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Disturbance and uncertainty rejection is a key objective in control system design, and active disturbance rejection control (ADRC)

exactly provides an effective solution to this issue. To this end, this paper presents a generalized active disturbance rejection

controller for a class of nonlinear uncertain systems with linear output. To be specific, a generalized reduced-order extended state

observer (ESO) is proposed to reduce phase delay and complexity of the system, which can take full advantage of the system

output. Also, this method includes the existing results with fewer assumptions, and can be applied to systems with any order

measurable states or multiple states, even linear combination states. Furthermore, the stability of this approach is guaranteed and

demonstrated through matrix transformation and Lyapunov method, and design examples and numerical simulations are given to

show the effectiveness and practicability of the method.
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1 Introduction

Uncertainty and feedback are the core issues in system con-

trol, and the main purpose of feedback is to deal with the

impact of various uncertainties on system performance [1].

During this process, the observer plays an important role in

designing the feedback controller through estimating system

states and uncertainties. Therefore, designing an observer ap-

propriately is crucially important.

The extended state observer, emerging as a novel and ef-

fective method to estimate states and uncertainties simultane-

ously, was first proposed by Han [2] in the 1990s and is the

core of ADRC. ADRC inherits the advantages of PID, and

is not model-based and featured with a strong capability to

*Corresponding author (email: chenzq@nankai.edu.cn)

resist disturbance. For this method, the internal model un-

certainties and external disturbances are regarded as the to-

tal disturbance, which will be estimated by ESO as a new

state, and then be compensated by error feedback. Due to

these attractive advantages, ADRC has received more and

more attention in various fields since it was proposed. To

simplify the designing process, Gao [3] generalized ADRC

to the linear form in 2003 using parameterized bandwidth,

greatly promoting its developments [4–7] and applications.

So far, ADRC has been verified to have great potentials for

time-delay [8–10], multivariable [11], coupled [12] and other

complex systems and ADRC has been applied to many ac-

tual systems successfully, such as turbine [13], gasoline en-

gines [14,15], power plant [16], observatory antenna [17] and

robot [18, 19].

The observer is such a kind of dynamic system that esti-
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mates state variables according to the system input and out-

put [20]. Different from conventional observers [21], ESO

regards the total disturbance as a new state to estimate, which

will extend the system order by one as a result. It is not a

good choice to design the full-order ESO when some states

are measurable, which is the waste of model information and

leads to phase delay, so the reduced-order observer (RESO)

develops. For RESO, there have been some existing results.

Tian [22] first proposed the RESO in 2007, and correspond-

ing frequency response analysis was performed to quantify

its performance and stability characteristics, but this method

is limited to the case where the output and its continuous

n-th order derivatives are measurable, so it is not universal.

Xue [23] designed the RESO only using the single output,

which is by far the most commonly used form. Teppa-Garran

employed a method to obtain the RESO that does not de-

pend on the output derivative [24], which is actually equiv-

alent to [23], and developed the reduced-order version of

the general ESO [25]. Although there is only one form (de-

scribed in ref. [23] or [24]) of RESO that is generally recog-

nized in the field of ADRC, its development and applications

are very common; for example, refs. [26–28] considered

the control performance, stability and parameters tuning of

RESO. Refs. [29, 30] introduced the application of RESO to

integrated missile guidance and two tanks multivariable level

control systems. And a specific parameter selection method

for the ADRC based on the RESO approach has been pre-

sented in ref. [31] for a fluid-driven hand rehabilitation de-

vice, which shows that if the parameter is properly selected,

the ADRC based on the RESO has a better disturbance and

noise rejection ability than that of the ADRC based on the

ESO. Therefore, the RESO is of great importance in system

control.

Based on the above discussion, a generalized reduced-

order ADRC for a class of nonlinear uncertain systems with

linear output is proposed. To be specific, the main contribu-

tions can be summarized as follows.

(1) The generalized RESO is applicable for more cases,

such as any order measurable states and linear combination

states, in which there are no additional restrictions and as-

sumptions for the measurable state. And to the best of the

authors’ knowledge, the proposed RESO is not considered in

the existing studies, which can make full use of the measur-

able information and reduce phase delay.

(2) The stability of the generalized RESO and correspond-

ing ADRC is guaranteed, together with rigorous mathemati-

cal proof using Lyapunov method. And the theoretical analy-

sis provides a sufficient feasible region to ensure the stability

of the ADRC-based closed-loop system, which has the cer-

tain significance for the RESO design and application.

The remainder of this article is organized as follows. The

problem formulation is introduced in Sect. 2. In Sect. 3, the

design of ADRC with generalized RESO is presented. Sect.

4 shows the stability analysis of the generalized RESO and

the corresponding ADRC. Numerical simulations are carried

out to demonstrate the results in Sect. 5. Sect. 6 is the con-

clusion of the article.

2 Problem formulation

For the following nonlinear uncertain systems:

x(n) = f (x, ẋ, · · · , x(n−1), d) + b0u, (1)

where x, u stand for the state and control input of the

plant, respectively. b0 is the known system parameter, and

f (x, ẋ, · · · , x(n−1), d) (denoted as f simply) is the total distur-

bance, including the unknown internal uncertainties and ex-

ternal disturbances d.

Let x1 = x, x2 = ẋ, · · · , xn = x(n−1), xn+1 =

f (x, ẋ, · · · , x(n−1), d), and suppose f is differentiable, which

satisfies ẋn+1 = ḟ . Then for measurable output states Y = cX,

plant (1) can be rewritten as the following state-space form by

extending one order.

⎧⎪⎪⎨⎪⎪⎩
Ẋ = AX + Bu + E ḟ ,

Y = cX,
(2)

where X =
[

x1 x2 · · · xn xn+1

]T
,

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0

0 0 1 · · · 0

...
...

0 0 0 · · · 1

0 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(n+1)×(n+1)

, B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

...

