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The use of non-destructive testing (NDT) equipment, such as the falling weight deflectometer (FWD), provides important esti-
mates of road health and helps to optimize road management regimes. However, periodic road testing and post-processing of the
collected data are cumbersome and require much expertise, a considerable amount of time, money, and other resources. This study
attempts to develop a reliable prediction method for estimating the deflection basin area of different asphalt pavements using road
temperature, load time, and load pressure as main characteristics. The data are obtained from 19 kinds of asphalt pavements on
a 2.038-km-long full-scale field accelerated pavement testing track named RIOHTrack (Research Institute of Highway Track) in
Tongzhou, Beijing. In addition, a chaotic particle swarm algorithm (CPSO) and a segmented regression strategy are proposed in
this paper to optimize the XGBoost model. The experiment results of the proposed method are compared with those of classical
machine learning algorithms and achieve an average of mean square error and mean absolute error respectively by 5.80 and 1.59.
The experiments demonstrate the superiority of the XGBoost algorithm over classical machine learning methods in dealing with
nonlinear problems in road engineering. Significantly, the method can reduce the frequency of deflection tests without affecting
its estimation accuracy, which is a promising alternative way to facilitate the rapid assessment of pavement conditions.
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1 Introduction

Pavement structural damage has always affected road ser-
vice life. With the increase of traffic volume and vehicle
axle load, developing asphalt pavement with long service life
has been a serious challenge faced by researchers. Long-life
asphalt pavement becomes an important pavement develop-
ment trend, due to fatigue cracking, permanent deformation,
and other structural damage of the traditional asphalt pave-
ment. Long-life asphalt pavement refers to the asphalt pave-
ment with the designed service life of 40 to 50 years whose
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characteristic is that the damage of the pavement only occurs
on the surface during the service period, and no structural
damage will appear [1]. The pavement performance can be
guaranteed through periodic maintenance. Under relatively
heavy traffic conditions, long-life asphalt pavement helps to
alleviate frequent pavement reconstruction, thus reducing the
cost of pavement maintenance [2, 3]. Pavement evaluation
can be divided into four aspects: pavement function evalua-
tion, pavement structure ability evaluation, pavement damage
evaluation, and safety evaluation. As an important index to
evaluate the bearing capacity of asphalt pavement structures,
the surface deflection value is vital to detect and evaluate the
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health condition of asphalt pavement [4].

The detection methods used to evaluate the pavement
structure include destructive testing and non-destructive test-
ing (NDT) [5]. Destructive testing not only causes man-made
damage to the original pavement surface but also consumes
time and energy. Meanwhile, the limitations of the field sam-
pling test lead to the deviation between test results and the
original material. The method of NDT is simple and fast
as the main basis of pavement structure design and strength
evaluation for a long time. Therefore, non-destructive test-
ing methods based on deflection such as alling weight deflec-
tometer (FWD) have become an important topic in evaluating
pavement structural performance.

Data of the FWD test are used to back-calculate the mod-
ulus of pavement structure layer for further analysis of the
pavement structure [6]. However, FWD test experiments re-
quire a lot of time and resources. In addition, the practice
of frequent data collection is really time-consuming, disrup-
tive to traffic, and expensive, making it difficult to repeat.
These may be some common reasons for ignoring structural
aspects of pavements when choosing maintenance or repair
decisions. Therefore, to cope with these limitations, many
efforts have been made by researchers to find relatively fast
alternative analysis methods and obtain a comprehensive un-
derstanding of the asphalt pavement deflection basin area.
Recently, advanced learning algorithms have been introduced
to model engineering applications. Artificial intelligence (AI)
techniques, such as expert systems, artificial neural networks
(ANN), genetic algorithms (GA), and hybrid systems, pro-
vide reasonable approximations for analyses dealing with the
complex interrelationships of traffic loads and climatic con-
ditions.

As experiments at RIOHTrack are very expensive, a data-
driven approach to high precision simulations is essential.
The study in this paper aims at developing and designing a
hybrid model called CPSO-XGBoost segmented regression
model for predicting deflection basin area of 19 kinds of as-
phalt pavements with high precision. The model in this paper
is first proposed and used for deflection basin area predic-
tion. We propose a segmented regression strategy based on
the experimental operation of RIOHTrack. For the task of
deflection basin prediction, the CPSO algorithm is used to
optimize the whole model and jump out the local optimum
by chaotic mapping to obtain higher accuracy. Significantly,
the method can reduce the frequency of deflection tests with-
out affecting its estimation accuracy under the current exper-
imental design of RIOHTrack, which is a promising alterna-
tive way to facilitate the rapid assessment of pavement condi-
tions. We compare the proposed CPSO-XGBoost segmented
regression model with several other methods including the

