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Wastewater treatment plays a crucial role in alleviating water shortages and protecting the environment from pollution. Due to
the strong time variabilities and complex nonlinearities within wastewater treatment systems, devising an efficient optimal
controller to reduce energy consumption while ensuring effluent quality is still a bottleneck that needs to be addressed. In this
paper, in order to comprehensively consider different needs of the wastewater treatment process (WTTP), a two-objective model
is to consider a scope, in which minimizing energy consumption and guaranteeing effluent quality are both considered to
improve wastewater treatment efficiency. To efficiently solve the model functions, a grid-based dynamic multi-objective
evolutionary decomposition algorithm, namely GD-MOEA/D, is designed. A GD-MOEA/D-based intelligent optimal controller
(GD-MOEA/D-IOC) is devised to achieve tracking control of the main operating variables of the WTTP. Finally, the benchmark
simulation model No. 1 (BSM1) is applied to verify the validity of the proposed approach. The experimental results demonstrate
that the constructed models can catch the dynamics of WWTP accurately. Moreover, GD-MOEA/D has better optimization
ability in solving the designed models. GD-MOEA/D-IOC can achieve a significant improvement in terms of reducing energy
consumption and improving effluent quality. Therefore, the designed multi-objective intelligent optimal control method for
WWTP has great potential to be applied to practical engineering since it can easily achieve a highly intelligent control in WTTP.
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1 Introduction

During recent decades, frustrating environmental change has
appeared due to the rapid economic development and ex-
cessive pursuit of industrialization. Among all the environ-
mental problems, water pollution, which is regarded as one
of the important factors endangering people’s health, has
been attracted special attention. It is an urgent task to remove
water pollutants and improve water quality [1-3]. Hence,
devising an advanced and effective controller towards was-
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tewater treatment processes (WWTPs) was considered [4,5].
An unavoidable problem is that it is difficult to guarantee the
effluent quality in the conventional WWTPs with nonlinear
and time-varying while reducing energy consumption (EC)
[6]. How to develop an advanced intelligent optimal con-
troller to deal with the time-varying and complex WWTPs
has been regarded as an important research direction in the
field of eliminating water pollution and saving energy.
Several related works were conducted to investigate the
control of EC in WWTPs. A data-driven fuzzy controller was
designed for dissolved oxygen control [7]. A proportional-
integral intelligent controller was proposed to reduce the EC
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of the system operation [8]. An aeration controller integrated
by a feedback strategy and a feed forward strategy was de-
veloped, which could maintain the stability of the system
while ensuring the dissolved oxygen concentration [9]. A
model-free dissolved oxygen set-point autonomous tracking
control method was devised, which utilized reinforcement
learning technology to adjust dissolved oxygen concentra-
tion in real time according to the dynamic process of the
wastewater treatment [10]. A pumping system based on data
mining was applied to balance the wastewater flow rate and
pumping energy [11]. The case study was adopted to cali-
brate the dynamic model and then more accurately predict
pumping EC [12]. It is pretty confirmed that the intelligent
optimal control for reducing EC will still be a hot topic of
advanced control design.

Although many optimal controllers have been designed to
reduce system EC, limited efforts have been devoted to
improving effluent quality (EQ). An integrated fuzzy logic
model was developed to enhance the prediction of key
parameters in ref. [13]. A novel quantitative image analysis
method was proposed to evaluate the main parameters of EQ
in ref. [14]. An effective EQ controller was derived based on
the relative gain array analysis in ref. [15]. A genetic algo-
rithm-based deep belief network model was applied to im-
prove the prediction accuracy of EQ in ref. [16]. Besides, in
ref. [17], a model-based optimal control strategy was adop-
ted to improve the EQ.

To some extent, the above-described works have naturally
inspired the idea of designing a control system that can strike
a balance between ensuring EQ and reducing EC. Although
the idea is very attractive, it is not an easy task but full of
challenges and difficulties. To date, only a few attempts have
been devoted in this way. A multi-criteria selection strategy
was proposed to optimize the set-points of the control vari-
ables in order to reduce the operation cost and improve the
EQ [18]. A locally weighted learning scheme was applied to
WWTPs to realize the monitoring of the nonlinear process
control [19]. A novel decision intelligent control method was
presented in ref. [20] to improve the EQ and reduce the
operation costs. Note that those approaches take into ac-
count EC and EQ, but it is difficult for the above control
methods to obtain appropriate set-points of the manipulated
variables.

