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This paper studies the problem of adaptive neural networks control (ANNC) for uncertain parabolic distributed parameter systems
(DPSs) with nonlinear periodic time-varying parameter (NPTVP). Firstly, the uncertain nonlinear dynamic and unknown periodic
TVP are represented by using neural networks (NNs) and Fourier series expansion (FSE), respectively. Secondly, based on
the ANNC and reparameterization approaches, two control algorithms are designed to make the uncertain parabolic DPSs with
NPTVP asymptotically stable. The sufficient conditions of the asymptotically stable for the resulting closed-loop systems are also
derived. Finally, a simulation is carried out to verify the effectiveness of the two control algorithms designed in this work.
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1 Introduction

Distributed parameter systems (DPSs) can be used to simu-
late the state change of a large number of practical engineer-
ing systems. Such systems often have the characteristics of
time-space evolution at the same time, that is, system vari-
ables and parameters change not only with time, but also
with the change of space position. Parabolic DPSs is a typ-
ical DPSs. It is widely used in mathematical models in the
fields of physics, chemistry, biology, ecology and control en-
gineering. For example, it is applied to engineering practices
such as modeling and control of infectious diseases, chem-
ical reaction control, heat conduction control, pipeline flow
control [1–4]. Consequently, it is very valuable and essential
to study the control problem of parabolic DPSs with strong
application background.
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In recent years, the nonlinear structure of the actual indus-
trial control system becomes more and more complex. In
addition, people’s requirements for control accuracy and sys-
tem performance are getting higher and higher. However, the
widespread existence of stochastic disturbance, multivariable
coupling, various uncertainties, etc., poses a greater chal-
lenge to the study of control and synthesis of nonlinear sys-
tems [5–7], which has attracted the attention of many schol-
ars and researchers. T-S fuzzy method is an effective method,
which is widely used to deal with nonlinear systems. The
design of fuzzy control algorithms for nonlinear ordinary dif-
ferential equations (ODEs) based on T-S fuzzy model were
studied in refs. [8–10]. Then, this method was extended to
the nonlinear parabolic PDEs [11, 12]. In refs. [11, 12], the
main idea was to reduce the nonlinear parabolic PDEs to a
low dimensional nonlinear ODEs model by using Galerkin
method, and then used the existing fuzzy control technology
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to design a suitable controller for the obtained low dimen-
sional nonlinear ODEs model. However, because the system
information is truncated before the design of control algo-
rithms, some inherent characteristics of the original system
may be lost, resulting in control overflow. Therefore, for the
sake of more perfect performance and higher control accu-
racy, scholars are committed to directly studying the fuzzy
controller design method of nonlinear parabolic DPSs based
on fuzzy PDEs model. In ref. [13], a class of fuzzy boundary
controllers for nonlinear DPSs was proposed. In ref. [14],
a distributed fuzzy control algorithm was proposed for non-
linear parabolic DPSs. Recently, Wang et al. [15–18] have
proposed many distributed control algorithms based on T-S
fuzzy PDEs model. NNs [19] and fuzzy logic systems (FLSs)
[20] are also effective tools to deal with nonlinear systems,
which have been widely used in many researches [21–34]. In
refs. [21–27], FLSs were mainly used to approximate nonlin-
ear systems with unknown nonlinear function. However, the
systems studied in refs. [21–27] were all systems modeled by
ODEs. Wu et al. [32] and Luo et al. [35] studied the problem
of adaptive control for uncertain nonlinear DPSs based on
NNs. However, their main idea was to reduce the nonlinear
parabolic PDEs to a low dimensional nonlinear ODEs model
by Galerkin method. Then, the existing fuzzy control tech-
nology was used to design a suitable controller for the low
dimensional nonlinear ODEs model. Most of the literatures
mentioned above are concerned with unknown nonlinear dy-
namical systems with constant parameterization. Then, Li et
al. [36–38] gave some results on the synchronization of non-
linear reaction-diffusion NNs with unknown TVP. However,
in these results, the unknown TVPs in the studied systems
were linearly ones rather than nonlinearly ones. Therefore,
this paper is devoted to the study of uncertain parabolic DPSs
with unknown NPTVP.

Based on the above description and summary of the ex-
isting results, we mainly give the research motivation behind
this study from the following aspects. Firstly, this paper stud-
ies a class of parabolic PDEs with NPTVP. It is widely used in
practical engineering research fields such as aerospace engi-
neering and machine tool mechanical control. For example,
for industrial robots, aerospace vehicles and CNC machine
tools, interference usually exists and has periodicity due to
the influence of the external environment. Secondly, with the
development of science and technology, the nonlinear struc-
ture of most industrial control systems becomes more and
more complex. Moreover, in practical applications, the peri-
odic nonlinear disturbances in most systems can not be fully
linearized. Therefore, the research on the stabilization of un-
certain PDEs with NPTVP has important practical value and
research significance. In addition, it should be emphasized
that the existing researches on nonlinear DPSs with PTVP

mainly consider linearly ones rather than nonlinearly ones.
As far as the authors know, there are few researches on the
control of uncertain parabolic DPSs with NPTVP, which mo-
tivates us to devote ourselves to the research of this work.

