using
deep deterministic policy gradient (DDPG) was investigated.
Integrating the Actor-Critic (AC) architecture [27], the pro-
posed DDPG algorithm can continuously output a determi-
nistic control signal, which is more suitable for realistic
vehicle control.
The main contributions of this paper are as follows. First, a

DRL-based eco-cruising strategy with continuous action
space is systematically designed to optimize the driving
torque toward saving energy. Second, considering the huge
impact of road slope on energy consumption, an energy-
efficient vehicle speed profile is obtained without requiring
prior driving or terrain information. Finally, the general-
ization performance and real-time capability of the proposed
strategy are evaluated on testing driving cycles. To the best
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of our knowledge, this is the first study to apply the DDPG
algorithm to realize eco-cruising considering road slope, and
its potential of practical application can also be guaranteed.
The remainder of this paper is structured as follows. Sec-

tion 2 describes the dynamics modeling of powertrain
components and the simulation environment. Section 3 ela-
borates the design of the DRL-based eco-cruising strategy.
Section 4 presents the simulation results against two
benchmark strategies, where the generalization evaluation is
also discussed. Finally, Section 5 presents the conclusion and
future work.

2 Modeling of electric vehicle and simulation
environment

In this section, an energy-oriented simulation model of EVs
is firstly constructed, including the vehicle longitudinal dy-
namics, modeling of the in-wheel motor (IWM), and battery
dynamics. Then, three segments of the real-world urban
route are selected as our driving environment.
Figure 1 shows the vehicle configuration adopted as a two-

wheel independent drive (2WID) EV. In this configuration,
the motor is integrated into the wheel to eliminate trans-
mission losses and simplify mechanically complex compo-
nents. To further simplify the model, the converter’s
efficiency is represented as a constant value 1. Table 1 pre-
sents detailed information about the vehicle and its compo-
nents.

2.1 Vehicle longitudinal dynamics

As shown in eq. (1), the vehicle’s motion is governed by the
regular longitudinal dynamics model. The vehicle resistance
consists of four parts: rolling resistance Ff, aerodynamic drag
Fw, gradient resistance Fi, and inertia force Fj.
F F F F F
F m g f

F C A v

F m g
F m a

= + + + ,
= cos ,

= 1
2 ,

= sin ,
= ,

(1)

d f w i j

f

w d f
2

i

j

where Fd denotes the request driving force, m denotes the
curb weight, g denotes the gravitational acceleration, f de-
notes the rolling resistance coefficient, θ denotes the road
grade, Cd denotes the aerodynamic coefficient, Af denotes the
frontal area, ρ denotes the air density, v denotes the in-
stantaneous car speed, a denotes the car acceleration.

2.2 IWM model

A quasi-static technique is used to model the energy con-

sumption of the power unit. The IWM adopted here is PD18
from Protean Electric [28], a permanent magnet synchronous
motor. Figure 2 shows the efficiency map of PD18 based on
the bench experiment data. The energy efficiency ηe of PD18
can be obtained from the interpolation of its rotational speed
ωm and torque Tm (positive during driving and negative
during braking). The electric power Pm consumed by IWM
can be calculated using the following equation:

P T= , (2)k
m m m e

where the superscript k indicates working status. When the
torque of IWM is positive (k=1), it works as a motor, con-
verting electric power into mechanical power. Conversely,
when the torque of IWM is negative (k=−1), it works as a
generator, recovering braking energy.

2.3 Battery dynamics

The equivalent circuit model, consisting of open-circuit
voltage and internal resistance, is used to represent battery
dynamics (Figure 3). Due to its extensive application on
energy management involving optimization methods [29–
32] and learning methods [33–36], it is supposed to be suf-
ficient for this research. Note that the thermal effect of the
battery is not considered in this paper.
In Figure 3, Pbatt denotes the power at the battery terminals,

Figure 1 (Color online) Architecture of EV with IWMs.

