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An axial piston pump is a key component that plays the role of the “heart” in hydraulic systems. The pump failure will lead to an
unexpected breakdown of the entire hydraulic system or even economic loss and catastrophic safety consequences. Several
vibration-based machine learning methods have been developed to detect and diagnose faults of axial piston pumps. However,
most of these intelligent diagnosis methods use single-sensor vibration data to monitor the pump health states. Additionally, the
diagnostic accuracy is unacceptable in most situations due to the complex pump structure and limited sensor information.
Therefore, this study proposes a multi-sensor fusion method to improve the fault diagnosis performance of axial piston pumps.
The convolutional neural network receives three channels of vibration data and makes the final diagnosis through information
fusion at the decision level. The proposed decision fusion method is evaluated on the classification task of leakage levels of an
actual axial piston pump. The experimental results show that the proposed method improves the classification accuracy by
adjusting the probability distribution of classification according to the learned weight matrix.
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1 Introduction

An axial piston pump is a key component in hydraulic sys-
tems, and its performance greatly affects the efficiency and
reliability of the entire hydraulic system. Severe operating
conditions, such as high pressure, high speed, and high
temperature, accelerate the deterioration of the pump per-
formance, leading to the wear of friction pairs. Pump failure
due to the worn friction pairs may cause unexpected break-
down of the hydraulic system or even considerable economic
losses and catastrophic safety incidents. Therefore, it is ne-
cessary and urgent to develop effective fault detection
methods and make maintenance decisions accordingly for

the axial piston pump.
Generally, the fault diagnosis methods are divided into

model-based, signal-based, and data-driven-based methods
[1]. An axial piston pump is a complex mechanical-elec-
trical-hydraulic coupling system. Thus, there are highly
nonlinear relationships between parameters and strong cou-
plings among various fault features [2]. Therefore, data-
driven-based diagnosis methods are suitable for axial piston
pumps since it is not easy to establish explicit models or
signal symptoms. Machine learning is one of the emerging
data-driven fault diagnosis methods for rotating machinery
[3]. It includes two steps of manual feature extraction and
fault classification. In the first step, signal processing tech-
niques are used to design handcrafted features and extract
them from sensor data. For the axial piston pump, the
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common signals for reflecting its health conditions include
vibration signal [4–6], discharge pressure signal [7], acoustic
signal [8], and a combination of them [9]. In the second step,
a certain classifier, such as support vector machine [5], de-
cision tree [10], and Naïve Bayes [11], is trained by the
extracted features and then recognizes the fault patterns
using new data.
Traditional machine learning methods require carefully

designed features and cannot handle raw data directly.
Therefore, their performance depends on expert knowledge
and the manual feature extraction process, which is laborious
and time-consuming [12]. However, deep learning methods
have a powerful end-to-end learning ability to automatically
extract representative features from raw data and integrate
feature extraction and pattern recognition into a single body.
As one of the most popular deep learning methods, con-
volutional neural network (CNN) has achieved great success
in computer vision [13] and speech recognition [14]. Re-
cently, CNN has become a hot topic of research in the fault
diagnosis of rotating machinery [15], such as bearing [16],
motor [17], and gearbox [18].
In addition, some researchers have found applications of

CNN in the fault diagnosis of hydraulic pumps. Yan et al.
[19] performed fault diagnosis of an axial piston pump using
a one-dimensional (1D) CNN framework and one-channel
raw vibration data. Wen et al. [1] utilized the advantage of
two-dimensional (2D) CNN in image recognition tasks. They
converted the raw vibration data into grayscale images to
classify the wear faults among the slipper, swash plate, and
valve plate in an axial piston pump. Similarly, Tang et al.
[20] applied continuous wavelet transform to convert raw
time series vibration data into time-frequency images and
took them as input of CNN to recognize five fault types of an
axial piston pump. Wang and Xiang [21] proposed a vibra-
tion-based fault diagnosis method by combining CNN and
minimum entropy deconvolution to detect four common
faults in the axial piston pump. Sun et al. [22] compared the
gear pump fault diagnosis performance with the same CNN
framework between different input time-frequency images
converted from vibration data by wavelet transform, Fourier
transform, and Wigner-Will distribution. Xu et al. [23] de-
signed a deep transfer CNN framework and verified it on the
vibration dataset of a centrifugal pump under five health
conditions. Kumar et al. [24] developed an improved CNN
model using a modified cost function. They combined it with
acoustic images to identify the defective components of a
centrifugal pump.
From the literature review, CNN offers significant poten-