k-nearest neighbor model (KNN) and XGBoost. The perfor-
mance of these models is statistically evaluated and validated
on a dataset from the Institute of Highway Science, Ministry
of Transportation, Beijing [7]. The contributions are summa-
rized as follows.
• This is the first time that the XGBoost algorithm is ap-

plied to the prediction problem of deflection basins. It outper-
forms mainstream machine learning algorithms such as ran-
dom forest (RF), KNN, and support vector regression (SVR)
in terms of mean square error (MSE) and mean absolute er-
ror (MAE), indicating that the XGBoost algorithm has good
performance in the nonlinear fitting. The performance and
computational speed are also better than those of the com-
pared algorithms.
• For the characteristics of the measured data of the de-

flection basin, a segmentation regression strategy is proposed
and the rate of load change is used as the segmentation point.
• Optimization of the XGBoost algorithm using the CPSO

algorithm combined with the segmented regression strategy
can improve the accuracy by more than 1200% compared
with the unoptimized one, and more than 10% compared with
the PSO algorithm combined with the segmented regression
strategy.
• Combining the AI algorithm with the prediction prob-

lem of the deflection basin area can increase the prediction
accuracy and reduce the number of deflection experiments in
the future, and the deflection basin area of the road condition
with high accuracy.

The rest of this paper is organized as follows. In Sect. 2,
we review the related work. In Sect. 3, the fundamental al-
gorithms are introduced for our work. In Sect. 4, the CPSO
and a segmented regression model are proposed to improve
the XGBoost for deflection basin area prediction and describe
the complete prediction algorithm. In Sect. 5, experimental
results are discussed and the prediction performance of our
algorithm is analyzed. In Sect. 6, the conclusion of our work
is drawn and the future work prospected.

2 Related work

Several NDT methods such as ultrasonic pulse-echo, ground-
penetrating radar, infrared differential thermal, and FWD
have been proposed to analyze the stress-strain response of
asphalt pavement [8–11]. The authors use pavement deflec-
tion measurements under FWD loading for a variety of pur-
poses. Gedafa et al. [12] attempt to propose a nonlinear
model to predict cracking of flexible pavements by relating
the deflection basin data under FWD loading with parame-
ters such as condition survey data, effective structural num-
ber, layer thickness, and equivalent axle load. Similarly, Gar-
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bowski et al. [13] attempt to relate deflections under FWD
load by different models with parameters such as thicknesses
of the model layers, layer material properties, and cross-
anisotropy in all layers. Furthermore, Habbouche et al. [14]
design the mechanistic-empirical (ME) rehabilitation to eval-
uate the pavement condition in the field also requires an FWD
test. Ma et al. [15] propose a new smart pavement model for
conventional drop-weight deflectometer that can only charac-
terize the overall load-carrying capacity of the pavement, in
which built-in sensors are incorporated to monitor the pave-
ment stress and strain response under aircraft loading. In
2015, the Institute of Highway Science, Ministry of Trans-
portation constructed a 2.038 km long full-size field accel-
erated pavement test track named RIOHTrack to develop a
long-life pavement suitable for China. Zhang et al. [16] per-
form statistical analysis of stress/strain, rutting depth, etc. for
the experimental data obtained from RIOHTrack and summa-
rized the advantages of different types of pavement structures.
Wang et al. [17] use sensor detection technology to explore
the actual usage environment and mechanical response law of
asphalt pavement structures. The influence laws of external
factors such as temperature and load on the mechanical re-
sponse are analyzed to reveal the temperature and load depen-
dence of the real mechanical response. The actual structural
mechanical response of the pavement required to establish the
calculation system and analysis theory of asphalt pavement is
obtained.

Recently, advanced learning algorithms have been intro-
duced to model pavement engineering applications [18–22].
Fakhri and Shahni Dezfoulian [23] provide a satisfactory cor-
relation between international roughness index (IRI), pave-
ment surface evaluation and rating index (PASER), and struc-
tural indices based on deflection measurements by ANN and
regression models. Huang et al. [4] evaluate the statisti-
cal characteristics of random variables in asphalt pavements
based on field data collected from asphalt pavement projects.
Based on the numerical simulation results, unique formula
with fairly good accuracy is found using multiple linear re-
gression to facilitate the calculation of pavement deflection in
reliability analysis. Yang and Deng [24] use KNN to model
crack type and crack width information of chemically stabi-
lized asphalt pavement from FWD test data. Hussain et al.
[25] use the statistical techniques of multiple nonlinear re-
gression and ANN to effectively model the asphalt pavement
analyzer rut distress. New aggregate indices designated as
“aggregate source index” and “aggregate gradation index” are
developed. Karballaeezadeh et al. [26] consider that FWD
and ground-penetrating radar are expensive tests. Besides,
the back-calculation methods have some inherent disadvan-
tages compared with the exact methods because they use a