Evolutionary multi-objective optimization, as a branch of
computational intelligence, has been developed rapidly in the
past decades due to its fast convergence and powerful global
exploration ability [21-26]. To overcome the problems of
premature convergence and low search ability, ref. [27]
proposed an improved quantum-inspired differential evolu-
tion algorithm with multi-population mutation evolution and
solution space transformation strategies. Large-scale opti-
mization faces problems such as loss of diversity and low
validity of solutions. Deng et al. [28] designed a novel

Sci China Tech Sci

March (2022) Vol.65 No.3

method that integrates cooperative coevolution and hybrid
mutation strategies to improve the optimization perfor-
mance. The unique advantage of multi-objective optimiza-
tion algorithms in obtaining the trade-off solutions of
conflicting objective functions provides a new perspective
for solving traditional engineering problems [29-33].

Gate resource assignment determines the efficient con-
nection between flights, Deng et al. [34] devised an enhanced
adaptive particle swarm optimization algorithm to solve the
multi-objective gate assignment problem. The experimental
results demonstrate that the designed approach can achieve
efficient gate allocation. The multi-objective differential
evolution algorithm was designed to solve the performance
functions to obtain the appropriate set-points in ref. [35]. The
experimental results show that the proposed method can
effectively improve the performance of wastewater treatment
on the premise of reducing EC. A multi-objective optimal
control system was applied to WWTPs to achieve a balance
between EQ and operating cost in ref. [36]. An evolutionary
algorithm based on non-dominated sorting was developed
for WWTPs, which decreased the EC and improved the EQ
while reducing greenhouse gas emissions [37]. A genetic
algorithm was proposed to obtain the optimal process para-
meters to minimize the EC while maintaining the EQ in ref.
[38]. Note that the competition results were obtained by the
aforementioned control systems.

Wastewater treatment is a complex dynamic process with
non-linear characteristics. The models based on conventional
reaction mechanisms are difficult to capture the real time-
varying characteristics. In addition, the general multi-ob-
jective evolutionary algorithms face difficulties in solving
dynamic multi-objective optimization problems (DMOPs) to
track the changing Pareto optimal front efficiently and ac-
curately. Dynamic multi-objective evolutionary algorithms
(DMOEAs) have a fast convergence performance and can
address diversity loss when the evolutionary environment
changes. Therefore, based on the analysis of WWTP, it is
worthwhile to design a dynamic multi-objective evolutionary
algorithm to solve the performance functions of wastewater
treatment with time-varying characteristics.

In this paper, a novel dynamic multi-objective intelligent
optimal control method, built on a grid-based dynamic multi-
objective evolutionary decomposition algorithm (GD-
MOEA/D-IOC), is developed to improve the control per-
formance of WWTPs. The novelties and contributions of the
proposed GD-MOEA/D-IOC contain the following parts.

(1) A two-objective model based on considering the ob-
jective functions of the minimizing EC and guaranteeing
effluent quality is constructed. The relevant process variables
are extracted as the decision variables of the performance
functions, so as to reflect the characteristics of WWTPs ac-
curately.

(2) A novel DMOEA based on grid partitioning strategies
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is proposed to efficiently solve the constructed model func-
tion to obtain reliable optimal solutions.

(3) A GD-MOEA/D-based intelligent optimal controller is
designed to detail the control operation of WWTPs. Simu-
lation results on the BSM1 further demonstrate that the de-
signed intelligent control method can achieve remarkable
improvements in control performance.

The rest of this paper is outlined as follows. Section 2
illustrates the basic characteristics concerning WWTPs and
the core knowledge of MOEA/D. Dynamism handling
techniques are also presented in this section. The details of
the proposed GD-MOEA/D-IOC are presented in Section 3,
together with the multi-objective operational indices opti-
mization problem, the GD-MOEA/D algorithm, and the in-
telligent optimal control scheme. In Section 4, the
effectiveness of our proposed GD-MOEA/D-IOC is vali-
dated by comparing it with other control methods. Finally,
the conclusion is given in Section 5.