0

b0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(n+1)×1

, E =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

...

0

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(n+1)×1

,

and c is a known constant matrix.

ADRC is mainly composed of three parts: extended state

observer (ESO), tracking differentiator (TD), error feedback

(EF), and the structure diagram is shown in Figure 1.

Figure 1 (Color online) Structure diagram of ADRC technique.
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As the core of ADRC, ESO is an effective tool to estimate

states and disturbance, and estimations will be employed to

design error feedback.

RESO is proposed to reduce phase delay and complexity

of the system. For the simple case c =
[

1 0 · · · 0
]
1×(n+1)

, the

RESO can be designed through introducing an auxiliary vari-

able, which is by far the most commonly used form of RESO,

and as the basis of RESO, the design process is introduced.

Since x1 is measurable, it is not necessary to estimate x1,

then the RESO in ref. [23] is designed.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂x2 = x̂3 + β1(x2 − x̂2),

˙̂x3 = x̂4 + β2(x2 − x̂2),
...

˙̂xn = x̂n+1 + b0u + βn−1(x2 − x̂2),

˙̂xn+1 = βn(x2 − x̂2),

(3)

x̂i (i = 2, · · · , n + 1) is the estimate of state xi, and βi (i =
1, · · · , n) is the observer gain. Considering x2 is not mea-

surable, which can be replaced by ẋ1, RESO eq. (3) can be

rewritten as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂x2 = x̂3 + β1(ẋ1 − x̂2),

˙̂x3 = x̂4 + β2(ẋ1 − x̂2),
...

˙̂xn = x̂n+1 + b0u + βn−1(ẋ1 − x̂2),

˙̂xn+1 = βn(ẋ1 − x̂2).

Actually, it is not easy to get ẋ1, so we make some changes

to the equations.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂x2 − β1 ẋ1 = x̂3 − β2x1 − β1(x̂2 − β1x1) − β2
1x1+β2x1,

˙̂x3 − β2 ẋ1 = x̂4 − β3x1 − β2(x̂2 − β1x1) − β1β2x1+β3x1,
...

˙̂xn − βn−1 ẋ1 = x̂n+1 − βnx1 + b0u − βn−1(x̂2 − β1x1)−
β1βn−1x1+βnx1,

˙̂xn+1 − βn ẋ1 = −βn(x̂2 − β1x1) − β1βnx1.

Introducing the auxiliary variable zi = x̂i − βi−1x1 (i =
2, · · · , n + 1), the standard RESO is obtained.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ż2 =

⎧⎪⎪⎨⎪⎪⎩
−β1z2 − β2

1x1 − β1b0u, n = 1,

z3 − β1z2 + (β2 − β2
1)x1, n > 1,

ż3 = z4 − β2z2+(β3 − β1β2)x1,
...

żn = zn+1 − βn−1z2+(βn − β1βn−1)x1 + b0u,

żn+1 = −βnz2 − β1βnx1,

x̂i = zi + βi−1x1.

(4)

Considering the measurable output states and estimated

states, the control law is designed as

u =
u0 − x̂n+1

b0

, (5)

where u0 = k1(r − x1) + · · · + kn(r(n−1) − x̂n) + r(n), r is the

reference. ki (i = 1, · · · , n) is the feedback gain, and

ki =
n!ωn+1−i

c

(i − 1)!(n + 1 − i)!
, i = 1, 2, · · · , n, (6)

is selected to make polynomial sn + knsn−1 + · · ·+ k1 Hurwitz.

When the total disturbance f (x, ẋ, · · · , x(n−1), d) is accu-

rately estimated, there exists x̂n+1 ≈ f (x, ẋ, · · · , x(n−1), d), and

then plant (1) is equal to x(n) ≈ u0, which is transformed into

the standard integral form. Actually, control law (5) is a gen-

eralized PD (proportional-differential) controller based on the

estimation error and output error.

However, when matrix c has a complex expression, it is

not easy to find the auxiliary variables to design the RESO,

so the generalized RESO and ADRC are developed in this

situation.

3 ADRC with generalized RESO: design

For example, when other states xi are measurable instead of

only x1, or the measurable variable is a linear combination

of state xi, such as y = cpxp + cqxq, it is necessary to design

a generalized RESO using the most measurable information,

rather than struggling to find auxiliary variables.

3.1 Design basis

Transform plant (2) into the following form:⎧⎪⎪⎨⎪⎪⎩
Ẋ = AX + Bu + E ḟ ,

y = CX,
(7)

where A, B, E are the same matrices as plant (2), C is the

largest linearly independent group of matrix c, and matrix c
satisfies rank(c) = m, (m ≤ n). Clearly, y is the part of mea-

surable output state Y.

Introduce an auxiliary variable w, which satisfies w =

LX [32], and L is a (n + 1 − m) × (n + 1) matrix. Then we

have⎡⎢⎢⎢⎢⎢⎢⎣w
y

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣ L

C

⎤⎥⎥⎥⎥⎥⎥⎦ X. (8)

Define M Δ
=

⎡⎢⎢⎢⎢⎢⎢⎣ L
C

⎤⎥⎥⎥⎥⎥⎥⎦ , and L should be chosen appropriately

to satisfy M is nonsingular, which will be discussed in Re-

mark 1, so X = M−1

⎡⎢⎢⎢⎢⎢⎢⎣w
y

⎤⎥⎥⎥⎥⎥⎥⎦.
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Considering eqs. (7) and (8) gives

⎡⎢⎢⎢⎢⎢⎢⎣ ẇ
ẏ

⎤⎥⎥⎥⎥⎥⎥⎦ = MẊ = M

⎡⎢⎢⎢⎢⎢⎢⎣AM−1

⎡⎢⎢⎢⎢⎢⎢⎣w
y

⎤⎥⎥⎥⎥⎥⎥⎦ + Bu + E ḟ

⎤⎥⎥⎥⎥⎥⎥⎦

= M AM−1

⎡⎢⎢⎢⎢⎢⎢⎣w
y

⎤⎥⎥⎥⎥⎥⎥⎦ + MBu + ME ḟ , (9)

where

M AM−1 =

⎡⎢⎢⎢⎢⎢⎢⎣ Tww(n+1−m)×(n+1−m)
Twy(n+1−m)×m

Tywm×(n+1−m)
Tyym×m

⎤⎥⎥⎥⎥⎥⎥⎦ ,
MB = b0 · M(:, n),

ME = M(:, n + 1),

M(:, n),M(:, n+1) represent the n-th and (n+1)-th column of

matrix M, respectively. Obviously, xn+1 is unmeasurable, so

the elements in the last column of C are 0, which means the

elements in the last m-row of ME are zero.