trial and error approach. Based on these two points, ran-
dom forest algorithm cups are used to predict the number of
structures in flexible pavements and tested with 759 flexible
pavement sections in the Semnan and Khuzestan provinces
of Iran. This study shows that using machine learning meth-
ods instead of backward computation can improve the quality
and accuracy of the computational process. Machine learning
algorithms provide a data-driven approach for pavement en-
gineering research, which can effectively reduce the error of
pavement back-calculation methods and improve the calcula-
tion efficiency and accuracy, but they need the support of a
large amount of actual measurement data.

In addition, based on the research of machine learning in
pavement engineering, some researchers have proposed fu-
sion models combining evolutionary algorithms and machine
learning models to achieve better results. Xu et al. [27] pro-
pose an optimization method combining orthogonal experi-
mental design, ANN, and GA. The steel-epoxy asphalt pave-
ment structure of the Sutong Yangtse River Bridge is opti-
mized by this method. The method is confirmed to improve
fatigue reliability. Li and Wang [28] combine an ANN pro-
gram with the GA to predict the surface deflection response
of asphalt pavements under FWD loading. The program opti-
mized with the GA is trained and validated using a synthetic
database. The soft computing model shows better predic-
tion accuracy than traditional multivariate regression meth-
ods. Zhang and Ji [30] also use ANN-GA to back-calculate
the flexible pavement layer modulus from the FWD test with
certain advantages, such as elimination of seed modulus and
consideration of complex material properties. More impor-
tantly, the back-calculated pavement layer parameters can be
directly used in the mechanical-empirical design of pavement
overlays. Li and Wang [29] propose a new gray model-based
method (GM(1,1|sin)) to predict the roughness of pavements.
The particle swarm optimization (PSO) algorithm is used to
select the best parameters for the GM(1,1|sin) model. The
method uses only historical IRI data for prediction, thus sav-
ing the cost of collecting a large amount of pavement con-
dition data. Kaloop et al. [31] focus on the development
of a particle swarm optimization-based extreme learning ma-
chine (PSO-ELM) to predict the performance of stabilized
aggregate bases subjected to wet and dry cycles. PSO-ELM
not only possesses higher accuracy but also lies in the fact
that the predicted resilient modulus (Mr) usually produces
the same distribution and trend as the observed Mr. Liang
et al. [32] develop a new multi-objective PSO (MOPSO) al-
gorithm that uses a Gaussian process regression (GPR) with
a machine learning approach to solve asphalt mixture ra-
tio design. In the optimization step, the metaheuristic al-
gorithm based on adaptive weight MOPSO (AWMOPSO) is
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used to achieve the global optimal solution. After optimiza-
tion by the proposed GPR-AWMOPSO algorithm, the com-
prehensive performance of the pavement is improved in terms
of high-temperature permanent deformation resistance, low-
temperature crack resistance, and moisture stability. Evo-
lutionary algorithms have good applications in optimization
problems. They are combined with machine learning algo-
rithms to improve the prediction accuracy of machine learn-
ing algorithms for problems related to pavement engineer-
ing. An automated and intelligent method for asphalt pave-
ment proportioning design is also provided. This method is
more effective for the study of pavement engineering com-
pared with the traditional method.

Different from the above work, this paper develops a high-
precision model for predicting the basin area of deflection un-
der FWD testing for asphalt pavements, which can simulate
the basin area data of deflection in FWD testing of asphalt
pavement roads conducted on RIOHTrack at the Institute of
Highway Science, Ministry of Transportation, Beijing. The
model provides a method to solve the problem of high cost
and long cycle time associated with FWD testing, and pro-
vides highly accurate, credible experimental fit data for as-
phalt pavement research.

3 Fundamental algorithms: XGBoost and
CPSO

3.1 XGBoost

The XGBoost algorithm [33] is an integrated learning algo-
rithm based on the idea of Boosting. It is developed based on
the gradient boosting decision tree (GBDT) algorithm [34].
It is not only improved in speed, but also in the improvement
of accuracy. Specifically, the XGBoost algorithm performs
a second-order Taylor expansion of the cost function by in-
troducing regularization terms to avoid overfitting. The inte-
grated tree model is

ŷi = θ(xi) =
K∑

k=1

fk(xi), fk ∈ F, (1)

where K is the total number of sub-models; F = { f | f (x) =
wq(x)} is the set of all regression trees, and wq(x) is the weight
vector composed of the weights of all leaf nodes of the regres-
sion tree; ŷi is the sample prediction value; xi is the sample
input feature; fk is the k-th regression tree, each regression
tree has a separate leaf weight w and tree structure q. The
objective function is introduced as

