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In power generation industries, boilers are required to be operated under a range of different conditions to accommodate demands
for fuel randomness and energy fluctuation. Reliable prediction of the combustion operation condition is crucial for an in-depth
understanding of boiler performance and maintaining high combustion efficiency. However, it is difficult to establish an accurate
prediction model based on traditional data-driven methods, which requires prior expert knowledge and a large number of labeled
data. To overcome these limitations, a novel prediction method for the combustion operation condition based on flame imaging
and a hybrid deep neural network is proposed. The proposed hybrid model is a combination of convolutional sparse autoencoder
(CSAE) and least support vector machine (LSSVM), i.e., CSAE-LSSVM, where the convolutional sparse autoencoder with deep
architectures is utilized to extract the essential features of flame image, and then essential features are input into the least support
vector machine for operation condition prediction. A comprehensive investigation of optimal hyper-parameter and dropout
technique is carried out to improve the performance of the CSAE-LSSVM. The effectiveness of the proposed model is evaluated
by 300 MW tangential coal-fired boiler flame images. The prediction accuracy of the proposed hybrid model reaches 98.06%,
and its prediction time is 3.06 ms/image. It is observed that the proposed model could present a superior performance in
comparison to other existing neural network models.

coal-fired power plant, combustion operation condition prediction, flame image, convolutional sparse autoencoder, least
support vector machine
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1 Introduction

With the rapid development of industrialization and urbani-
zation, energy demand and environmental problems have
become increasingly prominent. Nowadays, renewable en-
ergy, such as wind energy and solar energy, has been widely
applied in power systems, but it also brings huge challenges
for energy planning and electrical energy operation due to its

stochastic and intermittent nature [1]. To absorb large-scale
renewable energy for power generation, traditional coal-fired
generator units are required to have the capacities of flexible
operation and deep peak regulation. In this case, the utility
boiler needs to operate under frequent and fast variable
loads, easily causing unstable combustion conditions [2].
Unstable combustion will not only reduce energy utilization
efficiency and increase pollutant emissions (such as NOx and
SO2) but also cause furnace vibration and even safety acci-
dents. Therefore, accurate and effective combustion opera-
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tion condition monitoring is necessary, which is beneficial to
increase boiler operating efficiency and reduce fuel con-
sumption and emissions.
A great deal of effort has been devoted to developing in-

telligent methods for combustion operation condition mon-
itoring [3,4]. Compared with the traditional sensor methods
(such as pressure/temperature sensors and flame detectors),
flame imaging incorporating soft-computing technique [5] is
considered to be a promising approach, which can provide
more comprehensive measurement information, including
temperature distribution, oscillation frequency, etc. Gen-
erally, these techniques involve two main stages, i.e., feature
extraction and condition identification. Feature extraction
methods extract low dimensional representative features of
flame images [6]. For instance, Lin and Jørgensen [7] ex-
tracted first-, second-, third- and fourth-order statistic hue,
saturation and intensity data of flame images to characterize
the combustion operation conditions. However, these feature
extraction methods have some deficits, such as (1) feature
selection largely depends on the prior knowledge of expert
experience, which is only suitable for specific diagnostic
problems; (2) poor generalization ability and (3) lower pre-
diction accuracy and difficulty to process high-dimensional
data (such as high-resolution flame images). Therefore, the
traditional feature extraction methods need further im-
provement for better generalization, big data processing
ability, also to improve computational efficiency.
Recently, deep learning (DL) technique has attracted

considerable attention in combustion diagnosis [8,9]. The
DL network learns discriminative features from flame ima-
ges with the aid of multi-layer nonlinearity automatically,
which not only overcomes the deficiency of inferior re-
presentative ability of shallow models but also removes the
tedious process of feature selection. For example, Abdur-
akipov et al. [10] established a convolutional neural network
(CNN) to predict the combustion regimes in a swirling gas
burner flame image. Wang et al. [11] proposed a modified
CNN model to extract representative features of flame
images and then predict the burning state. Although the
prediction reliability of the combustion operation condition
has significantly been improved by the DL network, the
supervised learning (SL) network represented by CNN still
has a thorny problem, that is, a large amount of labeled data
is required during the training process whereas the scale and
quality of labeled data directly determine the predictive
performance. In practice, the formation of massive labeled
data is challenging, which orders precise experimental de-
vices and manual labeling [12]. This issue can only be ad-
dressed by an unsupervised learning network, which can be
trained only using unlabeled data, thus reduce the demand
for labeled data significantly. Akintayo et al. [13] adopted an
autoencoder (AE) to detect the combustion operation con-
dition using unlabeled laboratory-scale swirl combustor

flame images. Qiu et al. [14] constructed a multi-layer AE to
classify the combustion operation conditions of the pulver-
ized coal furnace. In general, the unsupervised learning
network usually has multi-hidden layers to extract higher-
level data features. However, this multi-layer structure often
brings training difficulties such as gradient vanishing or
gradient explosion, resulting in difficulty to obtain the es-
sential information of the input data. Therefore, an advanced
feature extraction method is still worth exploring.
The combustion operation condition can be predicted by

analyzing the extracted feature of each flame image and this
is a classification process. Artificial neural network (ANN)
and support vector machine (SVM) based techniques have
been successfully applied in this process. For instance, Zhu
et al. [15] introduced a three-layer ANN to classify com-
bustion operation conditions of a supersonic combustor.
However, ANN has some drawbacks, such as difficulty in
determining the network structure (number of hidden layers
and hidden neurons) and easy to cause overfitting. SVM has
advantages compared to ANN, such as simple structure and
strong generalization ability. Truong and Kim [16] applied
SVM for detecting flame conditions by analyzing the ex-
tracted parameters from the flame image. But the conven-
tional SVM has high computational complexity and
encounter overfitting [17]. The LSSVM converts inequality
constraints of SVM’s quadratic optimization problem into
equality constraints in the solving process [18]. In this way,
the LSSVM not only greatly simplifies the calculation pro-
cess but also possesses good fitting accuracy and general-
ization performance.
This study presents a novel hybrid deep neural network (a