In this study, we mainly focus on the problem of ANNC
for uncertain parabolic DPSs with NPTVP, which is mainly
based on the theories of adaptive control, NNs and Fourier
series expansion (FSE). Contributions of this study are stated
as follows.

(i) Different from refs. [21–34], NNs or FLSs cannot be
directly used to approximate uncertain PDEs with unknown
NPTVP. If the NNs or FLSs are used to approximate the non-
linear system directly, there will be unmeasurable PTVP in
the signal of the approximator. Therefore, NNs or FLSs can
not directly approach unknown system with NPTVP. In or-
der to solve this problem, we need to take the following two
steps: first, the unmeasurable PTVP is reconstructed by FSE
technique. Then, the reconstructed parameters are used as the
new input signal of the NNs or FLSs to describe the nonlinear
periodic time-varying uncertain DPSs.

(ii) Unlike PDEs with TVP studied in refs. [36–38], this
paper gives an ANNC scheme for the uncertain parabolic
DPSs with NPTVP, which has a wider application in actual
engineering modeling.

(iii) Based on the ANNC technology and reparameteriza-
tion approach, two control algorithms are designed to make
the uncertain parabolic DPSs with NPTVP asymptotically
stable.

The overall structure of the study is arranged as follows.
Sect. 2 introduces the system formulation and some prelimi-
naries. In Sect. 3, the main results are given. A simulation is
carried out to verify the effectiveness of the two control algo-
rithms in Sect. 4. Finally, give a conclusion for this paper.

Notations: R and Rn represent the set of the real num-
bers and n-dimensional Euclidean space, respectively. H ,
(L2[0, l];R) is a Hilbert space of square integrable vec-
tor function ϕ(s) : [0, l] → R with ⟨ϕ1(·), ϕ2(·)⟩ =∫ l

0 ϕ
T
1 (s)ϕ2(s)ds and ∥ϕ1∥2 =

√
⟨ϕ1(·), ϕ1(·)⟩. ∥E∥ =

√
ETE

and ∥E∥1 =
∑n

i=1 |ei|, where E = [e1, e2, · · ·, en]T ∈ Rn. The
superscript T is used for the transpose of a vector or a matrix.
χt(s, t) =

∂χ(s,t)
∂t , χs(s, t) =

∂χ(s,t)
∂s

, χss(s, t) =
∂2χ(s,t)
∂s2

.

2 Problem formulation and some preliminaries

Consider the following periodic time-varying PDEs:
χt(s, t) = χss(s, t) + f (χ(s, t), φ(t)) + u(s, t), s ∈ (0, l),

χ(s, 0) = χ0(s),

χ(0, t) = χ(l, t) = 0,

(1)

where χ(s, t) ∈ H is the state variable with s ∈ (0, l) is the
spatial coordinate variable and t > 0 is the time. φ(t) :
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[0,∞) → R is an unknown perturbation parameter with a
known period τ, namely, φ(t) = φ(t + τ). f (χ(s, t), φ(t)) :
H ×R → H is an unknown continuous function and satisfies
f (0) = 0. u(s, t) is the control input.
Remark 1 In this work, the uncertain function f (χ, φ(t))
needs to satisfy the following assumptions. Firstly, f (χ, φ(t))
is a continuous function, which can be approximated by ra-
dial basis NNs QTϕ(χ, φ(t)) on a compact set Ω. Secondly,
for the unknown nonlinear TVP φ(t), it is assumed that it is
a TVP with a known period τ. The assumption of function
f (χ, φ(t)) is to make the uncertain nonlinear function approx-
imate by NNs, and then deal with the system with uncertain
nonlinear terms. This assumption has been given in the ex-
isting literatures [30, 31]. In addition, for φ(t), a TVP that
changes periodically has been applied in actual engineering
modeling. For example, for industrial robots, aerospace vehi-
cles and CNC machine tools, interference usually exists and
has periodicity due to the influence of the external environ-
ment. Its change cycle is closely related to the change cycle
of the external environment.

Next, several Lemmas are introduced, which will be used
later.
Lemma 1. (Wirtinger’s inequality [16]) Let χ(s, t) ∈ H
and it satisfies χ(0, t) = 0 or χ(l, t) = 0. Then, we get∫ l

0
χ2(s, t)ds ≤ 4l2

π2

∫ l

0
χ2
s (s, t)ds, t ≥ 0. (2)

Lemma 2. (Young’s inequality [39]) Suppose a, b ≥ 0 ∈
R, ϱ1 > 1, 1

ϱ1
+ 1
ϱ2
= 1, then

ab ≤ aϱ1

ϱ1
+

bϱ2

ϱ2
,

if and only if aϱ1 = bϱ2 , the equality ab = aϱ1
ϱ1
+ bϱ2
ϱ2

holds.
Lemma 3. (Approximation theory of radial basis function
NNs [40]) If the number of neural nodes m is large enough,
QTϕ(ω, g) can approximate any continuous function f (ω, g)
on a compact set Ω ⊂ H × R, i.e.,

f (ω, g) = QTϕ(ω, g) + ξ(ω, g), (3)

where ξ(ω, g) is the inherent approximation error of NNs and
satisfies |ξ(ω, g)| < ξ∗ with ξ∗ is an unknown positive con-

stant. Q = [q1, q2, · · ·, qm] ∈ Rm is the optimal weight vector
that defined as

Q := arg min
Q̂∈Rm
{ sup
(ω,g)∈Ω

| f (ω, g) − Q̂Tϕ(ω, g)|}, (4)

where Q̂(t) is the estimate of Q at t, ϕ(ω, g) ,
[ϕ1(ω, g), ϕ2(ω, g), · · ·, ϕm(ω, g)]T : Ω → Rm is the known
NNs basis function vector defined as

ϕ j(ω, g) = exp

− (ω − s1
j )

2 + (g − s2
j )

2

c2
j

 , (5)

with s j , [s1
j , s

2
j ]

T and c j are the center and width of the basis
function, respectively.