2 Related work

2.1 Benchmark study on WWTPs

Dynamic wastewater treatment systems play an increasingly
critical role in protecting the environment and recycling re-
sources when coping with modern urban diseases. However,
WWTPs are complex dynamic processes with non-linear
characteristics, which contain a series of nitrification and
denitrification reactions. It brings a tough challenge for the
application of control strategies in the real dynamic waste-
water treatment systems. An effective method to overcome
this drawback is to devise a benchmark simulation model to
verify the design of the control systems. Therefore, bench-
mark simulation model No. 1 (BSM1), as a typical bench-
mark platform for wastewater treatment is adopted in this
paper. The basic schematic layout of the BSM1 plant is de-
picted in Figure 1.

I Wastewater
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The BSM1 plant is integrated with five activated sludge
reaction units consisting of 2 anoxic units followed by 3
aerated units. The two anoxic units mainly carry out deni-
trification chemical reactions, and nitrite nitrogen (NO, ) or
nitrate nitrogen (NO; ) is reduced into N, by anaerobic
bacteria. The nitrification reaction is mainly carried out in
that three aerated units. The nitrifying bacteria convert am-
monium nitrogen (NH,") into NO, and NO; under aerobic
conditions. Note that the oxygen transfer coefficients of the
third and fourth units are usually fixed, and the oxygen
transfer coefficient of the fifth unit (K;a;) is automatically
adjusted by the controller according to the actual situation.
The dissolved oxygen concentration of the fifth unit (Sg )
plays a critical role in the performance of wastewater treat-
ment. If the dissolved oxygen concentration is too low, it is
not conducive to the nitrification reaction, so that the dis-
charged water contains a large amount of NH,". In contrast,
if the dissolved oxygen concentration is at a high level, part
of the O, does not fully participate in the nitrification reac-
tion, so that it flows into the first anoxic unit in the internal
circulation process, which is not conducive to the deni-
trification operation of wastewater. In addition, the internal
recycle flow rate (Q,) is also a vital factor affecting the
anaerobic reaction. Therefore, it is of great significance to
design a reasonable oxygen transfer coefficient of the fifth
unit and a proper internal recycle flow rate for improving the
performance of wastewater treatment systems.

Furthermore, the fifth unit is followed by a secondary
settler. The wastewater flows into the secondary settler after
biochemical reaction, the upper clarified water in the sec-
ondary settler can be recycled for irrigation, and so on. One
part of the sludge discharged from the lower of the secondary
settler is buried or made into organic fertilizer after being
dried, and the remaining part of the sludge flows into the first
unit through external circulation. Note that the wastewater
treatment is a complex, non-linear, and time-varying process
with multiple variables, and the two performance indicators
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(Color online) General overview of the BSM1 plant, where a biochemical reactor and a secondary settler are included.
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of EC and EQ conflict with each other. Therefore, the in-
telligent optimal controller should be developed to balance
the conflicted relationship and meet the requirements of re-
ducing EC under the premise of ensuring EQ.

2.2 MOEA/D

As a branch of computational intelligence, a multi-objective
evolutionary algorithm based on decomposition (MOEA/D)
is a kind of evolutionary algorithm with low computational
complexity, which can achieve good exploration and ex-
ploitation. MOEA/D applies decomposition and collabora-
tive optimization strategies to solve the multi-objective
optimization problems (MOPs). In order to facilitate the
reader’s understanding, we leverage a simple schematic
diagram to explain this process, as shown in Figure 2. In each
iteration of population evolution, MOEA/D first decomposes
an MOP into N scalar optimization sub-problems (N re-
presents the number of individuals in the population), and
then uses the information of its adjacent subspaces to achieve
cooperative optimization for each sub-problem so as to ob-
tain the optimal solutions of the sub-problem.

The commonly utilized decomposition strategies include
the weighted sum decomposition approach, the Tchebycheff
decomposition approach, and the penalty-based boundary
intersection (PBI) approach. In this paper, the PBI approach
is used to decompose an MOP into N scalar optimization
subproblems and each subproblem is defined as

min g™ (x|4,2") = d,+ 0d.,,
subjectto x € Q,

(1

where

i Subfunctions
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the reference point and M is defined as the number of ob-
jective functions. A=(4,, 4,, ..., /IM)T is the weight vector,

M
where 4; satisfies 1,>0 and Zii = 1. L is the projection of
i=1

f(x) onto the corresponding weight vector A, where f(x)=
(), fo(x), ..., fM(x))T. d, is the vertical distance between
f(x) and L. d, is the straight distance from z* to L. The
iteration process continues until the number of iterations
reaches a prespecified number.

