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Bursting is a diverse and common phenomenon in neuronal activation patterns and it indicates that fast action voltage spiking
periods are followed by resting periods. The interspike interval (ISI) is the time between successive action voltage spikes of
neuron and it is a key indicator used to characterize the bursting. Recently, a three-dimensional memristive Hindmarsh-Rose
(mHR) neuron model was constructed to generate hidden chaotic bursting. However, the properties of the discrete mHR neuron
model have not been investigated, yet. In this article, we first construct a discrete mHR neuron model and then acquire different
hidden chaotic bursting sequences under four typical sets of parameters. To make these sequences more suitable for the
application, we further encode these hidden chaotic sequences using their ISIs and the performance comparative results show
that the ISI-encoded chaotic sequences have much more complex chaos properties than the original sequences. In addition, we
apply these ISI-encoded chaotic sequences to the application of image encryption. The image encryption scheme has a sym-
metric key structure and contains plain-text permutation and bidirectional diffusion processes. Experimental results and security
analyses prove that it has excellent robustness against various possible attacks.
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1 Introduction

Nowadays, due to the booming development of big data and
cloud computing, multimedia has become the most valuable
transmission carrier for digital information [1–4]. Then it is
vitally important to protect the contents of multimedia and
the encryption is a very effective technology for this [5].
Chaos is an important and interesting phenomenon in non-
linear dynamical systems and it can exhibit complex and
unpredictable behavior. Chaotic systems are characterized by
initial state sensitivity, internal randomness, and global sta-
bility. These features are very similar to the concepts of se-
cure communication and image encryption [6]. Therefore,

chaos-based cryptography is one of the most popular re-
search topics in computer science and cryptography [7–9].
The biological neuron model is a special nonlinear dyna-

mical model that can exhibit chaotic dynamics [10]. It has
received much attention in recent years [11–15]. Usually,
neuronal signaling relies on the change of neuron action
spike voltage, in which bursting and spiking are both ex-
tremely important ways of information communication.
Since the first biological neuron model with chaotic features
was proposed by Aihara et al. [16], researchers have gra-
dually found that artificially constructed nervous systems
can well simulate complex electrical activities. Extended
from the well-known Hodgkin-Huxley model [17], various
neuron models have been proposed for generating chaotic
spiking/bursting of electrical activities [18–21]. Similar to
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chaotic oscillating systems, the biological neuron model is
also a mathematical equation that exhibits a variety of non-
linear behaviors and can produce spiking or bursting se-
quences [22,23]. When used in image encryption
applications, the chaotic sequences generated by discrete
chaotic systems are expected to have complex chaotic dy-
namics [24–28]. However, since the chaotic bursting se-
quences of neuron action spike voltages are usually
accompanied by resting firing patterns, they have simple
chaotic dynamics and cannot be applied directly to chaos-
based engineering applications. To the best of our knowl-
edge, the image encryption scheme based on the chaotic
bursting sequences has not been reported yet. Thus, the ap-
plication of the chaotic bursting sequences in image en-
cryption is worth investigating.
When chaos is used in image encryption, the chaotic se-

quences are generally used to design encryption schemes to
achieve the diffusion property [29–33]. To this end, many
excellent image encryption schemes have been designed
based on existing chaotic or hyper-chaotic systems. Hua et
al. [30] presented a cosine-based chaotic system for gen-
erating a chaotic map with excellent chaotic performance and
developed an image encryption algorithm using the newly
generated chaotic map. Wang et al. [31] proposed an image
encryption scheme that relied on hybrid multi-chaotic cou-
pled map lattices and the experimental results indicate that
the scheme has high security against common attacks. Zhang
and Tang [32] developed a piecewise linear mapping-based
symmetric key image cryptosystem, which has many ad-
vantages and can be applied to practical communication. Li
et al. [33] constructed a two-dimensional (2D) memristor-
based hyper-chaotic map that displays strong performance in
secure communication. All these examples show that the
chaotic systems can exhibit excellent performance when
used as an indispensable part of cryptography schemes.
A chaotic bursting sequence can be readily generated by a