Based on the above problem formulation and some pre-
liminaries, we aim to design two ANNC algorithms to make
the nonlinear periodic time-varying uncertain parabolic DPSs
asymptotically stable. The architecture of the ANNC scheme
is shown in Figure 1.

3 Main results

From Lemma 3, if the input variables χ , χ(s, t) and φ(t) of
NNs are both measurable, the unknown continuous function
can be described directly as

f (χ, φ(t)) = QTϕ(χ, φ(t)) + ξ(χ, φ(t)). (6)

However, in this work the variable φ(t) is an unknown PTVP,
which leads to ϕ(χ, φ(t)) unknown. Thus, we cannot use eq.
(6) directly. We need to further construct a new equivalent
form. Since φ(t) is a TVP with a known period τ, it can be
described by a linearized FSE [41] as

φ(t) = PTρ(t) + ε1(t), (7)

where P , [p1, p2, · · ·, pn]T ∈ Rn is the weight coefficient of
Fourier expansion and ρ(t) , [ρ1(t), ρ2(t), · · ·, ρn(t)]T ∈ Rn is
the basis function vector of Fourier series, where

ρ1(t) = 1, ρ(2i)(t) =
√

2 sin(2iπt/τ),

ρ(2i+1)(t) =
√

2 cos(2iπt/τ), i = 1, 2, · · ·, n − 1
2
,

Eq. (13)

Figure 1 Scheme architecture for ANNC.
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and ε1(t) is the inherent approximation error of FSE, which
satisfies |ε1(t)| ≤ ε∗1 with ε∗1 is an unknown positive constant.

From eqs. (6) and (7), we can construct the following new
equivalent form:

f (χ, φ(t)) = QTϕ(χ, PTρ(t) + ε1(t)) + ξ(χ, φ(t)), (8)

where |ξ(χ, φ(t))| < ξ∗ with ξ∗ is an unknown positive con-
stant.

A feedback control algorithm is designed as

u(s, t) = −Q̂T(t)ϕ(χ, P̂T(t)ρ(t)) − (ν̂(t) + w(t))sgn(χ(s, t)), (9)

with the following adaptive laws:

˙̂Q(t) =ϖ1

∫ l

0
χ(s, t)[ϕ(χ, P̂T(t)ρ(t))

− ϕ′(χ, P̂T(t)ρ(t))P̂T(t)ρ(t)]ds, (10)

˙̂P(t) = ϖ2

∫ l

0
χ(s, t)Q̂T(t)ϕ′(χ, P̂T(t)ρ(t))ρ(t)ds, (11)

and

˙̂ν(t) = ϖ3

∫ l

0
|χ(s, t)|ds, (12)

where

ν = ∥P∥2 + ∥Q∥2 + ∥Q∥1 + λ∗,
w(t) = ∥Q̂T(t)ϕ′(χ, P̂T(t)ρ(t))ρ(t)∥2

+ ∥P̂T(t)ρ(t)ϕ′(χ, P̂T(t)ρ(t))∥2,

ϕ′(χ, P̂T(t)ρ(t)) =
∂ϕ(χ, P̂T(t)ρ(t))
∂(P̂T(t)ρ(t))

,

(13)

with P̂(t), Q̂(t), ν̂(t) are the estimated values of P, Q, ν, re-
spectively, andϖ1 > 0, ϖ2 > 0, ϖ3 > 0 are constant param-
eters that can be adjusted.
Remark 2 Combining the NNs approximation method and
reparameterization technology, the unknown nonlinear term
f (χ, φ(t)) is rewritten as eq. (8), where Q is the optimal
weight vector of NNs and P is the weight vector of FSE. The
adaptive parameters Q̂(t), P̂(t) and ν̂(t) in the control algo-
rithm (9) are the estimated values of Q, P and ν at t. Through
these estimates, the control algorithm (9) can be designed to
make the PDEs system with NPTVP asymptotically stable.
In addition, the parameters ϖ1, ϖ2 and ϖ3 contained in the
adaptive laws are adjustable parameters, which can affect the
convergence speed of the closed-loop system.

Substituting eqs. (8) and (9) into eq. (1), we can derive the
closed-loop system of eq. (1) as
χt(s, t) = χss(s, t) + QTϕ(χ, PTρ(t) + ε1(t)) + ξ(χ, φ(t))

−Q̂T(t)ϕ(χ, P̂T(t)ρ(t)) − (ν̂(t) + w(t))sgn(χ(s, t)),

χ(s, 0) = χ0(s),

χ(0, t) = χ(l, t) = 0.