When solving MOPs, MOEA/D can make the solution
individuals in the population quickly and evenly distributed
in the Pareto optimal front. This advantage of MOEA/D
brings a new way for maintaining the dynamic balance of
K;as and Q, in WWTPs, so as to ensure that Sy 5 and the
nitrate level in the second unit (Syo ) are maintained within a
reasonable range, and also improve the overall performance
of wastewater treatment plants.

2.3 Dynamism handling

The WWTP is an optimal control process with dynamic
characteristics. EC and EQ form a two-objective dynamic
optimization problem. Various algorithms are designed to
solve DMOPs. A general framework of DMOEAs is pre-
sented in Algorithm 1. It can be clearly observed that when

g A f

A

f;v—ﬁ <>F v iPF

fN-l
1

Figure 2 (Color online) Basic schematic of MOEA/D.
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Algorithm 1 A general framework of dynamic multiobjective evolutionary
algorithm (DMOEA)

1: Input: Algorithm parameters

: Output: A series of approximated individuals.
: Initialize algorithm parameters;

: Generate an initial population;

: while: the stopping criterion is not met do
Environmental change detection;
if the change is detected then
Generate new individuals using DMOEA;

[ IS - NIV R N VR Y

9: else

10: Generate new individuals using MOEA;
11: end if

12:  Update the individuals;

13: end while

14: Output the final solutions.

the environment change is detected, DMOEA algorithms are
applied to generate the initial solutions in the new environ-
ment. These algorithms are classified as population-based,
diversity-based, and prediction-based algorithms.

To enhance the optimization performance of evolutionary
algorithms in dynamic environments, Zhou et al. [39] de-
signed a population-based prediction strategy. The proposed
strategy takes the previously obtained center points and
manifolds to predict the center points and manifolds in the
new environment. Conventional DMOEAs suffer perfor-
mance degradation under rapidly changing environments, Li
et al. [40] proposed a network-based population prediction
strategy. When an environmental change is detected, a neural
network is adopted to generate a subset of the initial in-
dividuals.

The population diversity strategy can effectively avoid the
algorithm from being trapped into local optimal in the pro-
cess of evolution [41,42]. To improve prediction accuracy,
Ruan et al. [43] devised an algorithm that uses generated
random individuals to increase the diversity of the popula-
tion. To keep the balance of population diversity and con-
vergence, Liang et al. [44] developed a classification method
for decision variables. The method classifies decision vari-
ables into different sets according to the evolutionary state,
so that the different strategies can be used to optimize these
variables and thus achieve a balance between population
diversity and convergence.

Prediction-based approaches have gained particular at-
tention in recent years [45-48]. To handle DMOPs effi-
ciently, Jiang and Yang [49] designed a steady-state and
generational evolutionary algorithm to improve the perfor-
mance of handling DMOPs. The algorithm predicts the in-
itial individuals in a new environment according to the
moving direction and movement stepsize. To achieve accu-
rate tracking of the changing Pareto front, Zou et al. [50]
presented a special points-based predictive strategy that can
eliminate useless individuals while maintaining population
diversity and convergence. To overcome the data imbalance
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in the knowledge transfer process, Jiang et al. [51] devised a
knee point-based transfer learning method to generate high-
quality individuals. In conclusion, prediction-based
DMOEAs are gradually becoming dominant techniques for
solving DMOPs.

3 Dynamic multi-objective intelligent optimal
control design

This section is mainly devoted to the construction of the
dynamic multi-objective intelligent optimal control system
for WWTPs. First, the performance functions are established
by analyzing the relationship between the relevant variables
of WWTPs. Second, the GD-MOEA/D algorithm is devel-
oped based on the MOEA/D framework. Furthermore, the
integrated intelligent optimal controller is devised.

3.1 Design of performance functions

EQ and EC are two important principles to evaluate the
performance of wastewater treatment control systems. Since
wastewater treatment is a complex non-linear process with
time-varying characteristics, the conventional EC and EQ
models could not catch the nonlinear and dynamic char-
acteristics of wastewater treatment processes accurately. The
kernel function has become an effective method for solving
nonlinear function modeling problems. The models of the
multiple conflicting criteria, based on the adaptive kernel
function modeling approach, are constructed to design the
performance functions in accordance with the dynamic
characteristics of WWTPs.