Then the generalized RESO is designed.

˙̂w = Twwŵ + Twyy + LBu, (10)

where ŵ is the estimate of state w, so X̂ = M−1

⎡⎢⎢⎢⎢⎢⎢⎣ ŵ
y

⎤⎥⎥⎥⎥⎥⎥⎦, X̂ is the

estimate of state X.

Considering eq. (7), there is

LẊ = LAX + LBu + LE f . (11)

From eq. (9),

ẇ = Twww + Twyy + LBu + LE ḟ (12)

is obtained, and substitute w = LX to get

LẊ = TwwLX + TwyCX + LBu + LE ḟ . (13)

Subtracting eqs. (11) and (13) gives

LA − TwwL = TwyC. (14)

So the relation among plant, RESO and linear transformation

matrix are shown in eq. (14).

To analyze the stability of generalized RESO, letting w̃ =
w − ŵ and combining eqs. (10) and (12) yields

˙̃w = ẇ − ˙̂w = Twww̃ + LE ḟ . (15)

Based on the existing results, to obtain a stable observer, Tww

must be Hurwitz whether ḟ is bounded or satisfies the Lip-

chitz condition, and this will be discussed in Remark 2.

So far, the design basis of generalized RESO is completed.

Clearly, there are two core issues, the one is to ensure that M

is nonsingular, and the other one is to guarantee that Tww is

Hurwitz, which will be discussed in Remarks 1 and 2, respec-

tively.

Before expounding these two issues, the following lemmas

are given.

Lemma 1. (Theorem 2 in ref. [33]) Let A0 and B0 be n× n
matrices with no common eigenvalues. Let a and b be vec-

tors such that (A0, aT) is completely observable and (B0, b)

is completely controllable. Let M be the unique solution of

M A0 − B0 M = baT. Then M is invertible.

Lemma 2. (Theorem 4 in ref. [33]) Let S 1 be a completely

observable n-th order system with m independent outputs.

Then an observer S 2 may be built for S 1 using only n − m
dynamic elements. Thus, the eigenvalues of the observer are

essentially arbitrary.

Remark 1. There are two opposite ways to ensure that M
is invertible.

The one is selecting appropriate parameters to guarantee

the linear independence of row or column vectors according

to the particularity of matrix C. But the form of designed

RESO cannot be selected in advance, which means a de-

signed M corresponds to a form of RESO .

The other one is to design the RESO in advance, and then

derive the transformation matrix M according to Lemma 1,

which is actually a solution of Sylvester equation [34]. But

the measurable information (i.e., matrix C) cannot be suffi-

ciently applied in this case, and it is difficult to calculate the

invertible M, which may be nonexistent. This way means the

designed RESO corresponds to a matrix M. The basic idea is

shown below.

For system

ẋ = A0x + D0u.

The corresponding RESO is designed as the following form:

ż = B0 z + C0x + G0u.

To satisfy Lemma 1 that A0, B0 are square matrix with the

same size, a linear combination of x is adjoined to z, which

can be C in eq. (8), but not limited to C. Suppose that

z = Mx, and we have

Mẋ = M A0x + M D0u,

Mẋ = B0 Mx + C0x + G0u,

with G0 = M D0, there is M A0 − B0 M = C0, where M
is a square matrix and has the same size as A0, B0. Then

an invertible M is obtained through choosing appropriate

a, b based on Lemma 1. Comparing the two ways, the

first is considered in this article which is more practical and

convenient.
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Remark 2. According to Lemma 2, the eigenvalues of

RESO are essentially arbitrary if plant (7) is completely ob-

servable, which means

N =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C
CA
...

CAn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(n+1)m×(n+1)

, rank(N) = n + 1.

Then we can always find appropriate matrix L to guarantee

that Tww is Hurwitz.

Then the two essential issues are solved, and an effective

RESO is obtained.

Next, a simple way to construct matrix M is proposed.

Based on system (2), without loss of generality, assume

y = CX, (16)

where

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 · · · ck · · · 0 · · · 0 · · · 0 · · · 0

0 · · · 0 · · · cl · · · 0 · · · 0 · · · 0

0 · · · 0 · · · 0 · · · cp · · · cq · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
3×(n+1)

is measurable, and k < l < p < q ≤ n (k, l, p, q ∈ N+) are the

column numbers.

According to eq. (8), we can design matrix M, which is

shown below together with some notes.

Some notes of M:

(1) Unfilled elements are zero;

(2) βik, βil, βip, βiq ≥ 0 represent the gain in row i, column

k, l, p, q of matrix M, respectively;

(3) βik, βil, βip, βiq ≥ 0 are not zero at the same time;

(4) Matrix M is decided by measurable matrix C, and the

gain exists in the column where matrix C has elements.

By using elementary column transformations of the ma-

trix, matrix M is transformed into

Considering that a matrix is nonsingular if its column vec-

tor group is linearly independent, therefore M is invertible if

and only if
cp

cq
� 1−β(p−2)p

−β(p−2)q
.