Table 1 Specifications of the 2WID EV

Components Parameters Symbol Value

Vehicle

Curb weight m 2500 kg

Tire radius Rtire 0.3 m

Frontal area Af 1.8 m2

IWM

Maximum power Pmax 76 kW

Maximum torque Tmax 1250 N m

Maximum speed ωmax 1600 r min−1

Battery
Battery capacity Qbatt 125 Ah

Open-circuit voltage Voc 368 V
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ibatt denotes the battery current (positive during discharge
phase), Voc and Rint denote open-circuit voltage and internal
resistance of the battery, respectively.
Then, the battery power Pbatt can be expressed as

P P P V i i R= = , (3)batt s d oc batt batt
2

int

where Pd is the dissipative power of the battery. Eq. (3) is
solved with respect to ibatt. The solution can be expressed as

i V V P R
R= 4

2 . (4)batt
oc oc

2
batt int

int

The dynamics of the LiFePO4 battery pack is governed by
the following equation:

t
i

Q
d
d SOC = , (5)batt

batt

where Qbatt is the battery capacity.
Applying eq. (4) to reformulate eq. (5), the differential

equation of state of charge (SOC) with respect to Pbatt can be
achieved by

i
Q

V V P R
Q RSOC = = 4

2 . (6)batt

batt

oc oc
2

batt int

batt int

2.4 Driving environment

Three pieces of road segments are selected as the driving
environment. They are extracted from a real-world urban
route in Nanjing, as shown in Figure 4. The length of each
segment is 10 km. With access to a global positioning system
(GPS), latitude, longitude, and altitude can be obtained. A
five-point smoothing method is used to smooth the altitude
profile for better visualization of the simulation results.
Figure 5 shows the altitude profiles of the three segments and
their corresponding slope variations. Driving cycle A is used
to train the DRL-based eco-cruising strategy, whereas driv-
ing cycles B and C are used to test the generalization of the
trained strategy.

3 DRL-based eco-cruising strategy

This section aims to develop a learning-based eco-cruising
control strategy for EVs, minimizing the electricity con-
sumption between two designated locations under speed
constraints. Figure 6 shows a schematic overview of eco-
cruising considering road slope. With access to GPS and
high-definition maps, along with onboard sensors, the ego
vehicle can obtain its real-time velocity, altitude, and slope of
the road. Incorporating the multi-source information with the
vehicle dynamics, the eco-cruising controller optimizes
motor torque, maximizing the efficiency over the entire
journey under certain speed limits.

3.1 OCP formulation

The eco-cruising problem of electric vehicles is framed as a
nonlinear optimization formulation to minimize the overall
energy consumption of the battery between two designated
locations. The optimization object is constructed as follows:

J x t u t tmin = SOC( ( ), ( ))d , (7)
T

0

subject to

Figure 2 (Color online) Efficiency map of PD18.

Figure 3 (Color online) Equivalent circuit battery cell model.

Figure 4 (Color online) Terrain profile of the selected real-world route.
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where F denotes the vehicle longitudinal dynamics described
in Section 2.1. vmin and vmax are the legal speed limits. Ibatt,min
and Ibatt,max denote the maximum charging and discharging
current, respectively.ae denotes the vehicle acceleration. amin
and amax are its lower and upper bound, respectively. u(t)
denotes the control variable referring to the motor torque
within the range [Tmot,min, Tmot,max]. sf and v0 denote the entire
distance and initial velocity.

3.2 The learning framework

In this paper, the DDPG algorithm is employed to learn the
optimal eco-cruising strategy. Different from deep Q-net-
work (DQN) algorithm, DDPG establishes two separate
neural networks: Q-network (Critic) and policy-network
(Actor), together making up the AC networks [27].
The Q-network, parameterized by θQ, is the same as DQN.