WWTPs comprise a plurality of biochemical reactions.
Nitrification and denitrification are two important bio-
chemical reactions that determine EQ and EC. Through the
principal component analysis of the substances involved in
the biochemical reaction process, the important process
variables are extracted as the input variables of the model,
while EC and EQ are used as the output variables of the
model. The functional relationships between input variables
and output variables are established by kernel functions. The
constructed minimized dynamic performance function can
be formulated as

Minimize f(x,¢) = (f,(X, 0,/5(x, t))Ts )
where

r x(t) =, (O

xo-es0f

o3(?) ’

f(x.0) = Zowzjm exp 6)

where f,(x,f) and f5(x,f) represent the mathematical model
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expressions of EC and EQ in the dynamic control system of
WWTPs, respectively. Let x(£)=[x;(?), xz(t)]T, where x,(¢) and
x,(t) are practical values of Syo, and Sp s measured at time
step 2. Let w(t)=[w,(£), w,(H)]', where w,(7) and w,(?) re-
present the connection weights from f,(x,f) and f5(x,f) to the
Jjth kernel function, respectively. Let c(1)=[c(?), czj(t)]T and
o(O)y=[o(0), azj(t)]T represent the dynamic center vector and
the dynamic width vector of the jth kernel function, re-
spectively.

Note that by establishing the functional relationships be-
tween EC/EQ and the related process variables of WWTPs,
the dynamic change of WWTPs can be more accurately
captured. Then the dynamic tracking control of the S 5 and
Sxo, is realized, and the optimal performance of WWTPs is
improved on the whole.

3.2 Proposed GD-MOEA/D

The complex performance functions EC and EQ of WWTPs
are time-varying. Although the conventional MOEA/D al-
gorithm has shown superior performance in solving static
MOPs, it is difficult to achieve satisfactory solutions when
the MOEA/D is required to quickly track the moving Pareto
optimal front of an MOP once the environmental changes
occur. In order to make a rapid response to the time-varying
characteristics of a MOP, and to predict the severity of the
MOP in adjacent time more accurately, a grid-based dynamic
MOEA/D, GD-MOEA/D for short, is proposed to solve EC
and EQ to obtain the optimal values of S, 5 and Syo ..

The conventional dynamic multi-objective evolutionary
algorithms regard the decision space as a whole and predict
the change of the whole Pareto optimal set (POS) by pre-
dicting the change of the center point of the POS of a dy-
namic MOP. This brings a certain error to the prediction of
the real POS change trend.

In order to more accurately predict the changing trend of
POS, a grid strategy to divide the decision space into dif-
ferent sub-regions is designed in this paper. By analyzing the
position change of all the individuals in the POS in each sub-
region, we can independently predict the changing trend of
the individuals, thus improving the prediction accuracy to a
certain extent. The center of the jth sub-region at time ¢ is
defined as

|POSt4|
J

1
Cl=r—c E : 7
/oSy & @
where je{1,2, ..., nz}, n is the number of decision variables.

POS/, represents the jth subspace of POS at time ¢, |POS’j‘
represents the number of solutions in POS;, and x j[l- represents

the ith solutions in POS'.

The core ideas of the prediction method are described
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as follows. Let C'={C/,C/,...CL} and ("=

{Cl’“, i, Cnfz*'} be the sets of center individuals with

different sub-regions at time step ¢ and #+1, respectively. For

any individual C f inC jm, the proposed method first seeks the

nearest center point to C; in C;', denoted by C,;™' (d€{l,

2, ..., nz}) through calculating the Euclidean distance. Then,
the evolutionary direction of the individuals in the dth sub-
region is defined as

ACdl‘+|,t — dt+|_cjt. (8)

The set of evolution directions predicted at time step #+1 is
AC=(AC/ ™M, ACH™, ,Acn’;"’). For an individual, x "',

which belongs to the dth sub-regions, its corresponding new
individual is generated according to the following criterion:

t+2 1+l t+1,¢ t
X, =x, TAC, "+¥, )

where & is a random number between zero and one. The
method of generating new individuals in different sub-re-
gions is summarized in Algorithm 2.

The developed GD-MOEA/D can well capture the dy-
namic characteristics of EQ and EC. The grid-based strategy
can more accurately detect the changing intensity of in-
dividuals in different regions, so as to improve the accuracy
of predicting the changing trend of EC and EQ in WWTPs.
Thus, the tracking control performance of S5 and Syo, is
improved in WWTPs.