Based on eq. (9), it obtains

⎡⎢⎢⎢⎢⎢⎢⎣ ẇ
ẏ

⎤⎥⎥⎥⎥⎥⎥⎦ = M AM−1

⎡⎢⎢⎢⎢⎢⎢⎣w
y

⎤⎥⎥⎥⎥⎥⎥⎦ + MBu + ME ḟ ,

where

M AM−1 =

⎡⎢⎢⎢⎢⎢⎢⎣ Tww(n−2)×(n−2)
Twy(n−2)×3

Tyw3×(n−2)
Tyy3×3

⎤⎥⎥⎥⎥⎥⎥⎦ ,

MB =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b0 ·
[

0 · · · 0 1 0 0 0 0
]T
1×(n+1)

,

if xn is not measurable,

b0 ·
[
−β1n · · · −β(n−2)n 0 0 cn

]T
,

if xn is measurable,

ME =
[

0 · · · 0 1 0 0 0
]T
1×(n+1)

.

The generalized RESO is

˙̂w = Twwŵ + Twyy + LBu,

where

LB =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b0 ·
[

0 · · · 0 1 0
]T
1×(n−2)

,

if xn is not measurable,

b0 ·
[
−β1n −β2n · · · −β(n−2)n

]T
1×(n−2)

,

if xn is measurable.

Obviously, matrices A and C are known for a certain plant,

so it is a problem to make Tww Hurwitz if plant (7) is unob-

servable. Actually, it can be solved by making some changes

for matrix A and total disturbance f , and this will be dis-

cussed below (Case 2).

3.2 Design examples

To show the efficiency of the proposed RESO, two represen-

tative cases are considered.
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Case 1. Only y = x1 is measurable.

According to the design basis, the matrix M is designed.

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−β11 1 0 · · · 0 0

−β21 0 1 · · · 0 0

...
...

...

−β(n−1)1 0 0 · · · 1 0

−βn1 0 0 · · · 0 1

1 0 0 · · · 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and

M−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0 1

1 0 · · · 0 0 β11

0 1 · · · 0 0 β21

...
...

...
...
...

0 0 · · · 1 0 β(n−1)1

0 0 · · · 0 1 βn1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Then we can obtain

M AM−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−β11 1 0 · · · 0 β21 − β2
11

−β21 0 1 · · · 0 β31 − β11β21

...
...
...

...
...

−β(n−1)1 0 0 · · · 1 βn1 − β11β(n−1)1

−βn1 0 0 · · · 0 −β11βn1

1 0 0 · · · 0 β11

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

MB =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

...

0

b0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,ME =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

...

0

0

1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and RESO has the following form.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂w=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−β11 1 0 · · · 0

−β21 0 1 · · · 0

...
...
...

...

−β(n−1)1 0 0 · · · 1

−βn1 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
ŵ+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β21 − β2
11

β31 − β11β21

...

βn1 − β11β(n−1)1

−β11βn1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
y +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

...

0

b0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
u, n > 1,

˙̂w = −β11ŵ − β2
11y − β11b0u, n = 1,

(17)

where Tww is Hurwitz if

βi1 =
(n + 1)!ωi

o

i!(n + 1 − i)!
(ωo > 0), i = 1, 2, · · · , n + 1.

And the estimated states are

X̂ = M−1

⎡⎢⎢⎢⎢⎢⎢⎣ ŵ
y

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

ŵ1 + β11x1

ŵ2 + β21x1

...

ŵn−1 + β(n−1)1x1

ŵn + βn1x1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (18)

Comparing eq. (4) and eqs. (17) and (18), the generalized

RESO has the same form as the standard RESO, and it also

explains the effectiveness of the generalized RESO.

Then a more general case is considered in Case 2.

Case 2. The linear combination states are measurable.

Assume

y =

⎡⎢⎢⎢⎢⎢⎢⎣ x3

2x2 + x5

⎤⎥⎥⎥⎥⎥⎥⎦ .
According to Lemma 2, there is

Ai =

⎡⎢⎢⎢⎢⎢⎢⎣ 0(n+1−i)×i I(n+1−i)×(n+1−i)

0i×i 0i×(n+1−i)

⎤⎥⎥⎥⎥⎥⎥⎦ ,

C =

⎡⎢⎢⎢⎢⎢⎢⎣ 0 0 1 0 0 0
0 2 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎦
2×(n+1)

,

N =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C
CA
...

CAn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(n+1)m×(n+1)

, rank(N) = n < n + 1,

so it does not guarantee that RESO has essentially arbitrary

closed-loop poles. To solve this problem, make some changes

to matrix A and total disturbance f .

Denote

An =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0

0 0 1 · · · 0

...
...

0 0 0 · · · 1

1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(n+1)×(n+1)

, ḟn = ḟ − x1,

and there is

Ai
n =

⎡⎢⎢⎢⎢⎢⎢⎣ 0(n+1−i)×i I(n+1−i)×(n+1−i)

Ii×i 0i×(n+1−i)

⎤⎥⎥⎥⎥⎥⎥⎦
(n+1)×(n+1)

,
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C =

⎡⎢⎢⎢⎢⎢⎢⎣ 0 0 1 0 0 0
0 2 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎦
2×(n+1)

,

N =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C
CA
...

CAn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(n+1)m×(n+1)

, rank(N) = n + 1.

Therefore, the eigenvalues of generalized RESO are essen-

tially arbitrary through changing matrix A and total distur-

bance f , and the estimated disturbance will include the item

about x1.

In this case, the matrix M is designed as

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −β13 0 0 0 · · · 0

0 1 −β23 0 −1 0 0

0 0 −β33 1 0 0 · · · 0

0 0 −β43 0 0 1 0

...
...

...
. . .

0 0 −β(n−1)3 0 0 0 · · · 1

0 0 1 0 0 0 · · · 0

0 2 0 0 1 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(n+1)(n+1)

and M−1 is calculated.