State s and action a are fed into the Q-network, and it outputs
estimated action-value Q(s,a). The network architecture is
pyramid-like, consisting of three fully connected layers (200-
100-50) [37,38], which are activated by the rectified linear
unit (ReLU) [39,40]. Following the three hidden layers is a
linear output layer that outputs a scalar value Q(s,a).
The policy-network, parameterized by θµ, generates a de-

terministic action a. The architecture of the policy-network is
the same as the Q-network, which also consists of three fully
connected layers (200-100-50), except the output layer pro-
cessed by a tanh activation function, mapping the output
value into [−1,1]. Then, a linear mapping function transforms
the output value into the boundary value of motor torque.
The objective of Actor-Critic networks’ training is to de-

terministically map the state into a specific action with
maximal Q value by policy-network, deriving an optimal
parameterized eco-cruising strategy π*. TD-error is given by

( )( )y r Q s µ s= + ,k k k k
µ Q

+1 +1 . Here, γ is the discount

factor. The loss function is minimized by gradient descent
algorithm:

( )( )L N y Q s a= 1 , , (9)
i

k k k
Q

2

( )( )
( )

( )
L s a Q s a

r Q s µ s Q s a

, = 2 ( , )

+ , ( , ) . (10)

k k
Q

k k

k k k
µ Q

k k+1 +1

Q Q

Once the Q-network is updated, the policy-network will be
guided by the estimated action-value function Q. The loss
gradient is given as follows:

J N Q s a µ s1 ( , ) ( ). (11)
i

a
Q µ

Q Q

Additionally, a replica of the Actor-Critic networks,
namely target Q-network ( Q ) and target policy-network
( µ ), is introduced [41,42]. The target Actor-Critic networks

Figure 5 Profiles of road altitude and grade. (a) Driving cycle A; (b)
driving cycle B; (c) driving cycle C.
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share the same architecture as the original Actor-Critic net-
works. Instead of directly copying the weight parameters, it
updates network parameters by slowly tracking the learned
networks [28]:

= + (1 ) ,

= + (1 ) .
(12)k

Q
k
Q

k
Q

k
µ

k
µ

k
µ

+1

+1

Because of the tracking rate 1, the target network
updates at a slow rate, greatly improving the learning sta-
bility.
Another trick adopted here is prioritized experience replay

(PER) to accelerate convergence [43]. According to the ex-
perimental results in ref. [44], DDPG with PER can improve
training efficiency and stabilize the training process.
Algorithm 1 presents the entire procedure of the DDPG

algorithm.

3.3 State, action and reward function

This section presents a detailed definition of the states, ac-
tion, reward function, and settings of hyperparameters. We
will also present the eco-cruising framework based on
DDPG.
State: For the eco-cruising problem, in particular, we de-

fine a three-dimensional state vector consisting of the three
most influential factors: vehicle speed, altitude, and road
slope. The state-space can be defined as S v h= { , , }. Vehicle
speed must be within a predefined safety range [vmin, vmax].
An assumption is made that vehicle speed can be obtained
through onboard sensors and road altitude, and slope can be
accessed through GPS.
Action: Motor torque is selected as the action variable. The

action space can be described as A T= { }mot . Similarly, the
motor torque is subject to the constraint T ( )mot,min mot

T T ( )mot mot,max mot .

Reward: In the eco-cruising problem, the reward function
can be formulated from electricity consumption, traveling
time, speed constraint, and ride com comfort. In terms of ride
comfort, vehicle acceleration ae is used to reflect the driver’s
sensation. Intuitively, the multi-objective reward function is
given as follows:

( )r t M a= SOC + + + , (13)v e

where α, β, η, and δ denote the weighting coefficient of
electricity consumption, traveling time, speed constraint, and
ride comfort, respectively; ΔSOC and Δt denote the battery

Figure 6 (Color online) Schematic overview of eco-cruising control considering a varying slope.

Algorithm 1 Pseudocode of the DDPG algorithm

1 Randomly initialize critic network and actor network with weights Q

and µ .
2 for episode=1, M do
3 Initialize a random process N for action exploration;
4 Receive initial states: v1, h1, θ1;
5 for k=1, K(number of discretization steps) do
6 Select action a µ s= ( ) +k k

µ
kN according to the current policy and

exploration noise;
7 Execute action ak , receive reward rk and the new state sk + 1;
8 Store transition s a r s( , , , )k k k k + 1

in replay buffer R;
9 Sample a minibatch of transitions s a r s( , , , )k k k k + 1

from R with priority
experience replay;
10 Set y r Q s µ s= + ( , ( | ) | )

k k k k
µ Q

+ 1 + 1 ;
11 Update critic by minimizing the loss:

