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Oil spill monitoring in remote sensing field has become a very popular technology to detect the spatial distribution of polluted
regions. However, previous studies mainly focus on the supervised detection technologies, which requires a large number of
high-quality training set. To solve this problem, we propose a self-supervised learning method to learn the deep neural network
from unlabelled hyperspectral data for oil spill detection, which consists of three parts: data augmentation, unsupervised deep
feature learning, and oil spill detection network. First, the original image is augmented with spectral and spatial transformation to
improve robustness of the self-supervised model. Then, the deep neural networks are trained on the augmented data without label
information to produce the high-level semantic features. Finally, the pre-trained parameters are transferred to establish a neural
network classifier to obtain the detection result, where a contrastive loss is developed to fine-tune the learned parameters so as to
improve the generalization ability of the proposed method. Experiments performed on ten oil spill datasets reveal that the
proposed method obtains promising detection performance with respect to other state-of-the-art hyperspectral detection ap-
proaches.
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1 Introduction

Recently, the increasing frequency of oil leakage leads to
massive amount of crude oil being spilled into the ocean,
which seriously threatens the living environment of marine
creatures and human beings [1]. In 2010, the Deepwater
Horizon drilling platform situated in the Gulf of Mexico has
suffered from explosion, which leads to 4.9 million barrels of
crude oil discharging into the Gulf. A diversity of coastal
species has been contaminated from the oil spill. It was es-
timated that up to 65000 imperilled turtles had died during
2010 alone, mostly as a result of oil contamination. In 2011,
the Penglai 19-3 oil field witnessed oil spill accident located

in Bohai Bay, which causes more than 7 barrels of oil leaking
into the Bohai Bay, and approximately 6200 square kilo-
metres of ocean is polluted. If the spilled oils cannot be
cleaned timely, the oil film is easily washed to the coast by
the waves, which exerts profound negative effects, such as
fires, coastal aquaculture, and salt production. As a result, it
is necessary to rapidly detect the spatial distribution of oil
spill on the ocean surface, facilitating oil spill clean-up and
government decision-making.
Remote sensing has become an important technology in

detecting oil spill regions. Compared with other remote
sensing data, hyperspectral images not only provide the de-
tailed spatial information, and record the finer spectral in-
formation. This unique characteristic makes it more effective
to distinguish the oil spill and seawater [2–8]. In the last
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decades, many oil spill detection methods have been in-
vestigated [9–14], which can be roughly divided into four
classes: spectral classifier-based methods, spectral matching-
based methods, hand-crafted feature extraction methods and
deep learning models.
In the complicated ocean surface, the captured hyper-

spectral images are usually corrupted by multiple degrada-
tion factors, such as image noise, sun glints, and shadows,
which seriously affect the following detection performance.
To alleviate this issue, some scholars developed hyperspec-
tral image restoration approaches, and applied the spectral
classifiers on the reconstructed data for oil spill detection.
The spectral classifiers mainly include support vector ma-
chine (SVM), random forest (RF), and multinomial logistic
regression (MLR). For example, Yang et al. [9] applied SVM
classifier on the recovered hyperspectral image to achieve oil
spill detection, in which the recovered image was obtained
by performing wavelet transform and three different filters
on the original image to remove image noise and sun glints.
In ref. [10], the RF classifier was conducted on the selected
spectral indices to obtain oil pollution maps. In ref. [11], a
texture-aware total variation method was proposed to elim-
inate the sun glints of original images, and the SVM classi-
fier was utilized to detect the oil spill on the sea surface.
Spectral matching-based methods aim to measure the

spectral similarity between the given spectrum and all can-
didate spectra. For instance, Liu et al. [12] proposed a novel
spectral curve shape matching method, in which the first-
order and second-order spectral derivatives were combined
to measure the affinity between the reference spectrum and
the observed spectrum. In ref. [13], a conventional adaptive
cosine estimator method was proposed to automatically de-
tect the oil spill areas.
Hand-crafted feature extraction methods are designed to