tial for the fault diagnosis of hydraulic pumps. In most cases,
single-sensor vibration data are used to monitor the health
state of hydraulic pumps [25]. However, it is a great chal-
lenge to obtain an acceptable fault diagnosis performance

using limited information captured by single-sensor data due
to the complex structure of axial piston pumps. Compared
with single-sensor data, multiple-sensor data acquire re-
dundant and complementary fault information that can be
fused to achieve more accurate and reliable diagnosis results.
Some multi-sensor fusion methods have been applied to the
fault diagnosis of rotating machinery, such as bearing [26–
28], motor [29], gear [26,30–32], and hydraulic pump [33–
35]. The information fusion methods can be classified into
three levels: data level [26,30–34], feature level [27,35], and
decision level [28,29]. At the data level, the raw data from
the same or different sensors are integrated directly, followed
by feature extraction from the combined data. At the feature
level, features are extracted from raw data, and the optimal
ones are combined as an input to the decision layer. At the
decision level, each sub-classifier receives single-sensor data
to provide preliminary result separately, and multiple clas-
sifiers determine the final classification.
The typical decision fusion strategies include the voting

method [36], Bayesian theory [37], and D-S evidence theory
[38]. Although the voting method is a simple and widely
used fusion strategy, it suffers from the drawback of the
equal contribution of all classifiers during decision fusion.
This is unreasonable because the classifiers have different
diagnosis performances. Therefore, this study proposes an
improved decision-level fusion (DF) strategy for the fault
diagnosis of axial piston pumps based on CNN and multiple
channels of vibration signals to enhance classification ac-
curacy. The proposed method extracts features from multi-
channel vibration data automatically and fuses the informa-
tion from all CNN models at the decision level adaptively.
The remainder of the paper is organized as follows. Sect. 2

briefly introduces the CNNmodel. Sect. 3 presents a detailed
CNN-based decision fusion method for identifying the health
states and degradation levels of an axial piston pump. The
experiments are presented in Sect. 4 to validate the effec-
tiveness of the proposed method. Finally, Sect. 5 presents the
conclusion.

2 Convolutional neural network

CNN is a feed-forward neural network biologically inspired
by the visual system structure of the human brain. It presents
a powerful ability to process 2D data, such as images, due to
its three main characteristics: local connection, weight
sharing, and spatial subsampling. A typical CNN consists of
layers: convolutional, pooling, and fully connected layers.
The convolutional layer applies a set number of kernels (also
known as filters) to extract features from the input images or
feature maps of the previous layer. The output of the con-
volutional layer can be described as [26]
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where x(i) is the ith input sample, θ = [θ1, θ2, …, θC] are the
trainable parameters of the model, the lowercase letter c
denotes the cth class, and the uppercase letter C denotes the
total classification number. The superscript T denotes the
matrix transpose operation.
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where S is the total number of samples, I is an indicator
function; it is 1 for a true condition; otherwise, it is 0 for a
false condition. The gradient descent method is used to
minimize the loss function during the training process. In this
study, RMSprop [40] is selected as the optimizer to update
the learnable parameters.
LeNet-5 is a famous CNN architecture developed by Le-

cun et al. [41]. It contains two convolutional layers and two
pooling layers alternatively, and a fully connected layer. In
this study, the CNN model is an improved version of the
LeNet-5 network (Figure 1). The input layer receives 128 ×
128-pixel gray images converted from one channel of raw
vibration data by the short-time Fourier transform (STFT).
The feature maps are automatically extracted layer by layer
and finally flattened into a vector to feed the fully connected
layer for classification. Several batch normalization layers
are added to the network to improve the convergence and

Figure 1 (Color online) Architecture of the convolutional neural network for fault diagnosis of the axial piston pump.
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stability of the network. In addition, dropout layers are in-
tegrated to enhance the generalization ability of the CNNmodel.