O = l(yi, ŷi) +
K∑

k=1

Ω( fk), (2)

in which l(yi, ŷi) is the loss function, representing the differ-
ence between the predicted value ŷi and the actual value yi;
Ω is the regularization term, used to smooth the final learn-
ing weight to avoid overfitting. By carrying out multiple it-
erations through the addition strategy, defining ŷt

i as the pre-
dicted value of sample i in the t-th iteration, synthesizing the
loss function and regularization term, and combining eqs. (1)
and (2) , which can deduce that

O(t) =

N∑
i=1

l(yi, ŷ
(t−1)
i + gi ft(xi) +

1
2

hi f 2
t (xi)) + Ω( ft),

gi = ∂ŷ(t−1)l(yi, ˆy(t−1)), hi = ∂
2
ŷ(t−1)l(yi, ŷ(t−1)),

(3)

in which N is the number of trees. The main implementation
process is organized as follows:

(1) establish a new decision tree;
(2) calculate gi and hi of each training sample according to

the objective function shown in eq. (3) and start iteration;
(3) use the approximate greedy algorithm to find the best

split point to obtain the decision tree structure ft(x), where t
represents the t-th iteration;

(4) add ft(x) to the integrated tree model;
(5) follow steps (1)–(4) to perform multiple iterations to

obtain the final classification model.

3.2 CPSO

The PSO algorithm is a robust metaheuristic technique pro-
posed by Eberhart and Kennedy (1995) based on the behavior
of the particles/social animals, like birds in a swarm [35]. To
find the optimal solution, the operation process of the PSO
algorithm is summarized [36].

In the initial period of the algorithm, n particles are
first randomly initialized in the D-dimensional search space.
After k iterations, the position (xk

j1, x
k
j2, ..., x

k
jD) and speed

(vk
j1, v

k
j2, ..., v

k
jD) of the particle j move in the search space

at a certain speed. Meanwhile, the individual extreme value
pk

lbest and group extreme value pk
gbest are recorded, and then

the states of the population are updated. In each iteration, the
velocity and position of particle j can be updated as

vk+1
jd = ωvk

jd + c1r(pk
lbest − x jd) + c2R(pk

gbest − x jd), (4)

xk+1
jd = xk

jd + vk
jd, (5)

where vk
jd is the velocity of the j-th particle in the d-

dimensional of the search space at the k-th iteration, vk+1
jd is

the velocity at the (k+1)-th iteration, xk
jd is the position of the

j-th particle in the d-dimensional of the search space at the k-
th iteration, xk+1

jd is the position at the (k + 1)-th iteration, ω
is the inertial weight, c1 and c2 are acceleration factors, r and
R are random numbers on [0,1], pk

lbest is the historical opti-
mal position of the j-th particle at the k-th iteration, pk

gbest is
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the historical optimal position of the population at the k-th
iteration.

In PSO, the setting of the inertial weight affects the par-
ticle’s exploration and search capabilities, and thus plays a
vital role in the performance of the algorithm. By adjusting
ω, the global and local search capabilities of particles can be
adjusted to achieve a balance. When ω is large, the particle
has strong global searchability. Otherwise, the particle has
strong local searchability. The setting of the inertia weight
usually adopts a strategy of linearly decreasing within a cer-
tain interval as the number of iterations increases, and hence
the calculation formula is given as follows:

ω = ωmax − (ωmax − ωmin) × k
maxgen

, (6)

where ωmax and ωmin are the upper and lower limits of the
inertial weight, respectively, k is the current iteration number
and maxgen is the maximum iteration number.

In fact, the value of this linearly decreasing method can
be relatively large at the initial stage. During this period, the
global search ability of the particles is strong, while the lo-
cal search ability is relatively weak, which is beneficial to
quickly locate the approximate position of the optimal so-
lution. However, as the number of iterations increases, the
value of ω gradually decreases, and the population conver-
gence rate becomes slower. At this stage, the local search
ability of the particles is stronger, and the global search abil-
ity is weaker because the particles have only the best flight
position and population to their own. The characteristics
of the flight position learning of the best particles in the
algorithm make the algorithm prone to the premature phe-
nomenon. By simply relying on linear transformation, the
weight of particles can not be accurately adjusted due to the
diversity of the population [37].

Then, when the algorithm falls into the local optima, the
population particles gather around the local optimal position
and repeat the similar optimization trajectory, making it dif-
ficult to escape the local optima [38–40]. Chaos is a non-
linear natural phenomenon, which has the characteristics of
randomness, ergodicity, etc., and can be searched for opti-
mization [41, 42]. This paper draws on the characteristics of
randomness and ergodicity of chaotic phenomena and uses
them to escape the local optima.