biological neuron model and its interspike interval (ISI) is a
key indicator to characterize the bursting sequence. To fa-
cilitate the application of the chaotic bursting sequence, this
article first constructs a discrete memristive Hindmarsh-Rose
(mHR) neuron model with hidden chaotic bursting dynamics
and then proposes a novel ISI-based encoding algorithm to
enhance the chaos complexity of the generated chaotic
bursting sequence. The discrete mHR model has higher im-
plementation efficiency and lower computational cost than
the continuous model. Meanwhile, the ISI-encoded algo-
rithm can effectively eliminate the low complexity se-
quences. Furthermore, the ISI-encoded chaotic sequences are
applied for image encryption to verify the applicability of our
encoding algorithm. The main contributions of this article
are highlighted as follows. (1) We present a discrete mHR
model with hidden chaotic bursting dynamics. (2) We pro-
pose an ISI-encoded algorithm that can be used to extract the

chaotic bursting characteristics of the discrete mHR model.
(3) Using these ISI-encoded chaotic sequences, we design an
image encryption scheme, which has high robustness against
various possible attacks.
The remainder of this article is considered as follows. Sect. 2

constructs a discrete mHR model and examines the ISIs of
chaotic bursting sequences. Sect. 3 presents an ISI-encoded
algorithm and evaluates the performance of four sets of ISI-
encoded chaotic sequences. Sect. 4 demonstrates an image
encryption application based on the ISI-encoded algorithm.
Finally, Sect. 5 concludes the whole article.

2 Discretization of the mHR model

The HR neuron model is used to imitate the typical spiking
activity of the action spike voltage generated by a single
neuron. Derived from the well-known Hodgkin-Huxley
model [17], the simplest 2D HR model was constructed to
characterize the periodic spiking behavior of the single
neuron [22] and it is modeled by

x y ax bx I
y c dx y

= + + ,
= ,

(1)
3 2

2

where x, y, and I denote the spike voltage, recovery variable
related to the spike voltage, and externally excited current,
respectively. The four constants a, b, c, and d are generally
set as a=1, b=3, c=1, and d=5 [34].
To better simulate the magnetic induction effects on the

action spike voltage in biological neurons, a 3D HR model
was recently proposed [34]. The mHR model is written by

x y ax bx m x
y c dx y

x

= + tanh( ) ,
= ,
= ,

(2)

3 2

2

in which φ stands for the magnetic flux and m represents the
induction strength.
Recently, the continuous neuron models have received

special much attention [35–38]. Compared with the con-
tinuous neuron models, the discrete neuron models have
many advantages such as higher implementation efficiency
and lower computational cost [29]. However, they have not
been received much attention, yet. To investigate the prop-
erties of the discrete neuron models, a 2D discrete HR model
was proposed in ref. [39] using the forward Euler method and
its complex dynamical behaviors were exhibited by theore-
tical analyses and numerical simulations.
Using the same discretization technique in ref. [39], we can

derive a discrete mHR model from the continuous mHR
model in eq. (2). Denote xn, yn, and φn as the sampling values
of variables x, y, and φ at the n-th iteration, respectively.
Then the discrete mHR model can be defined as the fol-
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lowing equations:
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x

= + + tanh( ) ,

= + ( ),
= ,

(3)
n n n n n n n

n n n n

n n n

+1
3 2

+1
2

+1

where δ is the iteration step size. When these parameters are
assigned as some typical values, namely a=1, b=3, c=1, and
d=5, it is easy to calculate that the discrete mHR model has
no fixed point. In this case, the bursting patterns generated by
the discrete mHR model are all hidden [40].
Similar to the continuous mHR model, the discrete mHR