3 Decision-level information fusion strategy

This section presents two strategies of decision-level in-
formation fusion, both of which include four steps: training,
validation, testing, and fusion processes. The final result of
fault diagnosis is jointly determined bym CNNmodels at the
decision level. The basic idea behind the proposed method is
that the contribution of each CNNmodel to the final decision
depends on its diagnosis performance in the validation pro-
cess.
Figure 2 shows the first strategy of decision-level in-

formation fusion. Assume that the acquired data are collected
from m types or channels of sensors, and there are C fault
types to be recognized. Each type or channel of sensor data is
divided into training, validation, and testing data. After
model training on the training data, a total number of m
validation accuracies are obtained on the validation data.
These validation accuracies form of the weight matrix Wval

of all CNN models as follows:
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where vali and Wvali (i = 1, 2, …, m) are the validation ac-
curacy and weight coefficient of the ith model, respectively.
In the testing process, each trained CNN model receives
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The fusion process generates the final probability for all
fault types by combining the probability matrix Ptest and
weight matrix Wval.

P P PP P W= = =C1 2
T

test val

p y x p y x

p y x p y x

p y C x p y C x

( = 1 ) val
val

+ + ( = 1 ) val
val

( = 2 ) val
val

+ + ( = 2 ) val
val

( = ) val
val

+ ( = ) val
val

,

i

m
i

m
m

i

m
i

i

m
i

m
m

i

m
i

i

m
i

m
m

i

m
i

1 test
1

=1
test

=1

1 test
1

=1
test

=1

1 test
1

=1
test

=1

(8)
where Pc (c = 1, 2, …, C) is the final probability for the cth
fault type after the information fusion.
The first fusion method calculates the weight coefficients

using the overall validation accuracy of each CNN model. It

Figure 2 (Color online) Flowchart of the first decision-level information fusion method.
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means that each CNN model has the same weight coefficient
for the final classification probability regardless of the fault
types. An alternative method for determining weight coef-
ficients is to consider the validation accuracy of each fault
type instead of the overall validation accuracy (Figure 3).
The new weight matrix of all CNN models is given by

W
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where valij is the validation accuracy of the ith CNN model
for the jth fault type andWvalj (j = 1, 2, …, C) is the weight
vector containing validation accuracies of all fault types.
The second information fusion method has the same test-
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Thus, the proposed DF strategies make a final decision on
the fault classification based on two sources of information,
i.e., validation accuracies on the validation data and pre-
liminary probability matrix on the testing dataset. The final
probability matrix for the fault classification is adaptively
adjusted by multiplying a weight matrix consisting of the
validation accuracies. Figures 2 and 3 show that the main
difference between the two information fusion strategies lies
in the weight matrix calculated from the validation ac-
curacies of all CNN models. The first method considers only
the overall validation accuracy of each CNN model, and the
CNN model with higher overall validation accuracy means a
greater contribution to the final decision. In contrast, the
second method further considers detailed information about
the classification performance of each fault type when cal-
culating the weight matrix. As a result, the latter method
carries richer fused information in the weight matrix than the
former.

4 Experiment and results

4.1 Experimental setup

Experimental data were acquired from an actual axial piston
pump with nine pistons to evaluate the effectiveness of the
proposed method. Figure 4 shows the experimental setup in
the laboratory environment. The main specifications of the
tested pump were as follows: theoretical displacement of
1.3 cm3/r, rated rotational speed of 10000 r/min, rated outlet
pressure of 21 MPa, rated inlet pressure of 0.3 MPa, and
working medium of No. 15 aviation grade hydraulic oil. The
tested pump was driven by an electric motor and operated
under rated conditions. The pump load was simulated by a
pressure relief valve. During the pump operation, the oil