The logistic equation of a commonly used chaos model is
given as follows:

zn+1 = µzn(1 − zn), n = 0, 1, 2, ..., (7)

where µ is the control parameter. When 0 ≤ z0 ≤ 1, µ = 4,
logistic equation is in a completely chaotic state. Eq. (7) is
an evolutionary form of the following logistic equation [43]:

cxt+1
i = 4cxt

i(1 − cxt
i), i = 0, 1, 2..., (8)

cxi = (xi − a)/(b − a), (9)

x
′

i = a + cxi(b − a), (10)

in which cxt
i is the value of chaos variable cxi after the t-th

iteration. When xi ∈ [0, 1] and cxi ∈ {0.25, 0.5, 0.75}, chaos
will occur. The solution variable xi ∈ [a, b] can be mapped
back and forth with cxi by eqs. (9) and (10), where a and b
are the maximum and minimum values of the solution space.

Based on the characteristics of randomness and ergodicity
of chaotic phenomena, this paper proposes a method to jump
out the local optima based on chaos optimization. By com-
paring the number of successive iterations S G that the best
position of the population is not updated with the threshold
S Gmax, it can determine whether the algorithm falls into the
local extreme value. If S G > S Gmax, the algorithm is consid-
ered to have fallen into a local optimum. When the algorithm
is judged to be trapped in a local optimal position G, it will
first use eq. (9) to map G to the domain of chaos variable
as [0, 1], and then use eq. (8) to perform iterative operations
to obtain m chaos position (Gc

1,G
c
2, ...,G

c
m), and finally use eq.

(10) to perform inverse mapping to obtain the n′ new extreme
position (G1′ ,G2′ , ...,Gn′). Since the particles complete self-
updating by chasing the extreme positions of individuals and
groups, when the algorithm falls into the local optima, the
position of the group extreme value must be at the local ex-
treme value position. The new extreme value position of the
group combined with eq. (4) can change the trajectory of the
particle optimization. When the i-th particle self-updates by
chasing the new extreme value position of the new group, it
can be performed to search for new neighbor areas and paths
outside the neighborhood of the local optima. Therefore, a
better solution can be found with a higher probability, thereby
increasing the possibility of the algorithm escaping the local
extremum.

In general, MSE can be used as the fitness function to eval-
uate the degree of evolution of particles which is listed

E =
∑M

i=1(Yi − y∗i )2

M
, (11)

where M represents the number of samples, Yi is the actual
value of the sample data, and y∗i is the predicted value of the
sample.

4 CPSO-XGBoost segmented regression model
in asphalt pavement deflection basin area pre-
diction

4.1 Segmented regression model

The deformation process of the whole process of the deflec-
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tion basin area in the same cycle is inconsistent at different
periods, and one or one type of digital model is not described.
It is inevitable to use several different types of digital mod-
els to express this. The demand for segment regression is
highlighted. In the specific modeling process of segmented
regression, a specific task is the determination of the demar-
cation point.

The demarcation point is the turning point of the change
of the defamation law and the inflection point of the defor-
mation curve. Of course, it becomes the conversion point of
the change of the type of the deformation model. The cutoff
point is both the endpoint of the former deformation curve
and the start point of the latter deformation curve; the defor-
mation numerical model before the cutoff point is one type,
and the deformation numerical model after the cutoff point
is another one. The correctness of the cutoff point directly
affects the quality of modeling and ultimately affects the ac-
curacy of deflection basin area prediction.

According to the change law of the deflection basin area, it
is found that the load level will change suddenly at a certain
stage. This article uses it as a segmentation point, and two
XGBoost models named XGBoost1 and XGBoost2 are pro-
posed to predict and analyze the area of the deflection basin
in T1 and T2 respectively, which can be formulated as

y =

αXGBoost1(index), index ∈ T1,

βXGBoost2(index), index ∈ T2.
(12)

In the formula, y is the predicted values, α and β are the cor-
rection coefficients of two models, respectively, and index is
the periodic position.

4.2 CPSO-XGBoost segmented regression model

The XGBoost segmented regression model has 8 main pa-
rameters, the learning rate of the two XGBoost models named
as l1r and l2r ; the maximum depth of the tree named as d1

max

and d2
max; the minimum leaf weight named as lw1

min and lw2
min.