(14)

Theorem 1. There exists a feedback controller (9) and
adaptive laws (10)–(12) to ensure that the solution of the sys-
tem (14) is asymptotically stable, namely, limt→∞ ∥χ(s, t)∥2 =
0. In addition, the control input u and estimations of adaptive
parameters Q̂(t), P̂(t), ν̂(t) are all bounded.

Proof. Construct the candidate Lyapunov function for eq.
(14) as follows:

W(t) =W1(t) +W2(t), (15)

where

W1(t) =
1
2

∫ l

0
χ2(s, t)ds, (16)

and

W2(t) =
1

2ϖ1
Q̃T(t)Q̃(t) +

1
2ϖ2

P̃T(t)P̃(t) +
1

2ϖ3
ν̃2(t), (17)

with Q̃(t) = Q − Q̂(t), P̃(t) = P − P̂(t), ν̃(t) = ν − ν̂(t).
Because of the eq. (9), it can be known that the function

W1(t) is discontinuous in R. The Dini derivative of function
W1(t) obtained along the solution of eq. (14) with the respect
t is as follows:

D+W1(t) =
∫ l

0
χ(s, t)χss(s, t)ds +

∫ l

0
χ(s, t)[QTϕ(χ, PTρ(t))

− Q̂T(t)ϕ(χ, P̂T(t)ρ(t))]ds

+

∫ l

0
χ(s, t)[QTϕ(χ, PTρ(t) + ε1(t))

− QTϕ(χ, PTρ(t))]ds +
∫ l

0
χ(s, t)ξ(χ, φ(t))ds

− (w(t) + ν̂(t))
∫ l

0
χ(s, t)sgn(χ(s, t))ds

=

5∑
ι=1

Kι. (18)

From Lemma 1, the boundary condition, and using the inte-
gral by parts, one has

K1 =

∫ l

0
χ(s, t)χss(s, t)ds = −

∫ l

0
χ2
s (s, t)ds

≤ − π2

4l2

∫ l

0
χ2(s, t)ds. (19)

From Taylor series expansion, one can get

QTϕ(χ, PTρ(t)) − Q̂T(t)ϕ(χ, P̂T(t)ρ(t))

=QT[ϕ(χ, P̂T(t)ρ(t)) + ϕ′(χ, P̂T(t)ρ(t))P̃T(t)ρ(t)

+ o((P̃T(t)ρ(t))2)] − Q̂T(t)ϕ(χ, P̂T(t)ρ(t))

=(Q̂T(t) + Q̃T(t))ϕ′(χ, P̂T(t)ρ(t))P̃T(t)ρ(t)
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+ QTo((P̃T(t)ρ(t))2) + Q̃T(t)ϕ(χ, P̂T(t)ρ(t))

=Q̂T(t)ϕ′(χ, P̂T(t)ρ(t))P̃T(t)ρ(t) + Q̃T(t)[ϕ(χ, P̂T(t)ρ(t))

− ϕ′(χ, P̂T(t)ρ(t))P̂T(t)ρ(t)] + M, (20)

where M = QTo((P̃T(t)ρ(t))2) + Q̃T(t)ϕ′(χ, P̂T(t)ρ(t))PTρ(t)
and o((P̃T(t)ρ(t))2) is a remainder term, which is a second
higher order infinitesimal of P̃T(t)ρ(t).
Remark 3 It should be noted that the Taylor series expan-
sion of ϕ(χ, PTρ(t)) with respect to (χ, P̂Tρ(t)) is used in eq.
(20), which can be described as

ϕ(χ, PTρ(t)) = ϕ(χ, P̂T(t)ρ(t)) + ϕ′(χ, P̂T(t)ρ(t))P̃T(t)ρ(t)

+ o((P̃T(t)ρ(t))2). (21)

Using the relationships Q̃(t) = Q − Q̂(t), P̃(t) = P − P̂(t)
and eq. (21), M can be rewritten as

M =QTo((P̃T(t)ρ(t))2) + Q̃T(t)ϕ′(χ, P̂T(t)ρ(t))PTρ(t)

=QTo((P̃T(t)ρ(t))2) + QT(t)ϕ′(χ, P̂T(t)ρ(t))PTρ(t)

− Q̂T(t)ϕ′(χ, P̂T(t)ρ(t))PTρ(t)

=QTϕ(χ, PTρ(t)) − QTϕ(χ, P̂T(t)ρ(t))

− QTϕ′(χ, P̂T(t)ρ(t))(PT − P̂T(t))ρ(t)

+ QT(t)ϕ′(χ, P̂T(t)ρ(t))PTρ(t)

− Q̂T(t)ϕ′(χ, P̂T(t)ρ(t))PTρ(t)

= − Q̂T(t)ϕ′(χ, P̂T(t)ρ(t))PTρ(t)

+ QTϕ′(χ, P̂T(t)ρ(t))P̂T(t)ρ(t)

+ QT[ϕ(χ, PTρ(t)) − ϕ(χ, P̂Tρ(t))]. (22)

Substituting eq. (22) into eq. (20), one gets

QTϕ(χ, PTρ(t)) − Q̂T(t)ϕ(χ, P̂T(t)ρ(t))