model can also exhibit hidden chaotic bursting behaviors. To
investigate this property, we separately set the iteration step
size as δ=0.05 and 0.1, and the induction strength as m=1.1
and 1.4. Thus, four sets of parameters can be obtained and
used as representative examples. Under these parameter
settings, the discrete mHR model shows the hidden chaotic
bursting behaviors. Figure 1 displays four hidden chaotic
bursting patterns in the φ-x plane while Figure 2 depicts the
related four hidden chaotic bursting sequences of the action
spike voltage. By comparing the behaviors shown in Figures 1
and 2 with the behaviors of the continuous mHR model, we
can find that the discrete mHR model has similar attractor
structures but slightly different dynamic amplitudes. Parti-
cularly, when m=1.4, the discrete mHR model can embody
hidden chaotic bursting behavior, but the continuous mHR
model can only show hidden periodic bursting behavior at
this particular parameter, which is shown in ref. [34]. This
difference is caused by the iteration step size δ used in
eq. (3), which has a great influence on the dynamics of the
discrete mHR model [39]. When the δ approaches a rela-
tively small value, the dynamics exhibited by the discrete
mHR model are consistent with that by the continuous mHR
model.

To demonstrate the bursting dynamics of the discrete mHR
model, we investigate the induction strength-dependent bi-
furcation plots for different integration steps. Taking the
iteration steps δ=0.05 and 0.1 as two examples, the bi-
furcation plots are depicted by calculating the ISI of action
spike voltage x [41] and the simulated results are shown in
Figure 3. When its induction strength m increases within the
range of [0.4, 1.6], the discrete mHR model has pattern
transitions from the periodic spiking, first to chaotic spiking,
then to chaotic bursting, and finally to periodic bursting
patterns. In addition, the simulated results manifest that the

Figure 1 (Color online) Hidden chaotic bursting patterns in the φ-x plane
under different parameter settings. (a) δ=0.05, m=1.1; (b) δ=0.05, m=1.4;
(c) δ=0.1, m=1.1; (d) δ=0.1, m=1.4.

Figure 3 (Color online) The bifurcation behaviors of the ISI of action
spike voltage x for different integration steps with the increment of in-
duction strength m. (a) ISI-based bifurcation plot for δ=0.05; (b) ISI-based
bifurcation plot for δ=0.1.

Figure 2 (Color online) Hidden chaotic bursting sequences of the action
spike voltage under different parameter settings. (a) δ=0.05, m=1.1;
(b) δ=0.05, m=1.4; (c) δ=0.1, m=1.1; (d) δ=0.1, m=1.4.
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iteration step δ has an influence on the pattern evolution of
the discrete mHR model. This results in the delay of the
parameter-dependent bifurcation structure with the incre-
ments of the iteration steps.

3 Novel ISI-encoded algorithm

Discrete neuron models are different from traditional dis-
crete chaotic systems and they have biologically inter-
pretable spiking and bursting patterns of the action spike
voltage. To make the action spike voltage sequence suitable
for applications, a new chaotic sequence Z is obtained by
encoding the ISI of action spike voltage and it is denoted as

( )
Z S M M

Z S S M M i n

= [  mod + 1] / ( + 1),

= + 2  mod + 1 / ( + 1),  = 2, 3, ..., ,
(4)

i i j

i
j

1 1

=1

1

where M=255 is the maximum value of 8 bits and Si is a
positive integer representing the ISI of action spike voltage at
the i-th iteration. Therefore, we present a novel ISI-encoded
algorithm for generating chaotic sequence. This is the first
algorithm for encoding the ISI of chaotic bursting sequences.
With the original chaotic bursting sequences given in