3.3 Integrated intelligent optimal controller

The performance of the proposed grid-based dynamic multi-
objective intelligent optimal control strategy is evaluated on
a wastewater treatment plant. As depicted in Figure 3, the

Algorithm 2 Algorithm framework of GD-MOEA/D

1: Input:
2: N: The population size;

3:  n* The number of sub-regions;

4:  G: The number of iterations;

5: Output:

6 A set of approximate Pareto optimal individuals;
7: Initialize algorithm parameters;

8: while: the stopping criterion is not met do:

9:  for i=1 to G do

10: if the change is detected then

11: Generate new individuals using eqs. (7)—(9);
12: else;

13: Generate new individuals using eqs. (1)—(3);
14: end if

15: end for

16: Update the individuals;
17: end while
18: Output the final solutions.
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||X(t) —Gy (t)"2
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Figure 3 (Color online) Grid-based dynamic multi-objective intelligent optimal control framework towards wastewater treatment processes, including the
neural network model, the GD-MOEA/D algorithm, and the proportion integral differential controller.

proposed intelligent optimal controller mainly includes three
modules. First, through the principal component analysis of
the process variables of WWTPs, EC and EQ are determined
as the output variables of the model, and Sy 5 and Syq, are
determined as the input variables. The functional relation-
ships between input variables and output variables are es-
tablished accurately through the kernel functions. Second,
based on the dynamic functions of EC and EQ, GD-MOEA/D
algorithm is developed. The algorithm obtains the optimal
set-points of Sps and Syo, by solving a dynamic MOP

composed of EC and EQ. In the iterative process, GD-
MOEA/D employs the DE/rand/1 operator and the poly-
nomial mutation operator for producing new solutions.
Third, the established proportion integral differential (PID)
controller realizes the dynamic variation of K;as and Q,, So
that Sg 5 and Syo, are maintained within a reasonable range.
Algorithm 3 depicts the main program of the designed GD-
MOEA/D-IOC.

It should be emphasized that the intelligent optimal con-
troller can be expressed as

Algorithm 3 The overall GD-MOEA/D-IOC framework

: Input: Algorithm parameters
: Output: Control results
: Initialization parameters.

: Step 1 Designing a multi-objective optimization function consisting of EC and EQ.

: Step 2 Designing a grid-based dynamic multiobjective evolutionary decomposition algorithm: GD-MOEA/D.

: Step 3 Employing GD-MOEA/D to find the optimal solutions of the multiobjective optimization problem consisting of EC and EQ.
: Step 4 Tracking control of Sg 5 and Sy, by the designed controller.

~N OB W N~
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u(t) = K e(t)+ K,.jote(t)dt + Kddflgt), (10)

where u(t)=[Q0,(?), KLaS(t)]T, K, is the proportionality coef-
ficient matrix, K; is the integral coefficient matrix, and K is
the derivative coefficient matrix. The error matrix e(f) de-
fined as

e((?) X1(1) = x,(0)
ext)| | xg(t) —x,(2)

Based on the above description, we can see that the es-
tablished multi-objective function can capture the dynamic
characteristics of WWTPs well, and the designed GD-
MOEA/D algorithm can accurately predict the changing
trend of the dynamic multi-objective function. The devised
GD-MOEA/D provides an effective guarantee for obtaining
the optimal set-points of Sp s and Syo, and greatly improves
the overall performance of the control system.

e(t) = : (11)

4 Application to the proposed wastewater
treatment process

In this section, we verify the control performance of the
devised GD-MOEA/D-IOC by means of the experiments on
a wastewater treatment simulation platform. The experi-
mental results are analyzed through the IAE performance
metric and other important process variables in WWTPs. In
order to further evaluate the control performance of the de-
veloped GD-MOEA/D-IOC in WWTPs, several other in-
telligent optimal controllers are used for comparison.
Furthermore, the deeper insights of the control results of GD-
MOEA/D-IOC and other controllers in WWTPs are given
from the perspective of intelligent optimal algorithms.

4.1 Parameter settings and performance metric

The specific parameters of various multi-objective intelligent
algorithms considered in comparative experiments are
summarized in Table 1. Furthermore, some important para-
meters employed in these algorithms are as follows.