=Q̂T(t)ϕ′(χ, P̂T(t)ρ(t))P̃T(t)ρ(t) + Q̃T(t)[ϕ(χ, P̂T(t)ρ(t))

− ϕ′(χ, P̂T(t)ρ(t))P̂T(t)ρ(t)] − Q̂T(t)ϕ′(χ, P̂T(t)ρ(t))PTρ(t)

+ QTϕ′(χ, P̂T(t)ρ(t))P̂T(t)ρ(t)

+ QT[ϕ(χ, PTρ(t)) − ϕ(χ, P̂Tρ(t))]

≤Q̂T(t)ϕ′(χ, P̂T(t)ρ(t))P̃T(t)ρ(t) + Q̃T(t)[ϕ(χ, P̂T(t)ρ(t))

− ϕ′(χ, P̂T(t)ρ(t))P̂T(t)ρ(t)]

+ ∥P∥∥Q̂T(t)ϕ′(χ, P̂T(t)ρ(t))ρ(t)∥
+ ∥Q∥∥P̂T(t)ρ(t)ϕ′(χ, P̂T(t)ρ(t))∥ + ∥Q∥1. (23)

Noting that every element of ϕ(χ, PTρ(t)) − ϕ(χ, P̂Tρ(t)) is
bounded by one, one has QT[ϕ(χ, PTρ(t)) − ϕ(χ, P̂Tρ(t))] ≤
∥Q∥1, which has been used in the derivation of eq. (23).

From eq. (23) and using Lemma 2, K2 can be deduced as

K2 =

∫ l

0
χ(s, t)[QTϕ(χ, PTρ(t)) − Q̂T(t)ϕ(χ, P̂T(t)ρ(t))]ds

≤
∫ l

0
χ(s, t)Q̃T(t)[ϕ(χ, P̂T(t)ρ(t))

− ϕ′(χ, P̂T(t)ρ(t))P̂T(t)ρ(t)]ds

+

∫ l

0
χ(s, t)Q̂T(t)ϕ′(χ, P̂T(t)ρ(t))P̃T(t)ρ(t)ds

+ ∥Q∥1
∫ l

0
|χ(s, t)|ds

+ ∥Q∥∥P̂T(t)ρ(t)ϕ′(χ, P̂T(t)ρ(t))∥
∫ l

0
|χ(s, t)|ds

+ ∥P∥∥Q̂T(t)ϕ′(χ, P̂T(t)ρ(t))ρ(t)∥
∫ l

0
|χ(s, t)|ds

≤
∫ l

0
χ(s, t)Q̃T(t)[ϕ(χ, P̂T(t)ρ(t))

− ϕ′(χ, P̂T(t)ρ(t))P̂T(t)ρ(t)]ds

+

∫ l

0
χ(s, t)Q̂T(t)ϕ′(χ, P̂T(t)ρ(t))P̃T(t)ρ(t)ds

+ (∥Q∥1 + ∥Q∥2 + ∥P∥2)
∫ l

0
|χ(s, t)|ds

+ (∥P̂T(t)ρ(t)ϕ′(χ, P̂T(t)ρ(t))∥2

+ ∥Q̂T(t)ϕ′(χ, P̂T(t)ρ(t))ρ(t)∥2)
∫ l

0
|χ(s, t)|ds. (24)

From K3 + K4, one can get

K3 + K4 =

∫ l

0
λ(χ, t)χ(s, t)ds ≤ λ∗

∫ l

0
|χ(s, t)|ds, (25)

where λ(χ, t) = ξ(χ, φ(t)) + QT[ϕ(χ, PTρ(t) + ε1(t)) −
ϕ(χ, PTρ(t)] and λ∗ > |λ(χ, t)| is an unknown constant.
Remark 4 It is necessary to state that λ(χ, t) is bounded.
The specific reasons are as follows: on the one hand, from
the differential mean value theorem of multi-variable func-
tion, one has

ϕ j(χ, PTρ(t) + ε1(t)) − ϕ j(χ, PTρ(t)

= ε1(t)
∂ϕ j(χ, ς)
∂ς

|ς=PTρ(t)+σε1(t), σ ∈ (0, 1).

From eq. (5), we can easily deduce | ∂ϕ j(χ,ς)
∂ς
| ≤

√
2e

ec j
. On the

other hand, |ξ(χ, φ)| < ξ∗. Thus, we can obtain λ(χ, t) is
bounded, i.e., |λ(χ, t)| < λ∗ with λ∗ is an unknown constant.