( )( )L N y Q s a=
1

, ;
i k k k

Q
2

12 Update the actor using the sampled policy gradient:

J N Q s a µ s
1

( , ) ( );µ
i

a
Q

µ
µ

13 Update the target networks:

= + (1 ) ,

= + (1 ) ;

k
Q

k
Q

k
Q

k
µ

k
µ

k
µ

+ 1

+ 1

14 end for
15 end for
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SOC variation and the traveling time within the interval of
two adjacent sampling points, respectively, and their specific
expressions will be given in Section 4.1; Mv denotes the
penalty for the speed limits, expressed as follows:

M
v v v

v v v v
=

0, ,

( ) + ( ) , otherwise.
(14)v

min max

min
2

max
2

For the policy-network, the learning rate is set as 0.0001;
however, for the Q-network, it is set as 0.001. After trying
different discount factors, we set the learning rate as 0.99.
Similarly, different memory capacity values are evaluated,
which is set as 10000 eventually. The batch size N is set as
64, and the soft replacement parameter τ is set as 0.01. After
repeated tuning, the above weighting coefficients α, β, η, and
δ are set as 1×105, 1, 1, and 1, respectively.
After elaborating all elements of the DDPG algorithm, the

systematic flowchart of the DRL-based eco-cruising control
framework is depicted in Figure 7. To enable the agent to
better explore the environment and choose optimal actions,
an exploration noise is added to the output of the policy
network, which follows the normal distribution. Its variance
decays as the training progresses from the initial value of 3.

4 Simulation results and discussion

In this section, firstly, deterministic DP-based strategy and
constant speed (CS) strategy are used as benchmarks against
the proposed DRL-based strategy. Secondly, the learning
process and trajectories of vehicle speed, motor torque, and
acceleration are illustrated. Thirdly, the energy-saving per-
formance and calculation time are compared. Finally, the
generalization performance of the proposed strategy is fur-
ther validated on testing driving cycles.

4.1 Benchmark strategies

4.1.1 Deterministic DP-based strategy
Using Bellman’s principle of optimality, DP converts the
multistep optimal decision problem into a series of single-
step ones. Thus, a complicated problem is broken down into
several steps. Then, the OCP is solved from the last interval
backward. Finally, an optimal control law is retrieved in
reverse order.
However, when the DP method is used to design an eco-

cruising strategy, an issue concerning DP implementation
must be first solved [45]. For diverse vehicle speed trajec-
tories, time durations for the same origin-destination (O-D)
pair will differ, leading to different numbers of sampling
steps if the OCP is formulated in the discrete-time format as
eq. (7). Whereas, DP requires the same number of sampling
steps to compare the costs among different velocities at each
sample step and finally achieve the global minimum.
Therefore, DP cannot be directly used to find the optimal
eco-cruising strategy. The aforementioned OCP can be
transformed in discrete-distance as follows:

J L x k u kmin = ( ( ), ( )), (15)
k

N

=0

1

subject to
v F x k u k
s v t

v v k v

I I I
a a a
T k u k T k
s
v v

= ( ( ), ( )),
d = d ,

( ) ,
SOC SOC SOC ,

,
,

( ( )) ( ) ( ( )),
(0) = 0,
(0) = ,

(16)

min max

min max

batt,min batt batt,max

min e max

mot,min mot mot,max mot

0

Figure 7 (Color online) DRL-based eco-cruising framework.
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where the index k indicates the discretization step for N
segments, which is evenly divided by unit distance Δs (set as
10 m); L(x(k), u(k)) denotes the instantaneous cost, expressed
as follows:
L x k u k k t k( ( ), ( )) = SOC( ) + ( ), (17)

k k s
v k v kSOC( ) = SOC( ) 2
( ) + ( + 1) , (18)

t k s
v k v k( ) = 2
( ) + ( + 1) . (19)

4.1.2 Constant speed strategy
The inefficiency of the DP algorithm makes it inefficient
when used in real-time control systems. CS strategy, which
is common in real life, is used as a baseline strategy. Ac-
cording to this strategy, the vehicle drives at constant speed
equal to the average speed of the proposed DRL-based
strategy.