Figure 2, a schematic diagram of the presented ISI-encoded
algorithm for generating chaotic sequence is demonstrated in
Figure 4. Here, we give an example of a chaotic bursting
sequence with 9 spikes, whose ISIs are expressed as S1 to S9,
and the iteration lengths of their ISIs are also given in the
figure. Using the presented ISI-encoded algorithm described
by eq. (4), the desired encoded chaotic sequences Z1 to Z9 can
be obtained. Besides, Figure 4 also depicts the change of
iteration length between the original chaotic bursting se-
quence and ISI-encoded chaotic sequence. Thus, to obtain
the ISI-encoded chaotic sequences with the desired length, it
is necessary to sub-sample the original chaotic bursting se-
quences with a much longer iteration length.
According to the ISI-encoded algorithm given in eq. (4),

four sets of ISI-encoded chaotic sequences for the discrete
mHR model are generated and shown in Figure 5. Clearly,
these chaotic sequences have lower continuity and higher
randomness than the original chaotic bursting sequences
given in Figure 2. Moreover, their amplitude magnitudes are
controllable and normalized within the interval [0,1], which
are beneficial to practical engineering applications.
The performance of four sets of original chaotic bursting

sequences and their encoded chaotic sequences can be
evaluated using spectral entropy (SE) [42], permutation en-
tropy (PE) [43], and sample entropy (SampEn) [44]. The
length of all the sequences to be evaluated is set as 10000.
Table 1 lists the calculated performance metrics for the ori-
ginal chaotic bursting sequences in Figure 2 and their en-
coded chaotic sequences in Figure 5. As can be observed,

under the same parameter settings, the encoded chaotic se-
quences have more excellent performance metrics than the
original chaotic bursting sequences.
To intuitively show the complexity affected by the itera-

tion step size δ and induction strength m, we plot the per-
formance metrics of the encoded sequences in the δ-m plane.
Figure 6(a) and (b) show the calculation values of the SE and
PE, respectively. The bright yellow-red areas stand for the
large SE/PE values and the dark black-blue areas stand for
the small ones. As can be seen, when m is within the range of
[0.8, 1.4], the encoded chaotic sequences can obtain rela-

Figure 4 (Color online) Schematic diagram of the presented ISI-encoded
algorithm for generating chaotic sequence.

Figure 5 (Color online) Four sets of ISI-encoded sequences calculated by
the original bursting sequences under different parameter settings.
(a) δ=0.05, m=1.1; (b) δ=0.05, m=1.4; (c) δ=0.1, m=1.1; (d) δ=0.1, m=1.4.
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tively high SE/PE values, which allows the encoded chaotic
sequences more suitable for data encryption applications.
Furthermore, to confirm the effectiveness of the ISI-en-

coded algorithm, we apply the presented algorithm to several
representative dynamical systems, including two continuous
neuron models and two continuous dynamical systems. The
two neuron models are the Chay model [19] and memristive
Morris-Lecar model [20], and the two continuous dynamical
systems are the Lorenz system [45] and Chen system [46].
All these dynamical systems can produce chaotic bursting or
spiking sequences under their typical parameters. Then, new
encoded chaotic spiking sequences can be generated using
the ISI-encoded algorithm. Table 2 shows the performance

metrics of the original chaotic sequences and their encoded
ones. From the results, one can see that the ISI-encoded
algorithm can significantly increase the chaos complexity of
chaotic sequences of the aforementioned neuron models and
dynamical systems. Thus, the experimentations demonstrate
that the ISI-encoded algorithm shows high performance in
the continuous neuron models and chaotic systems.

4 Application in image encryption

Recently, various encryption schemes have been con-
secutively reported to protect the contents of digital images
[47–51]. However, these encryption schemes have dis-
advantages in different aspects [52]. In this section, we in-
troduce an image encryption scheme using the ISI-encoded
algorithm and evaluate its advantages in terms of security.
The parameters of the discrete mHR model are set as δ=0.1
and m=1.1 and the length of the encoded sequence is de-
termined by the image size.