(1) Population size: The population size is configured as 40
in all the algorithms.

(2) Stopping criterion: Each algorithm terminates after a
prespecified number of generations. The total number of
iterations is set to 50.

(3) Number of archive: The maximum number of archives
is configured as 40.

To analyze experimental results clearly, in this paper, we
apply the typical used the integral of absolute error (IAE)
indicator to verify the effectiveness of the developed GD-
MOEA/D-IOC. IAE is an indicator to evaluate the degree of
excellence in the performance of control system, which is
derived by integrating the absolute value of the difference
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Table 1 Algorithmic parameter settings

Algorithm Parameter

The scaling factor: F=0.5;

AMODE The crossover fate: C,=0.2

The crossover probability: p.=0.9;

The distribution index for crossover: 7,=20;
The mutation probability: p,=1/n;

The distribution index for mutation: #,,=20

NSGA-II

The crossover probability: 0.9;
The probability of crossover: 10;
The probability of mutation: 0.1;

The mutation distribution index: 20

MOGA

The neighborhood size: 20;
Differential evolution: CR=1 and F=0.5;
Polynomial mutation: #=20 and p,,=1/n;

MOEA/D: 7=20; n,=2; 6=0.9

GD-MOEA/D

between the desired and actual output of the control system.
That is

2 5r

TAE(7) = SLT 3 Jes(t)

i=1t=1

, (12)

where Sy is the total number of samples and e(f) can be
derived directly via eq. (11).

4.2 Performance evaluation

To evaluate the control effectiveness of the designed GD-
MOEA/D-IOC on the wastewater treatment simulation
platform, three intelligent controllers including adaptive
multi-objective differential evolution-based intelligent opti-
mal controller (AMODE-IOC) [35], non-dominated sorting
genetic algorithm-II-based intelligent optimal controller
(NSGA-II-IOC) [37], multi-objective genetic algorithm-
based intelligent optimal controller (MOGA-IOC) [38], and
a conventional PID controller are considered for perfor-
mance comparison of WWTPs.

First, we evaluate the control performance of the devel-
oped GD-MOEA/D-IOC in the dry weather and tabulate the
results of the related process variables in Table 2. Clearly, the
proposed GD-MOEA/D-IOC has achieved significant ad-
vantages over other comparison controllers. Let us first
compare the proposed control strategy and PID. The pro-
posed control strategy achieves the goal of minimizing EC
and optimizing EQ. Specifically, the EC of GD-MOEA/
DIOC in WWTPs is reduced by 3.11%, while the EQ is
improved by 13.92% compared with PID. In addition, the
IAE value of our proposed controller is much smaller than
that of PID, which shows that our proposed control strategy
can achieve better tracking control. Subsequently, the pro-
posed GD-MOEA/D-IOC is compared with the other three
controllers. For AMODE-IOC, NSGA-II-IOC, and MO-
GAIOC, the control results show that the EC of the proposed
control strategy is reduced by 2.13%, 1.98%, and 1.81%,
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Table 2 Performance comparison of different controllers in general
BSM1 plant

EC EQ 1AE
Weather Controller (kWh) (kg pollunits) (mg/L)
GD-MOEA/D-IOC 3859 6492 0.092
AMODE-IOC [35] 3943 7231 0.123

Dry NSGA-II-10C [37] 3937 7214 0.100
MOGA-IOC [38] 3930 7204 0.120

PID 3983 7542 0.135
GD-MOEA/D-IOC 3923 7503 0.089
AMODE-IOC [35] 4128 7551 0.123

Storm NSGA-II-IOC [37] 4169 7551 0.125
MOGA-IOC [38] 4180 7633 0.111

PID 4324 8051 0.142

while the EQ is improved by 10.22%, 10.01%, and 9.89%,
respectively. Eventually, we find that the other three con-
trollers (AMODE-IOC, NSGA-II-IOC, and MOGA-IOC)
also have achieved excellent control performance compared
with PID.