M−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 · · · 0 β13 0

0
1

3
0 0 0

β23

3

1

3

0 0 0 0 · · · 0 1 0

0 0 1 0 0 β33 0

0 −2

3
0 0 · · · 0 −2β23

3

1

3

0 0 0 1 0 β43 0

... 0
... 0
. . . 0

...
...

0 0 0 0 · · · 1 β(n−1)3 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

so

M AM−1 =

⎡⎢⎢⎢⎢⎢⎢⎣ Tww(n−1)×(n−1)
Twy(n−1)×2

Tyw2×(n−1)
Tyy2×2

⎤⎥⎥⎥⎥⎥⎥⎦ ,
MB =

[
0 · · · 0 1 0 0 0

]T
,

ME =
[

0 · · · 0 0 1 0 0
]T
,

where

Tww =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1

3
−β13 0 0 · · · 0

0 0 −β23 −1 0 0

0 −2

3
−β33 0 0 · · · 0

0 0 −β43 0 1 0

...
...

. . .

0 0 −β(n−2)3 0 0 1

1 0 −β(n−1)3 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Twy =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β23

3
− β13β33

1

3
1 − β23β33 − β43 0

−β2
33 −

2β23

3

1

3
β53 − β43β33 0

...
...

β(n−1)3 − β(n−2)3β33 0

β13 − β(n−1)3β33 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Tyw =

⎡⎢⎢⎢⎢⎢⎢⎣ 0 0 1 0 0 · · · 0

0 0 0 1 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,Tyy =

⎡⎢⎢⎢⎢⎢⎢⎣ β33 0

β43 + 2 0

⎤⎥⎥⎥⎥⎥⎥⎦ .

Specially, MB =
[

0 0 0 0 0 1
]T

when n = 5. The corre-

sponding RESO is

˙̂w=Twwŵ + Twyy + LBu,

where

LB =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[

0 0 0 0
]T
, n = 5,[

0 · · · 0 b0 0
]T
, n > 5.

So the estimated states are

X̂ = M−1

⎡⎢⎢⎢⎢⎢⎢⎣ ŵ
y

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ŵ1 + β13x3

1

3
(ŵ2 + β23x3 + 2x2 + x5)

x3

ŵ3 + β33x3

1

3
(2x2 + x5 − 2ŵ2 − 2β23x3)

ŵ4 + β43x3

...

ŵn−1 + β(n−1)3x3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

For plant (7), there is a differential relation among system

states. So for the reference r, there exists a scalar r such



368 Wang Y S, et al. Sci China Tech Sci February (2022) Vol. 65 No. 2

that lim
t→∞ y = r is equivalent to lim

t→∞ xi = r(i−1)(i = 1, · · · , n).

Then the control objective can be transformed into lim
t→∞ xi =

r(i−1)(i = 1, · · · , n) when performing stability analysis.

Define K =
[

k1 k2 · · · kn 1
]
, R =

[
r ṙ r̈ · · · r(n)

]T
, and

consider the control law

u =
1

b0

K(R − X̂),

where ki =
n!ωn+1−i

c
(i−1)!(n+1−i)! , i = 1, 2, · · · , n is also selected to

make the polynomial sn + knsn−1 + · · · + k1 Hurwitz.

4 ADRC with generalized RESO: analysis

Denote output error ei = ri − xi(ri = r(i−1)), estimation error

x̃i = xi − x̂i, it obtains

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ė1 = ṙ1 − ẋ1 = e2,

ė2 = ṙ2 − ẋ2 = e3,
...

ėn−1 = ṙn−1 − ẋn−1 = en,

ėn = ṙn − ẋn = −Kne − Kx̃,

where Kn = [ k1 · · · kn, ], e =
[

e1 · · · en

]T
, x̃ =[

x̃1 · · · x̃n+1

]T
. Considering

X = M−1

⎡⎢⎢⎢⎢⎢⎢⎣w
y

⎤⎥⎥⎥⎥⎥⎥⎦ , X̂ = M−1

⎡⎢⎢⎢⎢⎢⎢⎣ ŵ
y

⎤⎥⎥⎥⎥⎥⎥⎦ ,

therefore there is

x̃ = M−1

⎡⎢⎢⎢⎢⎢⎢⎣ w̃
0

⎤⎥⎥⎥⎥⎥⎥⎦ = Mow̃, (19)

Mo are the first (n+1−m) columns of M−1. Then combining

eq. (15), we can get

Ė Δ
=

⎡⎢⎢⎢⎢⎢⎢⎣ ė
˙̃w

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣ EAn×n EB Mon×(n+1)

0(n+1−m)×n Tww(n+1−m)×(n+1)

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣ e

w̃

⎤⎥⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎢⎣ 0

ḟ

⎤⎥⎥⎥⎥⎥⎥⎦ , (20)

where

EA =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0

0 0 1 · · · 0

...
. . .

...

0 0 0 · · · 1

−k1 −k2 −k3 · · · −kn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
n×n

,

EB =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0

0 0 · · · 0 0

...
...

...
...

0 0 · · · 0 0

−k1 −k2 · · · −kn −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(n+1)×(n+1)

.

Let

Γ =

⎡⎢⎢⎢⎢⎢⎢⎣ EAn×n EB Mon×(n+1−m)

0
(n+1−m)×n Tww(n+1−m)×(n+1−m)

⎤⎥⎥⎥⎥⎥⎥⎦ ,
since EA and Tww are both Hurwitz matrices, Γ is also a Hur-

witz matrix [35, 36]. Besides, estimation error and output

error satisfy

Eo
Δ
=

⎡⎢⎢⎢⎢⎢⎢⎣ e
x̃

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣ I 0

0 Mo

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣ e

w̃

⎤⎥⎥⎥⎥⎥⎥⎦ = TE,

where T =

⎡⎢⎢⎢⎢⎢⎢⎣ I 0
0 Mo.