Substituting eqs. (19), (24) and (25) into eq. (18), one has

D+W1(t) ≤ − π2

4l2

∫ l

0
χ2(s, t)ds

+

∫ l

0
χ(s, t)Q̂T(t)ϕ′(χ, P̂T(t)ρ(t))P̃T(t)ρ(t)ds

+

∫ l

0
χ(s, t)Q̃T(t)[ϕ(χ, P̂T(t)ρ(t))

− ϕ′(χ, P̂T(t)ρ(t))P̂T(t)ρ(t)]ds
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+ (∥P̂T(t)ρ(t)ϕ′(χ, P̂T(t)ρ(t))∥2

+ ∥Q̂T(t)ϕ′(χ, P̂T(t)ρ(t))ρ(t)∥2)
∫ l

0
|χ(s, t)|ds

+ (∥Q∥1 + ∥Q∥2 + ∥P∥2 + λ∗)
∫ l

0
|χ(s, t)|ds

− (w(t) + ν̂(t))
∫ l

0
χ(s, t)sgn(χ(s, t))ds. (26)

DifferentiatingW2(t) with the respect t, one has

Ẇ2(t) = − 1
ϖ1

Q̃T(t) ˙̂Q(t) − 1
ϖ2

P̃T(t) ˙̂P(t) − 1
ϖ3
ν̃(t)˙̂ν(t). (27)

Combing with eqs. (26), (27) and (10)–(12), one deduces
that

D+W(t) ≤ − π2

4l2

∫ l

0
χ2(s, t)ds + ν

∫ l

0
|χ(s, t)|ds

+

∫ l

0
χ(s, t)Q̂T(t)ϕ′(χ, P̂T(t)ρ(t))P̃T(t)ρ(t)ds

+

∫ l

0
χ(s, t)Q̃T(t)[ϕ(χ, P̂T(t)ρ(t))

− ϕ′(χ, P̂T(t)ρ(t))P̂T(t)ρ(t)]ds + w(t)
∫ l

0
|χ(s, t)|ds

− (w(t) + ν̂(t))
∫ l

0
χ(s, t)sgn(χ(s, t))ds

− 1
ϖ1

Q̃T(t) ˙̂Q(t) − 1
ϖ2

P̃T(t) ˙̂P(t) − 1
ϖ3
ν̃(t)˙̂ν(t)

≤ − π2

4l2

∫ l

0
χ2(s, t)ds ≤ 0. (28)

From eq. (28) and the Lyapunov stability theory, we obtain
that limt→∞ ∥χ(s, t)∥2 = 0, which implies that there exists a
feedback controller (9) and adaptive laws (10)–(12) to ensure
that the solution of the system (14) is asymptotically stable.
Moreover, from eq. (28), we haveW(t) ≤ W(0) is uniformly
bounded for any bounded initial condition W(0), which im-
plies that the control input u and estimations of adaptive pa-
rameters Q̂(t), P̂(t), ν̂(t) are all bounded.

It should be noted that the discontinuous symbolic func-
tion sgn(·) is introduced into the design of the feedback con-
troller (9). Its appearance may cause the control input signal
to vibrate, which makes the control result vibrate. In order
to avoid this phenomenon, we use continuous hyperbolic tan-
gent function tanh(·) to replace the discontinuous symbolic
function sgn(·) in the controller that we design next. Then,
the new feedback control algorithm can be designed as fol-
lows:

u(s, t) = − Q̂T(t)ϕ(χ, P̂T(t)ρ(t))

− (ν̂(t) + w(t)) tanh
( (ν̂(t) + w(t))χ(s, t)

h(t)

)
, (29)

with the following adaptive laws:

˙̂Q(t) =ϖ1

{∫ l

0
χ(s, t)[ϕ(χ, P̂T(t)ρ(t))

− ϕ′(χ, P̂T(t)ρ(t))P̂T(t)ρ(t)]ds − β1h(t)Q̂(t)
}
, (30)

˙̂P(t) =ϖ2

[ ∫ l

0
χ(s, t)Q̂T(t)ϕ′(χ, P̂T(t)ρ(t))ρ(t)ds

− β2h(t)P̂(t)
]
, (31)

and

˙̂ν(t) = ϖ3

[ ∫ l

0
|χ(s, t)|ds − β3h(t)ν̂(t)

]
, (32)

where h(t) is a positive function and satisfies
∫ ∞

0 h(t)dt < ∞
and β1, β2, β3 are positive constant parameters that can be
adjusted.
Remark 5 It should be pointed out that in the design of the
control algorithm (29), on the one hand, continuous hyper-
bolic tangent function tanh(·) is used to replace the discontin-
uous symbol function sgn(·) to avoid the tremor phenomenon
of the control input signal. On the other hand, we introduce
the positive integral bounded function h(t), which can com-
pensate the error between the symbol function sgn(·) and the
hyperbolic tangent function tanh(·), so that the system under
the control algorithm (29) can be asymptotically stable rather
than ultimately uniformly bounded.

Substituting eqs. (8) and (29) into eq. (1), one gets the
following closed-loop system:

χt(s, t) = χss(s, t) + QTϕ(χ, PTρ(t) + ε1(t))

+ ξ(χ, φ(t)) − Q̂T(t)ϕ(χ, P̂T(t)ρ(t))

− (ν̂(t) + w(t)) tanh
(

(ν̂(t)+w(t))χ(s,t)
h(t)

)
,

χ(s, 0) = χ0(s),

χ(0, t) = χ(l, t) = 0.

(33)

Theorem 2. There exists a feedback controller (29) and
adaptive laws (30)–(32) to ensure that the solution of sys-
tem (33) is asymptotically stable, i.e., limt→∞ ∥χ(s, t)∥2 = 0.
In addition, the control input u and estimations of adaptive
parameters Q̂(t), P̂(t), ν̂(t) are all bounded.