4.1 Image encryption scheme

The designed image encryption scheme involves the fol-
lowing steps.
Step 1. Read a greyscale plain-image P of size H×W as a

2D matrix.
Step 2. According to the ISI-encoded algorithm given in

eq. (4), set the initial conditions (x0, y0, φ0) as the security key
and generate the sequence Z of length L by encoding the
chaotic bursting sequence of the discrete mHR model. Then,
convert Z to 8-bit integer sequences using the equation
XL=floor(Z×256) and obtain the sequence XL. Reshape the
sequence XL to be a 2D chaotic matrix X of size H×W.
Step 3. Perform a permutation process to the plain-image

P to obtain the permuted image matrix P′ and the detailed
operation of the permutation process is given in Algorithm 1.
Afterward, transform the 2D permuted image matrix P′ into a
1D image pixel sequence PL′ for diffusion.
Step 4. Transform a greyscale plain-image P of size H×W

to a 1D image pixel sequence PL=[PL(1), PL(2), ..., PL(L)],

Table 1 Performance evaluations of the bursting and encoded sequences

Parameter settings Sequence types SE PE SampEn

δ=0.05, m=1.1
Bursting sequence 0.4918 1.0315 0.0915

Encoded sequence 0.9306 4.6367 0.7464

δ=0.05, m=1.4
Bursting sequence 0.3937 1.0231 0.0387

Encoded sequence 0.9134 3.5656 0.8936

δ=0.1, m=1.1
Bursting sequence 0.6020 1.4141 0.2018

Encoded sequence 0.9286 4.6621 0.6827

δ=0.1, m=1.4
Bursting sequence 0.5488 1.5242 0.0927

Encoded sequence 0.8683 4.0016 0.6210

Figure 6 Performance metrics of the encoded sequences in the δ-m plane.
(a) SE distribution diagram; (b) PE distribution diagram.
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in which L=HW.
Step 5. Perform a diffusion process to the permutated

image sequence PL′ to obtain the cipher-image pixel se-
quence CL and the detained operation of the diffusion pro-
cess is shown in Algorithm 2, where C1∈{1, 2, ..., 255},
C2∈{1, 2, ..., 255}, and maxoffset∈{1, 2, ..., 255}. To further
improve the ability to resist the chosen-ciphertext attack, we
use a bi-directional diffusion strategy and make the current
pixel related to the previous encrypted one.
Step 6. Convert the 1D cipher-image pixel sequenceCL to

a 2D matrix with a size ofH×W to obtain the cipher-imageC.
The decryption operations are the inverse action of each

step in the encryption operations.
Generally speaking, a good encryption algorithm should

have high encryption efficiency. In our proposed encryption
scheme, the complexities of Algorithms 1 and 2 are mainly
caused by the sorting operations [26]. After computation, we
can estimate the complexity of Algorithms 1 and 2 as O(W2

+H2) and O(W2H2), respectively, where W and H are the
width and height of the image. Besides, to obtain the actual
operation time of these algorithms, we implement them using
MATLAB R2015b and test their actual operation time using
three different sizes of images. The experimentation results
are listed in Table 3. The running environment is as follows:

Intel (R) Core (TM) I5-7400 CPU@3.00 GHz, 16 GB RAM
and Windows 7 operation system.
In our encryption scheme, the key parts are the plaintext-

based permutation and bidirectional diffusion. In the per-
mutation process, the permutation vector is related to the
average pixel of the previous row/column. In the diffusion
process, the choice of the ciphertext has an accumulative
offset associated with the previous encrypted pixel, and this
can cause the selection of the ciphertext to be globally offset
as well. Therefore, our encryption scheme has strong ability
to resist the chosen-plaintext attack.

4.2 Experimentations and security analysis

Our experiment sets the size of the tested image as 256×256,
the security key as (x0, y0, φ0)=(1, 1, 0), and the constant

Table 2 Performance comparisons for several representative dynamical systems

Systems with typical parameters Sequence types SE PE SampEn

Memristive Morris-Lecar neuron
Original sequence 0.4204 0.7170 0.0041

Encoded sequence 0.9234 5.9827 2.0541

Chay neuron
Original sequence 0.5813 0.7432 0.0047

Encoded sequence 0.8888 4.4517 2.2759

Lorenz system
(a=10, b=8/3, c=28)

Original sequence 0.6474 1.1704 0.1331

Encoded sequence 0.9265 5.2893 1.5294

Chen system
(a=40, b=3, c=28)