extract the shallow spatial features from original images
followed by a spectral classifier, which is beneficial for re-
moving image noise and shadows. In the past decades, re-
searchers mainly focus on the development of oil spill
detection with traditional machine learning technologies
[14–16]. For example, Song et al. [14] applied wavelet
transform to increase the difference of spectral characteristic
between thin and thick oil film, where the low-frequency
coefficients were taken as the sensitive bands for following
task. Liu et al. [15] studied a decision tree framework for oil
spill detection, in which the minimum noise fraction was
used as feature extractor. Song et al. [16] used an active
contour model to characterize the spectral-spatial features of
the input, which was helpful for reducing the interference of
sun glints and shadows on the ocean surface.
Furthermore, many deep learning models have also been

applied for oil spill detection of hyperspectral images in re-
cent several years [17–21]. These methods can extract deep
semantic features of original images, which show more ro-

bust detection performance. For example, Wang et al. [17]
developed a spectral-spatial integrated network for marine
oil spill detection, where the 1D and 2D convolutional neural
network (CNN) models were used to extract the spectral-
spatial features. Zhu et al. [18] investigated oil film classi-
fication performance of several deep learning models, in-
cluding back propagation (BP) neural network, stacked
autoencoders (SAEs), AlexNet, and VGGNet. Yang et al.
[19] proposed a multi-scale deep CNNs for sea oil spill de-
tection, in which the multi-scale features were constructed by
using wavelet transform.
These methods mentioned above can achieve satisfactory

detection performance when the number of training samples
is sufficient. However, the collection of training set is time-
consuming and expensive cost. In this situation, these oil
spill detection approaches tend to be over-fitting and produce
poor generalization performance with limited labelled
training set.
To address this problem, we propose a self-supervised

learning method for oil spill detection of hyperspectral
images. The proposed method gives a new perspective on
unsupervised deep feature characterization of hyperspectral
images, in which a queue of feature vectors is generated and
a momentum encoder is introduced to update the queue. To
this end, first, a spectral and spatial transformation-based
augmentation method is exploited to increase robustness of
the proposed method. Then, a CNN encoder is learned to
extract the deep embedding features by minimizing the
normalized similarity between the features extracted from
the input image and its augmented correspondents. Finally,
the pre-trained CNN encoder is transferred into detecting oil
spill regions. With the goal of verifying the proposed ap-
proach, the proposed method is compared with different
object detection techniques in hyperspectral image commu-
nity on a benchmark dataset. Experimental results show that
the proposed method can obtain superior performance for oil
spill detection without any label information. The main
contributions of this work are as follows.
(1) We propose a self-supervised representation learning

with similarity loss for oil spill detection of hyperspectral
images. To the best of our knowledge, this is the first attempt
to achieve hyperspectral oil spill detection with self-su-
pervised representation learning model. The high-level se-
mantic features under complex background are extracted
without labelled samples.
(2) We develop a spectral similarity-based contrastive loss

to enhance the discrimination between different objects and
alleviate the spectral variability of the same object, which is
helpful for increasing the transfer capability of the proposed
method.
(3) Experiments performed on a benchmark hyperspectral

dataset demonstrate that the proposed method obtains pro-
mising detection performance with respect to other su-
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pervised and unsupervised detection approaches.
This work is organized as follows. In Sect. 2, we mainly

describe the detailed steps of the proposed method for hy-
perspectral oil spill detection. In Sect. 3, the experimental
results are presented and discussed. In Sect. 4, several core
conclusions of this work are given.

2 Proposed method

In this section, we describe the detailed steps of the proposed
model for hyperspectral oil spill detection, which mainly
consists of three steps: data augmentation, self-supervised
feature learning, and oil spill detection network. Figure 1
depicts the schematic of the proposed method.

2.1 Data augmentation

Data augmentation is an important technique for deep
learning models, which is able to avoid model overfitting and
enhance the robustness of the model. Currently many aug-
mentation techniques have been widely applied in image
processing [22–25], such as rotation, flip, and mirror. In this
work, considering the 3D characteristic of hyperspectral
image, a spectral and spatial image transformation-based
data augmentation technique is adopted to increase the di-
versity of training data, including spatial mirror, spatial ro-
tation, spectral mirror, and random noise. The details of these
operations are shown in Figure 2. More specifically, let I be
the input data, we first perform a horizontal mirror operation
on the input data I to obtain the spatial mirroring data. Then,
the spatial mirroring data are added random noise to yield
noisy data I. Next, a rotation operation is conducted on the
noisy data I along with the horizontal dimension to obtain
horizontal rotated data I{ }, where t= {900

t [0, 1, 2, 3]}denotes the rotation degree set and I is the
augmented image of I rotated by degree. Finally, a spectral
mirror operation is conducted on the rotated data I to obtain
the spectral mirroring data I . After performing these data
augmentation operations, the expanded training set is written
as { }X I I= 1 . During the training stage, we randomly
select an augmented image from X as the input of the deep
network.