⎤⎥⎥⎥⎥⎥⎥⎦.
To show the stability of closed-loop system, the following

assumptions are considered.

Assumption 1. The reference r and its derivatives satisfy∥∥∥∥[ r ṙ · · · r(n−1)
]∥∥∥∥ ≤ r0,

where r0 is a positive constant.

Assumption 2. The disturbance f is differential, and there

exist two constants L, L0 that satisfy

∣∣∣ ḟ (x, ẋ, · · · , x(n−1), d)
∣∣∣ ≤ L

∥∥∥∥[ x ẋ · · · x(n−1)
]∥∥∥∥ + L0.

Therefore, considering Assumptions 1 and 2, the deriva-

tive of total disturbance satisfies

∣∣∣ ḟ ∣∣∣ ≤ L ‖xe − re + re‖ + L0

≤ L(‖e‖ + r0) + L0

≤ L(‖(e, w̃)‖ + r0) + L0,

where xe =
[

x ẋ · · · x(n−1)
]
, re =

[
r ṙ · · · r(n−1)

]
.

Remark 3. Assumption 2 is the combination of Lipchitz

condition and boundedness. It indicates that the ADRC con-

troller can deal with disturbance in practice for which the

derivative is Lipchitz or bounded; in other words, the rate

of change for f is bounded or linearly increasing.

However, this is a sufficient result, and ADRC can deal

with other complex situations that can not be expressed by

formulas. Furthermore, it is almost impossible to build an

absolutely accurate model for an actual plant, so there still

exists a certain gap between theoretical results and practical

applications. The relation between theory and practice for

disturbance that ADRC can tackle is described in Figure 2.
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Lipchitz Bounded

Disturbance in practice

Disturbance that
ADRC can deal with

Disturbance that
proved by theory
(Assumption 2)

Figure 2 (Color online) Relation of disturbance rejection between theory

and practice.

Theorem 1. Under Assumptions 1 and 2, the ADRC-based

closed-loop system with a generalized RESO is bounded if

1 − 2λmax(P)L > 0 holds, and the error satisfies

‖Eo‖ ≤max

{
2 ‖T‖ λ2

max(P)(Lr0+L0)

λmin(P)(1−2λmax(P)L)
,

√
λmax(P)√
λmin(P)

‖T‖ Eo(t0)

}
,

where Eo includes both estimation error x̃ and output error e.

Furthermore, as t → ∞, the estimation error and output error

are uniformly ultimately bounded with

‖Eo‖ ≤ 2 ‖T‖ λ2
max(P)(Lr0 + L0)

λmin(P)(1 − 2λmax(P)L)
,

where ‖·‖ represents the standard Euclidean norm, λmax(P)

and λmin(P) are the maximum and minimum eigenvalues of

matrix P.

Proof of Theorem 1. Since Γ is Hurwitz, there exists a

positive definite matrix P such that PΓ + ΓT P = −I.

With E =
[

eT w̃T
]T

, and for system Ė = ΓE, choose Lya-

punov function as follows:

V = ET PE, (21)

which has some properties

λmin(P)
∥∥∥E2
∥∥∥ ≤ V ≤ λmax(P)

∥∥∥E2
∥∥∥ , (22)

V̇ =
∂V
∂E
ΓE = ET(PΓ + ΓT P)E = −ETE = −‖E‖2, (23)∥∥∥∥∥ ∂V

∂w̃n+1−m

∥∥∥∥∥ ≤
∥∥∥∥∥∂V∂E
∥∥∥∥∥ =
∥∥∥2ET P

∥∥∥ ≤ 2λmax(P) ‖E‖ . (24)

Choose the same Lyapunov function V , and taking its time

derivative along system (20) yields

V̇ =
∂V
∂E
ΓE +

∂V
∂w̃n+1−m

ḟ

≤ −‖E‖2 + 2λmax(P) ‖E‖ (L(‖E‖ + r0) + L0)

= −(1 − 2λmax(P)L)‖E‖2 + 2λmax(P)(Lr0 + L0) ‖E‖ . (25)

Obviously, 1 − 2λmax(P)L > 0 must be satisfied to guar-

antee the system stability. According to eq. (22), V
λmax(P)

≤
‖E‖2 ≤ V

λmin(P)
is obtained, and substituting it into eq. (25)

yields

V̇ ≤ −1 − 2λmax(P)L
λmax(P)

V +
2λmax(P)(Lr0 + L0)√

λmin(P)

√
V . (26)

Let W =
√

V , so Ẇ = V̇
2
√

V
and eq. (26) is equal to

Ẇ ≤ −1 − 2λmax(P)L
2λmax(P)

W +
λmax(P)(Lr0 + L0)√

λmin(P)
.

Considering W(t) =
∫ t

t0
Ẇ(τ)dτ +W(t0), there is

Ẇ ≤ − 1 − 2λmax(P)L
2λmax(P)

∫ t

t0
Ẇ(τ)dτ

+
λmax(P)(Lr0 + L0)√

λmin(P)
− 1 − 2λmax(P)L

2λmax(P)
W(t0). (27)

Applying Gronwall-Bellman inequality to eq. (27), we can

get

Ẇ ≤
(
λmax(P)(Lr0 + L0)√

λmin(P)
− 1 − 2λmax(P)L

2λmax(P)
W(t0)

)

·e− 1−2λmax(P)L
2λmax(P)

(t−t0). (28)

Integrate the two sides of inequality eq. (28) to get

∫ t

t0
Ẇ(τ)dτ ≤

∫ t

t0
e−

1−2λmax(P)L
2λmax(P)

(τ−t0)dτ

·
(
λmax(P)(Lr0 + L0)√

λmin(P)
− 1 − 2λmax(P)L

2λmax(P)
W(t0)

)
.