Original sequence 0.6306 1.3790 0.2622

Encoded sequence 0.9330 4.7774 1.4451

Table 3 Time complexity and operation time (s) of Algorithms 1 and 2
for the image with different sizes

Algorithm Time complexity 128×128 256×256 512×512

Algorithm 1 O(W2+H2) 0.0081 0.0098 0.0307

Algorithm 2 O(W2H2) 0.0240 0.0827 0.3278

Algorithm 1 Permutation process

Input: Plain-image pixel matrix P and chaotic matrix X.
Output: Permuted image pixel matrix P′.
Let P′=zeros(H, W)
loc=sort(X(1, :)); P′(1, :)=P(1, loc)
for i=2:H do

s=floor(i+P(i−1, :)+mean(P(i−1, :))) mod W
loc=sort(X(i, s+1)); P′(i, :)=P(i, loc)

end for
loc=sort(X(:, 1)); P′(:, 1)=P′(loc, 1)
for j=2:W do

s=floor(j+P(:, j−1)+mean(P(:, j−1))) mod H
loc=sort(X(s+1, j)); P′(:, j)=P(loc, j)

end for

Algorithm 2 Diffusion process

Input: Permuted-image pixel sequence PL′ and chaotic sequence XL.
Output: Cipher-image pixel sequence CL.
Let CL=zeros(L, 1), offset1=0, offset2=0
CL(1)=(PL′(1)+XL(1)+C1) mod 256
for i=2:L do

offset1=offset1+CL(i−1) mod maxoffset
s=(i+offset1) mod L
CL(i)=PL′(i)+XL(s+1)+CL(i−1)

end for
CL(L)=(CL(L)+XL(L)+C2) mod 256
for i=L−1:1

offset2=offset2+CL(i+1) mod maxoffset
s=(i+offset2) mod L
CL(i)=(CL(i)+XL(s+1)+CL(i+1)) mod 256

end for
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parameters as C1=5, C2=10, and maxoffset=5. The security
level of our encryption scheme is analyzed from the aspects
of histogram, secret key space, information entropy, corre-
lation coefficient, and image sensitivity.
(1) Histogram analysis
To defend against the statistical attack, a cipher-image with

high security level is expected to have equal pixel numbers
for each grayscale level. Figure 7 shows the experimenta-
tions of our encryption scheme. Figure 7(a)–(c) illustrate the
plain-image, cipher-image, and decrypted image of the Lena
image, while Figure 7(d)–(f) demonstrate the corresponding
histograms of the images in Figure 7(a)–(c). As can be ob-
served, the histogram of the plain-image has many patterns
while our encryption algorithm can obtain cipher-image with
a uniform distribution histogram. The histogram variance of
an image can be used to quantify its pixel distribution and it
is calculated by [53]

( )h G h hVar( ) = 1 1
2 , (5)

L i

G

j

G

i j2
=1 =1

2L L

whereGL=256 is the grayscale level and hi is the number of i-
th grayscale level. Table 4 lists the histogram variances of the
plain-images and cipher-images for the images Lena, Cam-
eraman, Baboon, and Sailboat. The experimentations clarify
that the variance of the cipher-images is substantially re-
duced, which makes the cipher-images sufficiently resistant
to statistical attacks.
(2) Secret key space
A cryptographic algorithm with high security level has a

sufficiently large key space and the encryption process is
sensitive to any change of its secret key. According to the
discussions in ref. [54], the secret key space must not be less
than 2100 to resist brute force attacks. The key space of our

encryption algorithm contains the initial values (x0, y0, φ0)
with a precision of 10−16. Thus, it is easy to calculate that the
key space of our proposed scheme is larger than 2160, large
enough to resist various types of brute force attacks.
To measure the key sensitivity, we tinily change each part

of the secret key, shown in Table 5, and observe the en-
cryption and decryption results using these tinily different
keys. The original secret key (x0, y0, φ0) is set as K0=(0, 0, 0).
Three tinily different keys are generated as K1=(10

−9, 0, 0),
K2=(0, 10

−9, 0), K3=(0, 0, 10
−9). Figure 8 shows the experi-

mentations of secret key sensitivity analysis. One can see,
only the correct secret key can totally recover the original
image (see Figure 8(a)). With tinily different keys, the de-
crypted results are noise-like and do not contain any in-
formation of the original image (see Figure 8(c)–(e)). So our
image encryption scheme is extremely sensitive to its secret
key.