The correction parameters are α and β. Different parameters
have different functions. The values of parameters have an
important impact on the performance of the model. Tuning
parameters usually depend on empirical judgment and traver-
sal experiments. Traditional methods are not effective and
lack a theoretical basis. Therefore, this paper optimizes pa-
rameters based on the improved CPSO algorithm, taking the
MSE as the fitness function, and retains the group optimal
solution and individual optimal solution for each iteration.
Through the interaction of these two types of information, it
will evolve towards the global optimal. Because traditional
PSO may not jump out from the local optimum, CPSO can
make particles out of the local optimum after a successful
chaos map, and thus performs a better global optimization

ability than the original PSO. Now the constitution of the
training module and prediction module is illustrated in Fig-
ure 1 in detail. Specific steps are given as follows.

Input: Algorithm iteration number T , population size
M, initial maximum position xmax, initial maximum velocity
vmax, training dataset datatrain and test dataset datatest.

Output: optimal position G, optimal fitness function value
E.

(1) Perform segmentation processing on the training
dataset datatrain and the test dataset datatest.

(2) Randomly initialize the speed and position of parti-
cles in the population, and initialize the number of iterations,
counters and local extreme value judgment thresholds. The
values are t = 0, S G = 0 and S Gmax = 7 [44].

(3) Define the relevant parameters of the XGBoost seg-
mented regression model, pass the initial position of the par-
ticles to the relevant parameters as the initial parameters, and
then train the model to find the initial fitness value e of the
particles, find the initial pt

lbest and initial pt
gbest of the popula-

tion.
(4) Perform the following operations on all particles in the

population: 1⃝. update the weight ωt i of the particles accord-
ing to eq. (6). 2⃝. update the particle velocity and position
according to eqs. (4) and (5). 3⃝. calculate the particle fitness
value e, and update the pt

lbest and pt
gbest of the particle. If the

pt
gbest has not been updated, set S G = S G + 1; otherwise, set

S G = 0.
(5) If S G ≤ S Gmax, use eqs. (8)–(10) to generate chaos

optimization for (G1′ ,G2′ , ...,Gn′ ), and set S G = 0.
(6) Set t = t + 1. If t < T , go to step (4); otherwise, go to

step (7).
(7) Output G, E, the algorithm ends.

5 Experiment and analysis

The measured deflection basin data comes from the full-scale
pavement test loop road project of the Ministry of Transport.
It is located in the southwest corner of the Beijing Highway
Traffic Test Field. It has a 2.038-km-long full-scale field ac-
celerated pavement testing track named as RIOHTrack. The
full-scale ring road includes 25 types of asphalt pavement
structures. The layout of the pavement structure is shown
in Figure 2.

Nineteen main test pavement structures were set up in
the test ring road to study and compare the long-term per-
formance and evolution of asphalt pavement structures and
materials with different combinations of structural rigidity.
The thickness of the asphalt concrete structure layer of these
pavement structures is 12, 18, 24, 28, 36, 48 cm (or 52 cm),
which basically covers the thickness of all asphalt concrete
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Figure 1 (Color online) The structure of CPSO-XGBoost segmented regression model.
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Figure 2 (Color online) RIOHTRACK testing sections.

structure layers of China’s high-grade highways, as well as
flexible base thickness of thick asphalt pavement. From the
perspective of the type of base structure, it includes four typ-
ical structures: rigid base structure, semi-rigid base structure,
flexible base structure, and full-thick asphalt pavement struc-
ture [7].

In this paper, the measured data of the full-scale road sur-
face structure of 19 kinds of asphalt pavement are used as the
data source. The goal is to deflect the basin area value from
the two feature fields, a total of 5016 data samples, of which
3800 are used for training, and the remaining data are used
for testing. A CPSO-XGBoost segmental regression model
is modeled for each of the 19 kinds of asphalt pavements.
The MSE and the MAE are used to evaluate the performance
of algorithms. These metrics are used to reflect the difference
between the real value and the predicted value. And, they are
the most commonly used performance indices in regression
tasks. The smaller the indices are the more accurate the pre-
diction will be. The definitions of these accuracy indices are
shown in Table 1.

Table 1 Brief description of the datasets used

Index Formula

MAE 1
M
∑M

m=1 |ym − ŷm |

MSE 1
M
∑M

m=1(ym − ŷm)2

5.1 Model building

The framework of the deflection basin area prediction model
is shown in Figure 3, which contains three parts: new feature
extraction, data processing, and data fitting.

Feature engineering is a process that transforms the orig-
inal data into training data. Its purpose is to obtain better
training features and make a machine learning approach to
achieve the upper limit of the model. The main feature engi-
neering of this paper includes new feature extraction and data
processing.