2.2 Self-supervised feature learning

After data augmentation, we need to learn more discriminant
representations from the input cube without any class label
information. Many advanced CNN models, showing out-
standing performance in classification tasks, can be con-
sidered as the backbone, such as VGGNet, GoogleNet, and
ResNet. Nevertheless, the deeper neural networks, the higher
the computing complexity. With this consideration in mind,
ResNet 50 is used as backbone architecture to generate the
feature embedding of the input hyperspectral cube since it
makes a good balance between feature characterization and
time-consuming.
For each hyperspectral cube xi which is cropped from a

hyperspectral image with a certain size W×W. Let F( , ) be
the encoder network which is a CNN parameterized by ,

Rf i
m D is the deep embedding of x i

m obtained by the CNN
model, where D denotes the feature dimension. For self-
supervised learning, given the unlabelled training sample x i

m

and its augmented version x i
n, f i

m and f i
n are the embedding

vectors of the training samples x i
m and x i

n, respectively. To
train the encoder, the main idea is to make similar samples
closer and dissimilar samples far from each other. One
common technique to solve this problem is that a similarity

Figure 1 Schematic diagram of the proposed self-supervised learning model.
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criterion is used to measure the affinity between the em-
bedding of two samples. In this work, a contrastive learning
strategy [26] is adopted, where the contrastive loss of x i

m is
expressed as
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Here, inner product operation f f,i
m

i
n is to calculate the si-

milarities between a pair of feature embedding vectors in the
projection space. τ stands for a temperature parameter. The
contrastive loss acts as an unsupervised energy function for
training the encoder network.
To fully learn the deep feature embedding with the CNN

model, a scalable input dataset needs to be fed into the CNN.
Moreover, for the larger batch size, this model easily suffers
from a large mini-batch optimization issue during training.
To alleviate this problem, a momentum bank mechanism
[27] is adopted which is used to accumulate abundant feature
representations, serving as negative samples. In more detail,
a queue of the feature vectors of image cube x j

m is created
with the current mini-batch enqueued and the oldest mini-
batch dequeued. In the training stage, the embeddings of
current mini-batch are compared with the ones in the queue.
To consistently update the feature vectors in the queue, the
momentum encoder model with parameters mo is in-
troduced. The update rule for momentum encoder is ex-
pressed as

+ (1 ) , (2)mo
t

mo
t t( +1) ( ) ( )

where [0, 1) is the momentum coefficient. It should be
mentioned that only the parameters φ are updated by means
of backpropagation. The momentum update enables para-
meters mo evolve more smoothly than φ.

2.3 Oil spill detection network

The oil spill detection network is to train a CNN classifier by
making use of the pre-trained deep embedding obtained by

self-supervised feature learning. First, the pre-trained CNN
is performed on the training samples to obtain the corre-
sponding deep features of each sample, and the deep features
are used to build a dynamic feature store F q q= { , }store 0 1 that
stores the class specific features in the corresponding queues.
This feature store is updated as training, and the size of the
queue is set as 20 for each class in this work. Then, for each
known class i, we calculate the mean of feature vectors be-
longing to each class so as to construct the set of class pro-
totypes: P p p= { , }0 1 . The class prototypes gradually evolve
as the constituent features change. Finally, we introduce a
loss function [28] to fine-tune the feature extraction ability of
the pre-trained network. Specifically, a prototype vector pi
for each known class i is selected from P. Assume Rf c

d be
a feature vector that is produced by the pre-trained network
without projection head for class c. The contrastive loss is
defined as follows:

L f f p( ) = ( , ), (3)c
i

C

c icont
=0

where
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Here, D is spectral distance function. This loss is helpful to
obtain the desired class discrimination in the feature space.