Figure 3 (Color online) Flowchart of the second decision-level information fusion method.
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temperature of the inlet port was kept at 60°C ± 2°C to
minimize its effects on pump performance. Additionally, a
tri-axial accelerometer was mounted on the pump end cover
to collect vibration signals at a sampling frequency of
10240 Hz. Note that the vibration signals in three orthogonal
directions were simultaneously recorded for the information
fusion at the decision level.
The experiments were conducted on the slipper pair of the

pump under different health states: normal, slight leakage,
medium leakage, and severe leakage (Table 1). The pump
leakage levels were obtained by adjusting the gap height
between the slippers and swash plate to save testing costs and
ensure experimental safety. According to the law of Poi-
seuille flow, the leakage flow from the slipper pair increases
with the gap height between the slippers and swash plate. An
increase in gap height increases the discharge pressure
fluctuation [42] and the slipper impact on the swash plate. As
a result, high-frequency fluid and structure borne vibration
was transmitted to the pump housing and end cover. There-
fore, the leakage fault could be reflected in the vibration
signals of the pump end cover. Figure 5 shows an example of
the vibration signals under different leakage levels.

4.2 Data preprocessing

The 1D raw vibration data in each channel are converted into
2D spectrograms (Figure 6) because 2D images carry more
powerful features that can be extracted by CNN. The 1D raw
time series data collected from each channel are split into
frames with equal lengths of 256 points and converted into

grayscale spectrograms using STFT.
The discrete-time form of STFT is

x n x n w n m eSTFT{ [ ]} = [ ] [ ] , (12)
m

j n

=

where x[n] is the vibration signal, and w[n] is the window
function. In this study, the Hanning window is selected as the
window function expressed as follows:

w n
n

N n N[ ] = 0.5 1 cos 2
1 ,      0 1,

                  0,                    otherwise,
(13)

where the window size N is set to 128.
Figure 7 shows examples of the STFT-based spectrograms

of different leakage levels converted by three channels of
vibration data. It is found that the spectrogram energy is
dominated at the frequencies of 1500, 3000, and 4500 Hz.
The piston pass frequency of the tested pump is calculated as
Zn/60. Here, Z is the piston number, and n is the rotational
speed. For a nine-piston axial piston pump operating at a
rotational speed of 10000 r/min, its piston pass frequency is
1500 Hz. The second-order and third-order harmonic fre-
quencies are 3000 and 4500 Hz, respectively. For the same
level of leakage, the spectrograms of individual data chan-
nels differ at dominating frequencies and regions between
them. In addition, the spectrograms of the same data channel
also exhibit different energy distributions for various leakage
levels. Intuitively, it is easier to distinguish normal and slight
leakage levels than medium and severe leakage levels.

Figure 4 (Color online) Test rig of the axial piston pump.

Table 1 Pump health states in the dataset

Leakage level Increased gap height (mm) Leakage flow (L/min) Training sample Testing sample

Normal 0 0.40 192 48

Slight 0.05 0.57 192 48

Medium 0.15 0.65 192 48

Severe 0.20 1.10 192 48
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4.3 Experimental results and discussion

Each channel of raw 1D vibration data is transformed into
spectrograms to train a corresponding CNN model. Then,
three trained CNN models are obtained with validation ac-
curacy rates for each fault type. The validation accuracy rates
form the weight matrix as described in Sect. 3. Each trained
CNN model predicts a preliminary probability distribution
when it receives new vibration data. Finally, the final prob-

ability distribution is obtained by summing up all channels of
weighted probability through information fusion at the de-
cision level. The maximum weighted probability represents
the predicted pump leakage level.
Figure 8 compares the average accuracy and standard de-

viation of five trials between the same CNN models with and
without DF. The proposed fusion strategy has the highest
average accuracy of 99.2% and the lowest standard deviation
of 0.23%. However, both average accuracy and standard

Figure 6 (Color online) Illustration of the data preprocessing.

Figure 5 (Color online) Raw vibration signals in three orthogonal directions under different pump health states. (a) Vibration signals of channel 1; (b)
vibration signals of channel 2; (c) vibration signals of channel 3.
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deviation differ from each other between individual single-
channel data. This indicates that the vibration signals are
differentially sensitive to the pump leakage in different di-
rections, and single-channel vibration data are insufficient to
capture the representative features effectively. In contrast,
information fusion at the decision level utilizes the ad-
vantage of all data channels and has a more accurate fault
diagnosis. It is worth noting that the proposed two DF
methods have comparable diagnosis performance despite
different weight matrices. A possible explanation is that the
two DF methods have almost identical final classification
predictions, although their probability distributions are dif-
ferent for all leakage levels.
Figure 9 further compares the confusion matrix of diag-

nostic accuracy between CNN models with and without DF.