4.2 Training result

All simulation experiments are implemented using Python
3.7 with the deep learning platform TensorFlow 1.15. The
agents are trained for 500 episodes at an initial speed of
60 km/h. Since stochasticity has a considerable influence on
the training progress, it is repeated seven times with different
random seeds. Figure 8 shows the corresponding training
progress. Within less than 50 episodes, the mean reward
increases dramatically after decreasing during the startup
period. After that, the mean reward increases slowly over
time, fluctuating a bit and eventually stabilizing at a level
around 0. Taking the third random seed (RL-3) as an ex-
ample, the proposed strategy starts to converge from the 46th
episode, demonstrating the effectiveness of PER in learning
efficiency.
Figure 9 shows the altitude profile and corresponding ve-

locity profile, along with the motor torque and acceleration
profiles. Generally, the vehicle speed decreases when the
vehicle travels uphill and increases when the vehicle travels
downhill. By combining the speed constraints in the reward
function, the speed profile can be controlled well within the
predefined speed limit between 50 and 70 km/h. Figure 9(c)
shows that the acceleration amplitudes are well maintained
below 1 m/s2 for most of the journey, with a maximum value
of 1.09 m/s2 and a minimum value of −1.13 m/s2, leading to
acceptable ride comfort.

4.3 Comparison analysis

The performance of the proposed DRL-based eco-cruising
strategy needs to be evaluated to demonstrate its optimiza-
tion capability. DP-based and CS-based strategies are im-
plemented as benchmarking strategies. The average speed

value of the above speed profile in Figure 9 is 60.2 km/h. For
a fair comparison of energy consumption, we tune the
weighting factor ω in the objective function of DP to keep
the average speed of the journey approximately identical
among three different strategies.
Table 3 and Figure 10 show the simulation results. Table 3

presents the SOC depletion, traveling time, and energy
saving in percentage compared with the optimal solution via
DP and rule-based CS. Traveling time is a significant factor
since driving a certain distance faster tends to consume more
electricity. In this simulation, CS, DP, and DRL have a si-
milar traveling time, with a maximum gap of 1.1%, which

Figure 8 Training progress for seven agents with different random seeds.

Figure 9 Training results. (a) Vehicle speed and altitude trajectories; (b)
motor torque trajectory; (c) acceleration trajectory.
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can be ignored. In terms of SOC usage, the DP-based strat-
egy consumes the least electricity among the three strategies,
followed closely by the DRL-based strategy. Compared with
CS, DP and DRL exhibit 5.2% and 3.8% energy-saving
performance, respectively. Figure 10 shows the trajectories
of vehicle speed, vehicle acceleration, and battery SOC. For

speed profiles, the DRL and DP data show similar patterns.
Despite the fact that the entire driving cycle information was
used during the training, there is still a gap between results
based on DP and DRL. The possible reason could be the
definition of the problem. In DP, the OCP is defined in a
finite horizon, while in DRL, it is defined in an infinite
horizon. In terms of the acceleration amplitudes, both DP and
DRL can control acceleration in an acceptable range
(−1.5, 1.5) m/s2, whereas DP shows a relatively smaller
amplitude of fluctuation. Aside from the near-optimal cap-
ability of DRL, the derived policy can also serve as an offline
real-time controller. Similar to rule-based CS, the DRL-
based eco-cruising strategy also exhibits quite remarkable
computational speed (about 1.7 ms per simulation step) on a
desktop computer with Intel Xeon CPU E3-1231.

4.4 Generalization evaluation

Some existing eco-cruising strategies, e.g., rule-based
methods and fuzzy-logic methods, usually require elaborate
design or much calibration effort and lack adaptability to
other unknown conditions. However, in real applications,
it may encounter uncertainty and problems for unseen driv-
ing conditions. For learning-based methods, its robustness
across diversified contexts needs to be guaranteed. Thus, the
trained strategy is further verified on testing cycles which are
driving cycles B and C (see Figure 7(b) and (c)). The two
testing cycles are completely unseen during the training
process. Simulation results are presented in Table 4 and
Figure 11.
Figure 11 depicts the results of the DRL strategy under the