3 Experiment and result

3.1 Datasets

To validate the detection performance of different hyper-
spectral oil spill detection techniques, a benchmark dataset,
i.e., hyperspectral oil spill detection database (HOSD), is
used, which consists of 10 hyperspectral oil datasets col-
lected from different flight paths at different altitudes. All
images are captured with the AVIRIS sensor embedded on
the unmanned aerial vehicle (UAV) aircraft. This sensor re-
cords 224 spectral channels with wavelength from 380 to
2500 nm. The spectral resolution is 5 nm. The study region is
located in the Gulf of Mexico, North American continent
(see Figure 3). This is the biggest marine oil spill accident in
the US, which resulted in more than 200 million gallons of
crude oils into the Gulf of Mexico. The specific details of the
used database are given in Table 1. The pseudo color image
of each hyperspectral oil dataset is shown in Figures 4 and 5.

3.2 Experimental setup

Parameter setting All deep networks considered in this
work are simulated by PyTorch on Python3.6, running on a
personal computer with Ubuntu20.04, NVIDIA GeForce
RTX 2080Ti and Intel(R) Core(TM) i9-9900K CPU @ 3.60

Figure 2 Spectral and spatial image transformation-based data augmen-
tation technique.

796 Duan P H, et al. Sci China Tech Sci April (2022) Vol.65 No.4



GHz. The spatial window of each cropped cube is set to be
11. SGD is used to optimize the networks, and the batch size
is set as 256. In the self-supervised feature learning phase,
the maximum training epoch is set to be 200, and the learning
rate is set to be 0.03. When the epoch reaches 120 and 160,
the current learning rate is updated by multiplying 0.1. In the
oil spill detection phase, the maximum training epoch is set
to be 100, and the learning rate of the proposed method is set
to be 0.00001. When the epoch reaches 60 and 80, the
learning rate can be updated by multiplying 0.1. In addition,
10 % labelled samples selected from GM 01 and GM 02
datasets are used to train the CNN classifier and the other
datasets are used to test the detection performance.
Compared methods To evaluate the effectiveness of the

proposed method, several state-of-the-art hyperspectral de-
tection approaches are adopted as competitors, including
3DCNN [29], momentum contrast (MOCO) [27], rank-two
nonnegative matrix factorization (R2NMF) [30], low-rank
and sparse matrix decomposition (LRSMD) [31], and kernel
isolation forest (KIF) [32]. For all compared methods, we

follow the default parameters in the corresponding publica-
tions. The source code of the proposed method will be re-
leased online at the author’s Github repository1).
Objective index In order to quantitatively assess the

detection accuracy of all considered approaches, a widely
used objective index [33], i.e., area under curve (AUC), is
used. Given the detection result and reference label, the AUC
can be expressed as

H H HAUC = TPR( )FPR'( )d , (5)
+

where the true positive rate TPR(H) calculates what pro-
portion of the positive samples got correctly identified by the
proposed method when the threshold is H. The false positive
rate FPR(H) indicates what proportion of the negative sam-
ples got correctly detected by the proposed model. The
higher the AUC, the better the performance of this method at
distinguishing between the positive and negative samples.

3.3 Component analysis

Here, the effects of two key steps, i.e., the data augmentation
and contrastive loss, to the detection accuracy of the pro-
posed method are analysed. The experiment is conducted on
the HOSD database. Table 2 gives the detection accuracy of
the proposed method with or without the two key steps. As
shown in Table 2, the proposed method without contrastive
loss obtains the lowest detection accuracy in terms of the
averaged AUC, and the AUC for different hyperspectral
datasets shows severe fluctuations, which demonstrates that
the proposed method without contrastive loss has poor
generalization capability. After the contrastive loss is in-
troduced in the oil spill detection network, the AUC obtained
by the proposed method is increased by 8.59% on average
with respect to the proposed method without the contrastive
loss, which demonstrates that this step is beneficial for im-
proving generalization of the proposed model.
Furthermore, it is found that the proposed method without

the data augmentation step tends to decrease the detection
accuracy. By comparing the AUC for different hyperspectral
datasets, when the data augmentation is not used in the
proposed method, the detection accuracy of the proposed
method tends to decrease on the HOSD database. The main
reason is that the data augmentation can effectively increase
the robustness of the extracted features. Moreover, the pro-
posed method yields the highest detection accuracy among
three methods, which illustrates that both data augmentation
and contrastive loss make important contributions for oil
spill detection. This experiment also confirms the effec-
tiveness of the data augmentation and the contrastive loss
steps to the proposed method.