All diagonal elements of the confusion matrix represent the
classification accuracy rates, whereas the non-diagonal ones
represent the error rates. Figure 9(a)–(c) show that the CNN
model can recognize all normal and slight leakages even
without information fusion. However, the medium and se-
vere leakages are easily misclassified to each other with low
class accuracy rates. Specifically, the CNN model with an
input of single-channel data has class accuracies of 95.8%,
91.7%, and 77.1% for medium leakage and 91.7%, 89.6%,
and 97.9% for severe leakage. The poor diagnosis perfor-
mance for the medium and severe leakage classification re-
sults from similar grayscale spectrograms (Figure 7). In
contrast, the same CNN model has high class accuracy rates
for all leakage levels when it integrates the DF (Figure 9(d)
and (e)). For instance, the first fusion method increases the
class accuracy rate of medium leakage by 2.1%, 6.2%, and
20.8%, and the class accuracy rate of severe leakage by
6.2%, 8.3%, and 0%. Similarly, the second fusion method
improves the class accuracy rate. Here, the increase in the
accuracy rate ranges from 4.2% to 22.9% for medium leak-
age and from 0% to 8.3% for severe leakage.
Figure 10 highlights how the decision-level information

fusion improves the diagnosis performance. It shows only
probability distributions for true labels of medium and severe
leakages since DF improves their class accuracies. Each inset
in Figure 10 presents the probability distributions of the four
classes before and after decision fusion. Here, the first three
probability distributions represent the cases before decision
fusion, and the last two represent the cases after decision
fusion. Thus, the decision fusion enables the class prob-
ability distribution to be changed so that the true class has the
highest probability value. For example, the CNN model with
the first data channel misclassifies medium leakage to severe

Figure 7 Comparison of grayscale spectrograms for different leakage levels.

Figure 8 (Color online) Comparison of diagnostic accuracy of the same
convolutional neural network model with and without decision-level fu-
sion.
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Figure 9 (Color online) Confusion matrix of the diagnostic accuracy rate with and without decision-level fusion. (a) Ch1; (b) Ch2; (c) Ch3; (d) DF1; (e)
DF2.

Figure 10 (Color online) Class probability distributions before and after decision fusion. (a)–(c) True label of medium leakage; (d)–(f) true label of severe
leakage.
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leakage (Figure 10(a)), whereas the decision fusion helps the
CNN model to make a correct classification. Additionally,
multi-channel data outperform the second or third data
channel for the true label of medium leakage (Figure 10(b)
and (c)). Similarly, the decision fusion improves the class
accuracy of severe leakage by adjusting the class probability
distribution (Figure 10(d)–(f)). However, there is a case that
the second decision fusion method still misclassifies the
severe leakage (Figure 10(f)). This is because two-thirds of
sub-models have misclassifications before decision fusion.

5 Conclusions

This study presents a decision-level multi-sensor fusion
method to improve the recognition accuracy of leakage le-
vels in an axial piston pump. First, three channels of vibra-
tion data are fed separately to three identical CNN models to
generate preliminary classification results. Then, the final
prediction results are achieved by fusing these preliminary
classification results at the decision level. The proposed
decision fusion strategy considers different contributions of
all sub-models by constructing a weight matrix that high-
lights the validation accuracy of each sub-model on histor-
ical data. Specifically, higher validation accuracy represents
a greater contribution of the sub-model to final classification
results. Experiments were conducted on four different levels
of pump leakage. The experimental results show that the
proposed decision fusion strategy can improve class accu-
racy by adjusting the class probability distribution. As a re-
sult, the classification accuracy rate is increased by about
2%, 4%, and 5% after decision fusion.
The proposed DF algorithm currently uses the same type of

monitoring signals and identical CNN models for all data
channels. The future study will extend the fusion algorithm
by employing different monitoring signals or CNN models.
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