(29)

Calculating eq. (29) gives

W ≤W(t0)e−
1−2λmax(P)L

2λmax(P)
(t−t0)

+
2λ2

max(P)(Lr0 + L0)√
λmin(P)(1 − 2λmax(P)L)

(
1 − e−

1−2λmax(P)L
2λmax(P)

(t−t0)
)
. (30)

Denote ‖E‖ ≤
√

V√
λmin(P)

= W√
λmin(P)

,W(t0) ≤√
λmax(P) ‖E(t0)‖, and eq. (30) is transformed into

‖E‖ ≤
√
λmax(P)√
λmin(P)

E(t0)e−
1−2λmax(P)L

2λmax(P)
(t−t0)

+
2λ2

max(P)(Lr0 + L0)

λmin(P)(1 − 2λmax(P)L)

(
1 − e−

1−2λmax(P)L
2λmax(P)

(t−t0)
)
. (31)

Then it concludes that

‖E‖ ≤ max

{
2λ2

max(P)(Lr0 + L0)

λmin(P)(1 − 2λmax(P)L)
,

√
λmax(P)√
λmin(P)

E(t0)

}
.



370 Wang Y S, et al. Sci China Tech Sci February (2022) Vol. 65 No. 2

Considering lim
t→∞ e−

1−2λmax(P)L
2λmax(P)

(t−t0) = 0, it is reasonable to obtain

that as t → ∞,

‖E‖ ≤ 2λ2
max(P)(Lr0 + L0)

λmin(P)(1 − 2λmax(P)L)
.

Therefore, it can be obtained that the system (20) is uni-

formly ultimately bounded with respect to internal uncertain-

ties and external disturbances, and considering Eo = TE, it

concludes that

‖Eo‖

≤ max

{
2 ‖T‖ λ2

max(P)(Lr0 + L0)

λmin(P)(1 − 2λmax(P)L)
,

√
λmax(P)√
λmin(P)

‖T‖ Eo(t0)

}
,

and as t → ∞,

‖Eo‖ ≤ 2 ‖T‖ λ2
max(P)(Lr0 + L0)

λmin(P)(1 − 2λmax(P)L)
.

The proof of Theorem 1 is completed.

Remark 4. Therefore, to ensure the convergence of state

trajectories, two steps should be considered.

Step 1 First of all, select the feasible observer gains β to

guarantee that Tww is Hurwitz, where Tww is calculated ac-

cording to the designed RESO.

Step 2 Under Assumption 2, the constants L, L0 are de-

termined for the derivative of total disturbance. Then choose

appropriate control bandwidthωo to satisfy the sufficient con-

dition 1 − 2λmax(P)L > 0.

In addition to the convergence, the observer gains β and

controller bandwidth ωo still have an effect on control perfor-

mance, but this is not the point of the text.

5 Simulation

Two representative examples are considered in the simula-

tion, where example 1 is the single high-order measurable

output, example 2 is the multi-output plant, and the effect of

measurement noise is discussed.

5.1 Example 1

For the following system:

⎧⎪⎪⎨⎪⎪⎩
x(3) = f (x, ẋ, ẍ, d) + b0u,

y = ẍ,
(32)

where b0 = 1, ḟ = 0.02 sin(0.125t) + 0.25x1 + 0.1x2. With

x1 = x, x2 = ẋ, x3 = ẍ, x4 = f and X =
[

x1 x2 x3 x4

]T
, there

is⎧⎪⎪⎨⎪⎪⎩
Ẋ = AX + Bu + E ḟ ,

y = CX,

where

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

b0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, E =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

.

(1) Design of stable controller
Clearly, this plant is not completely observable because

N =
[

C CA CA2 CA3
]T
, rank(N) = 2 < 4.

So make some changes for matrix A and disturbance f , now

A and f are transformed into An, fn, and then this plant is

observable.

An =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, ḟn = ḟ − x1.

Select

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −β13 0

0 1 −β23 0

0 0 −β33 1

0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

which is invertible, and

M−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 β13

0 1 0 β23

0 0 0 1

0 0 1 β33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The generalized RESO is

˙̂w=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 1 −β13

0 0 −β23

1 0 −β33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ŵ +
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
β23 − β13β33

1 − β23β33

β13 − β2
33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ y +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−β13b0

−β23b0

−β33b0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ u,

and estimated state is

X̂ = M−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ŵ1

ŵ2

ŵ3

y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ŵ1 + β13y

ŵ2 + β23y

y

ŵ3 + β33y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

To guarantee that Tww is Hurwitz, the feasible region

of β13, β23, β33 is obtained in the shaded area of Figure 3.

Clearly, it is relatively easy to find the observer gains for Hur-

witz Tww.
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Figure 3 (Color online) Feasible region of observer gains for Hurwitz Tww

in example 1.

Then select parameters β13 = 8, β23 = 3, β33 = 2 in the

shaded area of Figure 3 to make Tww Hurwitz, and design the

ADRC control law u for virtual reference r as follows:

u =
k1(r − x̂1) + k2(ṙ − x̂2) + k3(r̈ − x̂3) − x̂4 + r(3)

b0

,

where the virtual reference r can be converted from the actual

reference, as explained in Sect. 3.

Under parameterized control gain ωc = 5 in eq. (6),

the simulation results are shown below with simulation step

h = 0.001.

The output of system state and estimated state is shown in

Figure 4, which implies that the estimated state does not co-

incide with system state under this set of parameters, and Fig-

ure 5 also illustrates that not only estimation error is bounded,

but the output error is also bounded. However, the boundary

can be reduced through tuning parameters ωc, β13, β23, β33,

and generally, increasing the parameters can achieve it, but

a trade-off between performance and stability should be con-

sidered in an integrated manner.

(2) Effect of measurement noise
When white noise exists in system output, the estimation

error and output error are shown below, where the mean value

is 0.01, and the amplitude is between 0 and 0.02 for random

white noise.