Figure 7 (Color online) Experimentations of our image encryption scheme for image Lena. (a) Plain-image; (b) cipher-image; (c) decrypted image;
(d) histogram for the plain-image; (e) histogram for the cipher-image; (f) histogram for the decrypted image.

Table 4 Histogram variances for different images

Images Plain-image Cipher-image Reduction rate (%)

Lena 36598 235 99.36

Cameraman 99064 239 99.76

Baboon 68447 259 99.62

Sailboat 40100 246 99.39

Table 5 Error keys used in decryption process

Keys Error of x0 Error of y0 Error of φ0
K0 0 0 0

K1 10−9 0 0

K2 0 10−9 0

K3 0 0 10−9
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(3) Information entropy
The information entropy is to test the distribution of a

signal. It is able to measure the pixel distribution of an image.
The information entropy of an image can be calculated as
[55]

H m p m p m( ) = ( )log 1
( ), (6)

i

M

i
i=0

1

where M is the total number of possible pixel values, and p
(mi) is the probability of the i-th value. For an 8-bit greyscale
image, it has 256 possible pixel values. The theoretically
maximum information entropy can be obtained when each
possible value has the same probability. Thus, the maximum
information entropy for an 8-bit greyscale image is H(m)=8.
A larger information entropy indicates a more uniform dis-
tribution of the image pixels. Table 6 shows the information
entropy of different images and their cipher-images by our
encryption scheme. It can be viewed that, all the information
entropies of these cipher-images verge on the theoretically
maximum value 8. This indicates that our image encryption
algorithm can generate cipher-images with uniform dis-
tribution pixels.
(4) Correlation coefficient
A natural image usually has high correlations among its

adjacent pixels. Attackers can predict the image values using
these correlations. Thus, an efficient image encryption al-
gorithm should be able to decorrelate these high correlations.
The correlation of an image can be calculated using the
correlation coefficient and it is described by

C
x N x y N y

x N x y N y
=

1 1

1 1
, (7)xy

i

N
i i

N
i i i

N
i

i

N
i i

N
i i

N
i i

N
i

=1 =1 =1

=1 =1

2

=1 =1

2

where x and y are two adjacent pixel sequences in the hor-

izontal, vertical, or diagonal directions, and N is the number
of pixels in one pixel sequence. Our experimentation ran-
domly selects 2000 pairs of adjacent pixels from the plain-
image and cipher-image. Figure 9 directly plots these ad-
jacent pixel pairs. As can be seen from Figure 9(a)–(c) that
the adjacent pixel pairs in the plain-image are most dis-
tributed on the diagonal lines of the phase plane. Figure 9(d)–
(f) show that the adjacent pixel pairs in the cipher-image are
randomly distributed on the whole phase plane. Table 7
[49,50,51,56] lists the correlation coefficients of the plain-
image and its cipher-images encrypted by different image
encryption schemes. Obviously, the correlation coefficients
of the cipher-images are all close to 0, and our proposed
scheme can obtain smaller absolute values than other
schemes. This indicates that our proposed scheme has a high
ability to decorrelate the strong correlation of natural images.
(5) Image sensitivity
An encryption scheme should be sensitive to the plain-

image to defense differential attacks. Otherwise, attackers
can build the connections between plaintext and ciphertext
by choosing some plaintexts to encrypt and analyzing their
related ciphertexts. The number of pixel change rate (NPCR)
and uniform average change intensity (UACI) are two most
commonly employed methods to assess the ability of an
image encryption algorithm to resist the differential attacks
[57]. The NPCR is described by

Figure 8 The secret key sensitivity analysis using image Lena. (a) Plain-image; (b) cipher-image using K0; (c) decrypted image using K1; (d) decrypted
image using K2; (e) decrypted image using K3; (f) decrypted image using K0.