testing cycle. As shown in Figure 11(a) and (b), the initial
vehicle speed for both DP and DRL is 60 km/h. The initial
value of SOC is set to 0.8. According to the vehicle speed
profiles of DP and DRL, we can conclude that the speed
trajectory of DRL shows a similar trend with that of DP,
indicating strong adaptability and self-learning ability of the
DRL agent. However, in terms of the amplitude of accel-
eration, both DP and DRL seem to climb to a larger range
(−3, 3) m/s2. However, the acceleration curve of DRL still
shares a similar trend with DP’s. Table 4 summarizes the
energy-saving performance and traveling time. Similar to the
previous comparison, the traveling time of DP is kept as
close as possible to that of DRL. For driving cycle B, the
SOC depletion gap between the DRL-based strategy and CS
strategy is about 3.2%, whereas that between DP and CS is
about 6.3%. For driving cycle C, DP and DRL improve en-
ergy-saving performance by 6.4% and 2.4%, respectively.
The results demonstrate that there is a comparative energy
conservation, despite that the percentage improvement is
reduced compared with the results on the training cycle in
Table 3. Consequently, we can conclude that the decision-
making ability of RL and the generalization ability of deep

Table 3 Simulation results of CS, DP, and DRL

Algorithm DP DRL CS

Initial SOC 0.8 0.8 0.8

Terminal SOC 0.7655 0.7650 0.7636

ΔSOC (%) 3.45 3.50 3.64

Traveling time (s) 598.2 591.6 591.6

Calculation time (s) 32.32 1.75 0.97

Energy saving (%) 5.2 3.8 –

Figure 10 (Color online) Simulation results of three strategies. (a) Ve-
hicle speed trajectories; (b) acceleration trajectories; (c) SOC trajectories.
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neural networks together ensure its applicability toward
other different driving cycles. Meanwhile, the trained strat-
egy (represented by parameters of the policy-network) shows
a comparative computation speed against the rule-based CS
strategy. In the simulation environment, it takes only 2 ms on
average per simulation step, making it feasible for real-time
implementation.

5 Conclusions

In this paper, a DRL-based eco-cruising strategy for EVs
considering road slope is developed. The DDPG algorithm
incorporating a customized reward function is used to learn
the eco-cruising strategy. The results of several case studies
are as follows. (1) Compared with the CS strategy, the DRL-

Table 4 Simulation results of optimization performance on testing driving cycles

Algorithm
Driving cycle B Driving cycle C

DP DRL CS DP DRL CS

Initial SOC 0.8 0.8 0.8 0.8 0.8 0.8

Terminal SOC 0.7704 0.7694 0.7687 0.7578 0.7560 0.7549

ΔSOC (%) 2.96 3.06 3.16 4.22 4.40 4.51

Traveling time (s) 664.3 680.4 680.4 613.8 615.8 615.8

Calculation time (s) 31.20 1.69 0.76 30.74 1.63 0.67

Energy saving (%) 6.3 3.2 – 6.4 2.4 –

Figure 11 (Color online) Vehicle speed, acceleration, and SOC trajectories on testing cycles. (a) Driving cycle B; (b) driving cycle C.
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based eco-cruising strategy yields great energy-saving cap-
ability (about 3.8%) and a small gap compared with the
global optimal solution of DP. (2) For generalization ability,
the trained policy is validated on two different testing driving
cycles, showing good robustness. The average energy-saving
rate of all driving cycles reaches 2.8%. (3) Although offline
training is time-consuming, the trained strategy shows ex-
cellent computational efficiency during online implementa-
tion. Compared with DP, the average calculation efficiency is
improved by about 94.6%, close to the rule-based controller.
Therefore, the proposed DRL-based eco-cruising strategy
exhibits the potential for real-time implementation.
Future work will be conducted from the following aspects.

(1) In this paper, the speed limits along the given routes are
set as fixed values. However, the road speed limit is related
to travel distance in reality and should be integrated into the
eco-driving strategy design. (2) Similarly, the introduction of
the leading vehicle and upcoming traffic will make the
strategy design more interesting and challenging.

This work was supported by the Graduate Student Innovation Project of
Jiangsu Province, China (Grant No. KYCX20_0258).
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