Second, we focus on the proposed GD-MOEA/D-IOC and
the other four controllers in stormy weather. The data in
Table 2 show that in stormy weather, the developed con-
troller achieves the best control performance, and PID con-
trol effect is the worst. Specifically, compared with the PID
controller, the EC of the proposed GD-MOEA/D-IOC is
reduced by 9.27%, while the EQ is improved by 6.81%. In
addition, compared with the PID controller, the EC of other
three controllers (AMODE-IOC, NSGA-II-IOC, and
MOGA-IOC) is decreased 4.53%, 3.58%, and 3.33%, while
the EQ is increased 6.21%, 6.21%, and 5.19%, respectively.
The performance metric IAE results show that the developed
GD-MOEA/D-IOC can minimize the error between the op-
timal setting value and the actual value, which also shows
that GD-MOEA/D-IOC can achieve satisfactory tracking
control performance in the dynamic process of wastewater
treatment.

Third, it should be emphasized that in different weather
conditions, the control effect of the five comparative con-
trollers presents a rule as follows. The control performance
of GD-MOEA/D-IOC is the best, followed by the other three
controllers (AMODE-IOC, NSGA-II-IOC, and MOGA-
IOC) based on multi-objective optimization, and the PID
control performance is the worst.

In our view, this performance mainly comes from the
following two aspects.

First, compared with PID, the remaining four controllers
are built on the basis of multi-objective optimization, and the
multi-objective intelligent optimization algorithms have
significant advantages in solving multiple conflicting ob-
jective functions. The multi-objective intelligent optimiza-
tion algorithm is applied to WWTPs to realize the optimal
control of Sps and Syo,, thereby achieving the goal of re-
ducing EC and improving EQ.

March (2022) Vol.65 No.3 577

Second, wastewater treatment is a dynamic process with
complex characteristics, the function models of EC and EQ
established by neural networks have dynamic characteristics,
and the conventional multi-objective algorithms can not ef-
fectively solve the dynamic multi-objective optimization
problems efficiently. Particularly, the grid-based GD-
MOEA/D divides the decision space into different sub-
spaces, and predicts the changing trend of the Pareto subset
in each subspace independently, so as to improve the pre-
diction accuracy of the changing trend of the whole Pareto
set to a certain extent. The grid strategy can quickly and
accurately track the changing front of the Pareto set after
detecting the environmental changes, and therefore, the ap-
propriate solutions can be obtained.

Apart from the tabular display of process variables, we
also provide the tracking control curves of Sgs and Syo,
under the dry weather and the stormy weather in Figures 4
and 5, respectively. From tracking control curves of Sg 5 and
Sxop>, Wwe can directly observe that the developed GD-
MOEA/DIOC can effectively track and control S 5 and Syo ,
in WWTPs. The tracking control errors of S5 and Syo, in
the dry weather and the storm weather are depicted in Fig-
ures 4(c) and 5(c). As can be viewed, the tracking control
errors of Sp 5 and Syo, are kept within +£0.2 and 50.17 mg/L
in most cases, respectively, which reflect the effectiveness of
the developed GD-MOEA/D-IOC.

5 Conclusions

Focusing on reducing EC and improving effluent quality in
WWTPs, a novel intelligent optimal controller dubbed
GD-MOEA/D-IOC is devised to dynamically control Sq s
and Syo,. In contrast to other methods, including AMODE-
10C, NSGA-II-IOC, MOGA-IOC, and PID controller, the
developed GD-MOEA/D-IOC controller has a more efficient
operational performance, which is attributed to the integra-
tion of functions extraction module, optimization algorithm
design module, and control module. The functions extraction
module establishes the functional relationships between the
input variables and the output variables through a neural
network model. In the optimization algorithm module, a
grid-based GD-MOEA/D is designed, which can effectively
predict the changes of the dynamic environment and obtain
satisfactory optimal solutions. The PID controller realizes
the control of K;as by obtaining the error between the opti-
mal set-value of Sps and the actual measured value, and
realizes the control of O, by obtaining the error between the
optima set value of Syq, and the actual measured value. The
experimental results on a wastewater treatment plant de-
monstrate that the devised GD-MOEA/D-IOC is promi-
nently superior to other controllers.

In this paper, the devised GD-MOEA/D-IOC has achieved
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remarkable performance in WWTPs. Future works will be
focused on the following two directions. One direction is to
combine transfer learning technology with optimization al-
gorithms to improve the prediction accuracy of the changing
trend of the Pareto set by using knowledge sharing me-
chanism according to the time-varying characteristics of
dynamic multi-objective functions. Another direction is to
improve the robustness of the control system, so that it can
guarantee the stable operation of the multi-objective in-
telligent optimal system in the wastewater treatment plant.
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