In Figure 6 and 7, the estimation error and output error are

displayed when random white noise exists, where the noise

frequency of Figure 6 is 100 times that of Figure 7.

As depicted by the simulation results, the generalized

ADRC controller can achieve bounded stability with respect

to the disturbance and measurement noise. Comparing with

the condition without noise, the output is unsmooth, which

implies the measurement noise has a negative effect on mea-

surable states and estimated states. Therefore, the measur-

able states with less noise should be firstly considered, and

the states with severe noise can be neglected when designing

the generalized RESO.

Figure 7 shows better performance than Figure 6, which

indicates the ADRC controller has the certain capability to

deal with noise, especially for low-frequency noise. How-

ever, when facing the high-frequency measurement noise, it

is necessary to denoise before designing the RESO, and some

Figure 4 (Color online) Measurable states X of system and estimated states

X̂ of generalized RESO in example 1.
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Figure 5 (Color online) Estimation error x̃i and output error ei of general-

ized ADRC in example 1.
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Figure 6 (Color online) Estimation error x̃i and output error ei of general-

ized ADRC in example 1 when high-frequency white noise exists.
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Figure 7 (Color online) Estimation error x̃i and output error ei of general-

ized ADRC in example 1 when low-frequency white noise exists.

denoising methods combining with ADRC have been devel-

oped.

5.2 Example 2

For the nonlinear multi-output system

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x(4) = f (x, · · · , x(3), d) + b0u,

y =
[

y1 y2

]T
=
[

ẋ x + ẍ
]T
,

(33)

where b0 = 1, ḟ = 0.25xẋ + 0.098 sin(0.125t + 0.25t) +
0.25x1 + 0.47. Let xi = x(i−1)(i = 1, · · · , 4), x5 = f , and

X =
[

x1 x2 · · · x5

]T
, there is

⎧⎪⎪⎨⎪⎪⎩
Ẋ = AX + Bu + E ḟ ,

y = CX,

where

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

b0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, E =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1

1 0

0 1

0 0

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

.

(1) Design of stable controller
Clearly, due to

N =
[

C CA · · · CA4
]T
, rank(N) = 5 = 5,

this plant is completely observable.

Then we can design the linear transformation matrix

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −β13 0 0

−β21 0 0 1 0

−1 −β32 0 0 1

0 1 0 0 0

1 0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Obviously, M is invertible, and

M−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

β13 + 1
0 0 0

β13

β13 + 1

0 0 0 1 0
−1

β13 + 1
0 0 0

1

β13 + 1

β21

β13 + 1
1 0 0

β13β21

β13 + 1

1

β13 + 1
0 1 β32

β13

β13 + 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The generalized RESO is

˙̂w =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−β13β21

β13 + 1
−β13 0

1

β13 + 1
0 1

β32

β13 + 1
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
ŵ +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
−β2

13β21

β13 + 1

β32 − β21

β13

β13 + 1

−1
−β32

β13 + 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
y+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0

b0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ u,

and estimated state is

X̂ = M−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ŵ1

ŵ2

ŵ3

y1

y2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ŵ1

β13 + 1
+
β13y2

β13 + 1

y1

−ŵ1

β13 + 1
+

y2

β13 + 1

β21ŵ1

β13 + 1
+ ŵ2 +

β13β21y2

β13 + 1

ŵ1

β13 + 1
+ ŵ3 + β32y1 +

β13y2

β13 + 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Similarly, the feasible region of β13, β21, β32 is given in

Figure 8. To ensure Tww is Hurwitz, select parameters β13 =

6, β21 = 18, β32 = 2.

In this example, the estimated state can follow the sys-

tem state more accurately under this set of parameters, see

Figure 9. In Figure 10, the estimation error and output error

are bounded, which show the effectiveness of the proposed

generalized RESO and the correctness of the analysis.

(2) Effect of measurement noise
For the multi-output plant, simulations are carried out

when random white noise exists in both output channels.

Similarly, the noise is evenly distributed within 0–0.02, and

the results are shown below.
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Figure 8 (Color online) Feasible region of observer gains for Hurwitz Tww

in example 2.

Figure 9 (Color online) Measurable states X of system and estimated states

X̂ of generalized RESO in example 2.
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Figure 10 (Color online) Estimation error x̃i and output error ei of gener-

alized ADRC in example 2.

Different from example 1, example 2 is a high-order plant

with multi-output, and generalized RESO is designed using

all the measurable information. As shown in Figures 11

and 12, the measurement noise has the same effect as that

of example 1. It implies the measurement noise can affect

the estimated states, and the ADRC controller does have the

certain capability to resist some noise. Besides, the denoising

method is also needed when dealing with severe noise.

6 Conclusion

Focusing on a class of nonlinear uncertain systems with lin-

ear output, this paper presents a generalized RESO to make

full use of the model information, and saves the derivation

process of constructing auxiliary variables. This method in-

cludes the existing results, and can be applied to more gen-

eral cases, such as any order measurable states and linear
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Figure 11 (Color online) Estimation error x̃i and output error ei of gener-

alized ADRC in example 2 when high-frequency white noise exists.
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Figure 12 (Color online) Estimation error x̃i and output error ei of gener-

alized ADRC in example 2 when low-frequency white noise exists.
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combination states. Also, the stability of generalized RESO

is demonstrated through the Lyapunov function, and the

closed-loop ADRC system is proven to be uniformly ulti-

mately bounded. Besides, the boundedness in the entire time

domain is also obtained, which is decided by both parameters

and disturbances. Finally, simulations of the two examples

show the effectiveness of the proposed RESO, and imply that

the estimation and output errors of ADRC are bounded, even

with some measurement noise.

However, the versatility of the generalized RESO means

the diversity of the forms, so designing the best RESO will

be the next issue to be considered. Furthermore, the applica-

tion to actual plants will also be taken into account.
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