Proof. Construct the candidate Lyapunov function for eq.
(33) as follows:

W(t) =
1
2

∫ l

0
χ2(s, t)ds +

1
2ϖ1

Q̃T(t)Q̃(t) +
1

2ϖ2
P̃T(t)P̃(t)

+
1

2ϖ3
ν̃2(t). (34)
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Differentiating W(t) along eq. (33) with the respect t and
combing with Theorem 1 and eqs. (30)–(32), one can deduce

Ẇ(t) ≤ − π2

4l2

∫ l

0
χ2(s, t)ds + (ν̂(t) + w(t))

∫ l

0
|χ(s, t)|ds

− (ν̂(t) + w(t))
∫ l

0
χ(s, t) tanh(

(ν̂(t) + w(t))χ(s, t)
h(t)

)ds

+ β1h(t)Q̃T(t)Q̂(t) + β2h(t)P̃T(t)P̂(t) + β3h(t)ν̃(t)ν̂(t).
(35)

Using the relationships α̃T(t)α̂(t) = 1
2α

T(t)α(t)− 1
2 α̂

T(t)α̂(t)−
1
2 α̃

T(t)α̃(t) and 0 ≤ |A| − A tanh( A
F ) ≤ ε3F(ε3 = 0.2785) [42]

to eq. (35), one obtains

Ẇ(t) ≤ − π2

4l2

∫ l

0
χ2(s, t)ds + ε3h(t) +

β3

2
h(t)ν2

+
β1

2
h(t)QTQ +

β2

2
h(t)PTP

= − π2

4l2

∫ l

0
χ2(s, t)ds + µh(t), (36)

where µ = ε3 +
1
2 (β3ν

2 + β1QTQ + β2PTP).
From eq. (36), one can further obtain

W(t) +
π2

4l2

∫ t

0

∫ l

0
χ2(s, t)dsdr ≤W(0) + µ

∫ t

0
h(r)dr. (37)

From the definition of h(t), we obtain that µ
∫ t

0 h(r)dr is
bounded. According to Barbalats Lemma [43], we can have
limt→∞ ∥χ(s, t)∥2 = 0, which means that the feedback con-
troller (29) with adaptive laws (30)–(32) can make the solu-
tion of system (33) asymptotically stable. Moreover, from the
boundedness of W(t), we can easily get the boundedness of
ν̂(t), Q̂(t), P̂(t) and u.
Remark 6 In this work, because the uncertain PDEs with
unknown NPTVP are studied in this paper, there will be an
unmeasurable PTVP in the signal of the approximator if the
NNs are used to directly approximate the nonlinear system.
Therefore, the NNs cannot be used to directly approximate
the unknown system with NPTVP. In order to solve this prob-
lem, we need to take the following two steps: Firstly, we
use FSE technology to reconstruct the unmeasurable PTVP.
Then, the reconstruction parameter is used as the new input
signal of the NNs to describe the nonlinear periodic time-
varying uncertain DPSs.
Remark 7 From the aspect of the researched system, unlike
most existing results, the unknown parameters in their stud-
ied systems are mostly constant or linear time-varying ones.
However, this article studies the DPSs with NPTVP, which
has a wider application in actual engineering modeling. For
example, it has been widely used in practical engineering re-
search fields such as aerospace engineering and machine tool
mechanical control.
Remark 8 Due to the existence of nonlinear TVP, this
work cannot directly use NNs or FLSs as an approxima-

tor to approximate nonlinear terms like traditional meth-
ods. Instead, the unmeasured PTVP is first reconstructed by
FSE. Then, the reconstructed new parameter is used as the
new input signal of NNs or FLSs to describe the term with
NPTVP. Based on the NNs technology and reparameteriza-
tion approach, two control algorithms are designed to make
the uncertain parabolic DPSs with NPTVP asymptotically
stable.

4 Simulation result

A numerical example is introduced to verify the effective-
ness of the two previously designed algorithms. Consider the
following nonlinear periodic time-varying DPSs described
as

χt(s, t) = χss(s, t) + 10χ(s, t) + sin(χ(s, t))

+ 2 cos(2πt)χ(s, t) + u(s, t), s ∈ (0, l),

χ(s, 0) = χ0(s),

χ(0, t) = χ(l, t) = 0,

(38)

where the initial state value is selected as χ0(s) = 5 sin(πs)
and set l = 1. Then, we give the state evolution of the system
(38) with u(s, t) = 0 as Figure 2. Figure 2 clearly presents
that the open-loop system of eq. (38) at the equilibrium plane
χ(s, t) = 0 is unstable.

Next, through the system (38), we verify the effectiveness
of the control algorithms (9) with eqs. (10)–(12) and (29)
with eqs. (30)–(32), respectively.
Case I For the control algorithm (9) with eqs. (10)–(12),
the Fourier series are chosen as

ρ1(t) = 1, ρ(2i)(t) =
√

2 sin(it),

ρ(2i+1)(t) =
√

2 cos(it), i = 1, 2, 3, 4,

and the NNs basic function is set as

ϕ j(χ, φ) = exp{−(10χ − s1
j )

2 − 10(φ − s2
j )

2}, j = 1, 2, · · ·, 6,

where s1
1 = s2

1 = 0.2, s1
2 = s2

2 = 0.3, s1
3 = s2

3 = 0.4,
s1

4 = s2
4 = 0.6, s1

5 = s2
5 = 0.7 and s1

6 = s2
6 = 0.8. Select

the parameters ϖ1 = 4, ϖ2 = 5, ϖ3 = 0.1. Then, we get the
simulation results under the control algorithm (9) with eqs.
(10)–(12), which are shown as Figures 3 and 4.