Figure 3 Study area.

Table 1 The specific details of the oil spill detection database

Datasets Spatial resolution (m) Spatial size (pixel)

GM01 7.6 1243×684

GM02 3.3 1965×492

GM03 7.6 1386×690

GM04 7.6 1466×676

GM05 7.6 2085×682

GM06 8.1 2088×691

GM07 3.2 1569×517

GM08 7.6 1185×682

GM09 7.6 842×640

GM10 3.2 836×572

1) https://github.com/PuhongDuan
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3.4 Experimental results

Table 2 lists the objective results of all methods on the HOSD
database. The objective accuracy obtained by 3DCNN
method exceeds that of the proposed method on GM 01 and
GM 02. This is because the 3DCNN method is a supervised
detection method, which makes full use of the class label
information. The MOCO model cannot work well for hy-

perspectral oil spill detection. The detection accuracy ob-
tained by the MOCO model is relatively low. This is due to
the fact that this model freezes the weights of the pre-trained
feature extractor when it trains the detection network. The
R2NMF method improves the detection accuracy with re-
spect to the MOCO model. However, the detection ac-
curacies on some datasets are still unsatisfactory. Similarly,
the LRSMD method also yields a low objective accuracy.

Figure 4 The detection maps of different methods on GM01-GM05.
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The KIF method shows great improvement compared with
other competitors. Nevertheless, it also has poor detection
accuracy on few datasets, such as GM 02 and GM 10. Dif-
ferent from other methods, the proposed method obtains the
highest detection accuracy among all considered approaches,
and works well on all hyperspectral datasets. The main
reason is that the pre-trained feature extraction and fine-
tuning steps make a great contribution to oil spill detection,

which enhances the transfer ability of the proposed model.
Figures 4 and 5 show the detection maps of different

methods. By observing these resulting images, it can be seen
that the 3DCNN method can detect the oil spill regions on
most of hyperspectral images. However, it cannot work well
such as GM 07 and GM 10 datasets due to low robustness.
The detection results obtained by the MOCO method are
unsatisfactory. The reason is that the MOCO method freezes

Figure 5 The detection maps of different methods on GM06-GM10.
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the features when training supervised linear classifier, and
thus, this method has a low generalization. The R2NMF
method only works on few hyperspectral images due to the
spectral similarity between the can seawater. The LRSMD
method presents poor detection results since the Mahalano-
bis distance in the LRSMD cannot well model the separ-
ability between the seawater and oil film. Although the KIF
method can detect the oil spill regions, the detection maps
have serious noisy labels. As can be seen, the proposed
method exhibits the best performance for oil spill detection.
The oil spill regions can be well identified on all datasets,
which also illustrates the strong generalization ability of the
extracted deep features.

4 Conclusions

In this study, we propose a self-supervised learning method
for hyperspectral oil spill detection, which is composed of
three steps. First, a spectral and spatial transformation
technique is used to augment the input data so as to enhance
the robustness of the proposed method. Then, the CNN en-
coder is trained to extract the deep semantic features from the
input cube and its augmented data, and this step does not
require the involvement of manually annotated labels. Fi-
nally, the pre-trained CNN parameters are transferred into
the CNN classifier to decrease the labelled sample usage and
avoid the overfitting of the training model. Experiments on
the HOSD database verify the effectiveness of the proposed
method, and several main conclusions can be obtained as
follows: (1) The self-supervised learning exhibits huge po-
tentials for hyperspectral oil spill detection. (2) The spectral
similarity-based contrastive loss is helpful for increasing the
generalization of the proposed model. (3) Experiments reveal
that the proposed method yields the best detection perfor-

mance with respect to other state-of-the-art detection ap-
proaches.
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