The initial data of 19 kinds of asphalt pavement mainly in-
clude cumulative load axis times, load level, pavement tem-
perature, and deflection basin area. Some features may have
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missing values. The average value is used to fill in the nu-
merical features with fewer missing values, and then the
cycle is calculated. The related load axis time, load axis
time change rate, load level change rate, temperature change
rate, temperature change difference are shown in Table 2. In
the experiments, they are compressed and handled with log-
transformed.

Since the deflection basin area data are collected period-
ically, there is a certain amount of noise, which has a cer-
tain negative impact on the prediction of the deflection basin
area. To reduce the effects of noise, the smoothing coefficient
is taken to perform the first-order exponential smoothing on
the deflection basin area. Figure 4 shows typical data and
smoothed data. Each algorithm in this paper uses the same
data set for training and testing.

5.2 Analysis of segmented regression results

Now, XGBoost, and XGBoost segmented regression are used
to predict the area of deflection basin for asphalt pavement
STR1. The associated load axis time, load axis time rate of
change, load level rate of change, temperature rate of change,
and temperature change difference were used to predict the
deflection basin area.

Three load experiment cycles of data are used as the train-

ing set and one load experiment cycle of data is used as the
test set. The correction coefficients of multiple sets of XG-
Boost segmented regression are set for comparison, and the
correction coefficients are shown in Table 3. Also, the predic-
tion results are compared with those of XGBoost with default
parameters to obtain the prediction results, as shown in Fig-
ure 5. The performance comparison of the prediction results
is shown in Table 4.

Table 4 shows that the accuracy of the XGBoost segmented
regression model is improved significantly by adjusting the
correction coefficients. Note that the best-performing coeffi-
cients are difficult to be found by artificial settings. To solve
this problem, the CPSO algorithm is proposed in the next to
perform an intelligent search for better performance.

5.3 Performance of CPSO-XGBoost Segmented Regres-
sion Model

We will predict the deflection basin area of STR1 asphalt
pavement in one cycle. Firstly, the performance of CPSO
is analyzed. According to the characteristics of the improved
CPSO algorithm, combined with the parameter range of XG-
Boost and the characteristics of the asphalt pavement struc-
ture data, the corresponding settings are made. For CPSO
optimization, the initial parameters are set as follows: maxi-
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Figure 3 (Color online) Flow chart of deflection basin area prediction.

Table 2 The initial data (part)

Loading period Accumulated loading shaft times Load level . . . Temperature change rate Difference in temperature change

1 28396 56.47 . . . 0 0

2 297079 56.47 . . . –0.586462274 –4.72

3 483685 56.47 . . . 0.30940138 3.61

4 670604 56.47 . . . 0.566987355 15.26

5 854651 56.47 . . . 0.108741099 3.28
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

N72 21838286 48.09 . . . –0.845282119 –6.81
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Figure 4 Typical data and smoothed data.

mum iteration T = 100, number of population M = 40,
xmax = 5, vmax = 0.05 and S Gmax = 7. Because the proposed
CPSO algorithm randomly generates the initial population
with certain randomness, it is possible to find the subopti-
mal or even optimal parameters with high probability through
multiple experiments. In this paper, three experiments are
performed for different random initializations named exper-
iment I, II, III. The results of three CPSO experiments are
shown in Figure 6.

Figure 6 shows that the CPSO algorithm converges quickly
in about 20 iterations and escapes the local optimal point by
chaotic mapping when it falls into a local optimum, which
improves the optimization search accuracy. However, the

Table 3 The correction coefficients of XGBoost segmented regression

Group number α β

No. 1 1.3 0.8

No. 2 1.2 0.8

No. 3 1.3 0.7

Table 4 Performance of prediction results in MSE and MAE

Algorithm MSE MAE

XGBoost 46.2770 6.4225

No. 3 52.1759 4.7416

No. 2 40.3601 5.7187

No. 1 6.2744 1.7624

final accuracy of the CPSO algorithm is influenced by the
initial distribution.

Moreover, the CPSO is compared with some existing
PSO algorithms with fixed weight [35] and linear decreasing
weight [45] with the same initial particle distribution. The
corresponding fitness graph of different PSO algorithms is
shown in Figure 7. In the iterative process of these algo-
rithms, we make some of the particles in the swarm mutate
and escape from the initial range, to avoid falling into the
local optimum. The performance is shown in Table 5.

The results show that the CPSO algorithm proposed in this
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Figure 5 Prediction results of deflection basin area for STR1 with different correction factors and XGBoost algorithm. (a) No. 1; (b) No. 2; (c) No. 3; (d)
XGBoost.
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Figure 7 Fitness graph of different PSO.