From Figure 3, it can be seen that the closed-loop system
of eq. (38) achieves an asymptotically stable result under the
control of algorithm (9). In other words, the control algorithm
(9) with eqs. (10)–(12) can make the system (38) asymptoti-
cally stable. In addition, through the evolutions of the trajec-
tories as in Figure 4(a)–(d), it can be found that the control
input u(s, t) and the adaptive parameter estimates ν̂(t), Q̂(t),
P̂(t) are all bounded, which are consistent with the results of
Theorem 1.
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From Figure 4(e), it can be clearly seen that under the con-
trol algorithm (9), the selection of the initial value of the state
has little effect on the convergence speed of the closed-loop
system. However, it can be clearly seen from Figure 4(f) that
the larger the selected initial value of the state, the larger the
control input to be applied.

Remark 9 From Figure 4(d), we can clearly find that the
control input signal under the control algorithm (9) with eqs.
(10)–(12) has a chattering phenomenon, which is caused by
a discontinuous sign function sgn(·). In addition, in order to
clearly see the chattering phenomenon of the control signal,
we give the evolution trend of u(0.5, t), which shows that the
control signal appears obvious chattering phenomenon after
about t = 7.85.

Case II For the control algorithm (29) with eqs. (30)–
(32), the choice of Fourier series and NNs basic function are
same as Case I and set h(t) = 1

1+t2 . Select the parameters
ϖ1 = 4, ϖ2 = 5, ϖ3 = 0.1 and β1 = 1, β2 = 1, β3 = 0.01.
Then, we get the simulation results under the control algo-
rithm (29) with eqs. (30)–(32), which are shown as Figures 5
and 6.

From Figure 5, it can be seen that the closed-loop sys-
tem of (38) achieves an asymptotically stable result under the
control of algorithm (29) with eqs. (30)–(32). In addition,
through the evolutions of the trajectories as Figure 6(a)–(d),
it can be found that the control input u(s, t) and the adaptive
parameter estimates ν̂(t), Q̂(t), P̂(t) are all bounded, which
are consistent with the results of Theorem 2.

From Figure 6(e), it can be clearly seen that under the con-
trol algorithm (29), the selection of the initial value of the
state has little effect on the convergence speed of the closed-
loop system. However, it can be clearly seen from Figure 6(f)
that the larger the selected initial value of the state, the larger
the control input to be applied.

Remark 10 Significantly, from Figure 6(d), we can
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Figure 5 The evolution of closed-loop system (38) under the control algo-
rithm (29).

see that the control algorithm (29) with (30)–(32) can effec-
tively avoid the chattering phenomenon of control input sig-
nal u(s, t), which is obtained by using continuous hyperbolic
tangent function tanh (·) instead of discontinuous sign func-
tion sgn(·).

From Figures 3 and 5, we can get that both the control
algorithm (9) with (10)–(12) and the control algorithm (29)
with (30)–(32) can effectively make the system (38) asymp-
totically stable. In addition, through in Figures 4(d) and 6(d),
we can find that compared with the control algorithm (9) with
(10)–(12), the control algorithm (29) with (30)–(32) can ef-
fectively avoid control input signal u(s, t) chattering, which
is achieved by using continuous hyperbolic tangent function
tanh (·) instead of discontinuous sign function sgn(·).

5 Conclusion

In this work, the problem of ANNC for uncertain parabolic
DPSs with NPTVP has been studied, which is mainly based
on the theories of adaptive control, NNs and FSE. Firstly,
NNs and FSE are used to represent uncertain nonlinear dy-
namic system and unknown PTVP. Secondly, according to
the ANNC approach and the reparameterization technique, a
control algorithm is designed to make the uncertain parabolic
DPSs with NPTVP asymptotically stable. However, due to
the discontinuous sign function contained in the control al-
gorithm, the chattering phenomenon of the control input sig-
nal may occur. Therefore, in order to avoid the above phe-
nomenon, we further designed the other control algorithm.
In this algorithm, on the one hand, we use continuous hyper-
bolic tangent function to replace discontinuous sign function.
On the other hand, we introduce a positive integral bounded
function in order to compensate the error between them and
make the system asymptotically stable rather than ultimately
uniformly bounded. Finally, a simulation is carried out to ver-
ify that both the two control algorithms can make the system
asymptotically stable, and the second control algorithm can
avoid the chattering phenomenon of the control input signal.

Based on the research in this work, we will mainly focus
on the following two research directions in our future work.
On the one hand, this work mainly studies the control prob-
lems of DPSs with a known period TVP. Thus, the authors
can further consider the case of unknown period in future
work. On the other hand, in this work, we only study the
stabilization problem of a single system modeled by the un-
certain parabolic DPS with nonlinear periodic time-varying
parameter. The future work will be devoted to extending the
method to the synchronization problem of complex dynamic
networks or the consistency problem of multi-agent systems,
which are modeled by DPSs.
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