Table 6 Image information entropies and their cipher-images by our
encryption scheme

Images Plain-image Cipher-image

Lena 7.4962 7.9974

Cameraman 7.1052 7.9974

Baboon 7.1352 7.9971

Sailboat 7.5795 7.9973
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C C H W C i j C i jNPCR( , )= 1
× sign( ( , ) ( , )) , (8)

i

H

j

W

1 2
=1 =1

1 2

where sign(·) is the sign function, C1 and C2 are two cipher-
images obtained by encrypting two plain-images with only
one pixel difference, and H×W represents the size of the
image.
Afterward, the UACI can be obtained by

C C H W
C i j C i j

QUACI( , ) = 1
×

( , ) ( , ) , (9)
i

H

j

W

1 2
=1 =1

1 2

where Q is the maximum allowed pixel value. Generally, for
an 8-bit greyscale image, the expected NPCR and UACI are
99.60% and 33.46%, respectively. In our experimentation,
we randomly adjust one pixel of the image Lena five times
and calculate the related NPCRs and UACIs. Table 8 lists the
experimental results, which demonstrate that our image en-
cryption scheme is quite sensitive to the pixel variation.

5 Conclusion

In this article, we first constructed a discrete mHR model to
acquire four sets of hidden chaotic bursting sequences, and
then proposed a novel algorithm to obtain the ISI-encoded
sequences by encoding the ISIs of these chaotic bursting
sequences, and finally applied these ISI-encoded sequences
to image encryption application. To satisfy the requirements
of the application, we constructed the discrete mHR model
via discretizing a continuous 3D mHR neuron model. The
numerical simulations show that the integration step size can
influence the evolution of the bursting dynamics on the
discrete mHR model, which led to a delay in the parameter-

dependent bifurcation structure as the integration step size
increases. Afterward, we proposed an ISI-encoded algorithm
to sample the original bursting sequences. The performance
comparisons manifest that the ISI-encoded sequences have
higher complexity and better biological interpretability than
the original bursting sequences. We also derived the scope of
this algorithm by examining a couple of classical chaotic
systems, and verified that our algorithm can improve the
complexity of the chaotic sequences in continuous chaotic
systems. Furthermore, an image encryption scheme with a
symmetric key structure was proposed. The experimenta-

Figure 9 (Color online) Adjacent pixel plots for the image Lena and its cipher-image. The first row plots the adjacent pixel pairs of the plain-image in
(a) horizontal, (b) vertical, and (c) diagonal directions; while the second row plots the adjacent pixel pairs of the cipher-image in (d) horizontal, (e) vertical,
and (f) diagonal directions.

Table 8 NPCRs and UACIs of image Lena with a pixel change in dif-
ferent positions

Position (Row, Col) NPCR (%) UACI (%)

(1, 1) 99.61 33.48

(53, 40) 99.63 33.43

(128, 128) 99.61 33.46

(156, 243) 99.63 33.45

(256, 256) 99.62 33.44

Table 7 Adjacent pixel correlation coefficients of a plain-image and its
cipher-images by different image encryption schemes

Schemes Horizontal Vertical Diagonal

Plain-image 0.9137 0.9603 0.9012

Our scheme 0.0018 −0.0042 0.0006

Ref. [49] 0.0027 0.0488 −0.0090

Ref. [50] 0.0148 −0.0272 0.0130

Ref. [51] −0.0059 −0.0146 0.0211

Ref. [56] 0.0335 −0.0174 −0.0295
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tions and security analyses proved that the image encryption
scheme is robust to many possible attacks. In addition, the
ISI-encoded sequences can also be employed in many other
applications, e.g., secure communication [33], deep learning
[58], neural text generation [59], and neural machine trans-
lation [60], which deserves further study.

This work was supported by the National Natural Science Foundation of
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