Table 5 Optimization comparison among different PSO

Algorithm MSE

Fixed weight 2.1770

Linear decreasing weight 2.0417

CPSO in this paper 1.9659

paper has the minimum fitness function value of all particles
in the last iteration compared with other PSO algorithms.
It jumps out of the local optimum at the later stage of the
search by the method of chaotic mapping, and obtains a more
schooled fitness function value.

5.4 Deflection basin area prediction for different types of
asphalt pavements

To illustrate the generality of our algorithm, the prediction of
the deflection basin area under load tests on 19 types of as-
phalt pavements is considered. To verify the effectiveness of
the CPSO-XGBoost segmented regression model, it is com-
pared with the commonly used models in the prediction of the
deflection basin area. XGBoost, SVR, KNN, RF, long short-
term memory (LSTM) [46] and gated recurrent units neural
network methods (GRU) [47] are used as the baseline mod-
els for comparison. The baseline models which are machine
learning algorithms are implemented using the Scikit learn

[48] library for python, and the parameters use the default
recommended parameters. As for the LSTM and GRU, we
set 7 input nodes, 128 hidden nodes, and 1 output node. Then
train the models by the same train dataset with a learning rate
of 0.01. We leverage a batch size of 128 and the max epoch
is set to 500. stochastic gradient descent (SGD) algorithm
solves for the parameters of models.

The hardware environment of machine learning algorithms
used in the test uses Intel(R) Core(TM)i5-6500 (3.19 GHz, 4
cores) microprocessor, 8 GB DDR3 memory, and the oper-
ating system uses 64-bit Windows 10 Chinese Professional
Edition. The hardware environment of LSTM and GRU used
in the test uses Intel(R) Xeon(R) E5-2620-v4 (2.10 GHz, 8
cores) microprocessor, Tesla P100-PCIE GPU, and the oper-
ating system uses Linux. We use Python 3.6 for experimental
simulations.

In the paper, the performances of CPSO-XGBoost seg-
mented regression model, PSO-XGBoost segmented regres-
sion model, XGBoost, SVR, KNN, RF, LSTM, and GRU on
MSE and MAE are compared and shown in Figure 8.

The comparison results of each algorithm are shown in Ta-
ble 6. Table 6 shows that the algorithm of this paper has
the best performance in MSE and MAE on 19 kinds of as-
phalt pavement datasets. XGBoost is better than KNN, SVR,
and RF algorithms in terms of prediction accuracy. The al-
gorithm in this paper improves 1267.97% in MSE compared
with the XGBoost algorithm and is better than deep learning
algorithms such as LSTM and GRU. Compared with the al-
gorithm optimized with PSO, it improves 10.58% in MSE.
The algorithm of this paper improves 3508.62% in MAE
compared with the comparison algorithm. Therefore, the
algorithm in this paper has good generalization and can be
adapted to extremely complex pavement structures with sat-
isfactory prediction results.

6 Conclusion

Given the weak generalization ability and low prediction

Table 6 The performance of algorithms in MSE and MAE

Algorithm Mean MSE Mean MAE

XGBoost 79.4201 7.1966

SVR 82.2908 5.7743

KNN 112.2139 8.1189

RF 196.8466 11.3883

LSTM 61.3932 5.6529

GRU 65.4412 5.2346

PSO-XGBoost segmented regression model 6.4199 1.6066

CPSO-XGBoost segmented regression model 5.8057 1.5962
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Figure 8 (Color online) Boxplots of MSE and MAE with different algorithms. (a) MSE of different PSO; (b) MAE of different PSO; (c) MAE of comparison
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accuracy of the XGBoost-based prediction model in asphalt
pavement deflection basin area prediction, the CPSO en-
semble segmental regression method was introduced into
XGBoost named by CPSO-XGBoost segmental regression
model, the parameters of XGBoost, and the correction co-
efficients in the segmental regression method were optimized
and improved with the help of CPSO.

In this study, we used 19 datasets to test the predictive
performance of the CPSO-XGBoost segmented regression
model. The performance of this algorithm outperformed the
other compared algorithms on all datasets in terms of MSE
and MAE. The MSE performance of this algorithm also out-
performs the other compared algorithms. Because the train-
ing sample size has a great impact on the prediction perfor-
mance of the computational intelligence method, its predic-
tion performance can be improved by increasing the training
data size. The test results show that the CPSO-XGBoost seg-
mental regression model is effective in predicting the deflec-
tion basin area of asphalt pavements. From the results of the
comparative analysis, it can be found that although the algo-
rithm in this paper shows the best optimization performance
among all the algorithms, its prediction error still has a small
fluctuation. For this reason, how to better adapt the evolu-
tionary algorithm and optimize the XGBoost model will be
the next problem to be studied and solved. Meanwhile, im-
proving the prediction accuracy and adaptive tuning of the
parameters are also important issues to be investigated.
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