combination of convolutional sparse autoencoder (CSAE)
and least support vector machine (LSSVM), i.e., CSAE-
LSSVM) to predict combustion operation condition through
flame images. In this model, the CSAE with a deep structure
is established for feature extraction from flame images.
Then, the extracted features are analyzed by the LSSVM to
predict the combustion operation condition. A detailed de-
scription of the hybrid model is discussed. Dropout training
and performance evaluation metrics are also discussed and
presented. The effectiveness of the proposed model is ver-
ified through 300 MW tangential coal-fired boiler flame
images. Experimental results and elaborates on the ad-
vantages of the proposed model compared with other
benchmark models are also presented. Concluding remarks
and future direction of this study are given.

2 Proposed hybrid model

The technical strategy of the prediction model is shown in
Figure 1. The model consists of two stages: (1) model es-
tablishment, i.e., a combination of CSAE and LSSVM; (2)
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model application. Detailed descriptions of the hybrid model
can be found in Sections 2.1 and 2.2.
In the model establishment stage, flame images are ac-

quired under different combustion operation conditions.
Then, each flame image is resized to 128(H) × 128(V) and
normalized to a range of 0 to 1. The preprocessed flame
images are divided into the unlabeled and labeled dataset.
The CSAE is established through unlabeled images. After
that, the CSAE is used for feature extraction of labeled
images. Finally, the LSSVM is established and trained using
label information and extracted features.
In the model application stage, new unlabeled flame

images are acquired and then performed data preprocessing,
including image resize and normalization. After that, the
CSAE-LSSVM model is used successively to perform fea-
ture extraction also to predict combustion operation condi-
tion without further training.

2.1 Convolutional sparse autoencoder for feature ex-
traction

AE is an unsupervised neural network with three fully-con-
nected layers, i.e., input layer (encoder), hidden layer (en-
coder vector), and output layer (decoder). The encoder is
used to transform m-dimensional input sample xi into n-di-
mensional encode vector hi, typicallym>n. Then, the decoder
reconstructs the encode vector hi to them-dimensional output
sample zi. The AE performs training by minimizing the re-
construction error such as mean square error (MSE) between
inputs and outputs, expressed as

L M x z= 1 . (1)
i

M
i iMSE =1

2

An optimal weight matrix and bias vector can be obtained
by utilizing a gradient descent algorithm. Once the AE
training is completed, the extracted encode vector hi can be
regarded as a proper feature representation of the input
sample.

Although the basic AE reconstructs the input information
correctly, it is possible that the network simply copies the
information from the input layer to the hidden layer. Then,
the extracted features may be redundant and invalid. To
avoid this, a sparse constraint is introduced to the AE,
forming the sparse autoencoder (SAE). The principle of the
SAE is to constrain the hidden-layer neurons in an inactive
state, thereby extracting more representative features. If the
activation value of the ith hidden neuron is hi

j (i∈(1, M), j∈
(1, N)), where M is the number of training samples; N is the
number of neurons in the hidden layer. Then, the average
activation value of the ith hidden neuron can be calculated by

p M h= 1 , (2)j i

M
i
j

=1

where pj is the average activation and the expected value is
closer to zero. To achieve this goal, a penalty term Ppenalty is
introduced to penalize pj when it deviates from the sparse
target ptarget. The penalty term Ppenalty is defined as

( )P KL p p= , (3)j
N

jpenalty =1 target

where KL(⋅) is the Kullback-Leibler divergence (KL diver-
gence) that can measure the difference between ptarget and pj,
calculated by

( )
( )

KL p p p
p

p

p
p

p

= log

+ 1 log
1

1 . (4)

j j

j

target target
target

target
target

If ( )KL p p = 0jtarget , ptarget=pj. Hence, the KL divergence is

used as the loss function to achieve minimization, expressed
as

( )L KL p p= , (5)j
N

jSparse =1 target

where β is the sparse rate. However, the fully-connected SAE
suffers from training difficulties due to its numerous network
parameters, especially in dealing with high-dimensional in-
put data. To solve this issue, the convolution operation is

Figure 1 (Color online) Schematic diagram of the proposed hybrid model.
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utilized to replace the fully-connected operation and con-
structed convolutional sparse autoencoder (CSAE). In par-
ticular, the convolution operation has the characteristics of
sparse connectivity and weight sharing, which can greatly
reduce the number of network parameters. The architecture
of the proposed CSAE is shown in Figure 2.
In the CSAE, the flame image is sent to the input layer x,

and then processed by five convolutional encoders, i.e., e1,
e2, …, e5 for feature extraction and five convolutional de-
coders, i.e., d1, d2, …, d5 (refer to Figure 2) for image re-
construction, and finally forming a reconstructed image in
the output layer (z). The detailed configuration of the CSAE
can be found in Table 1.
In the convolutional encoder, firstly, the input image is

processed by the convolution layer (C(32@3×3+1)) of the
encoder e1, which has 32 filters, and each filter size is 3×3
and a stride of 1. After the convolution layer, the outputs are
put through the activation function to improve the feature
representation ability, such as rectified linear unit (ReLU)
(y(λ) = max(0, λ), where λ represents hidden neuron). Note
that the Sigmoid function (y(λ)=1/1+exp(−λ)) is also used,
i.e., d5 operation (5th convolutional decoder). The purpose of

using the ReLU function is to improve the training con-
vergence speed, and the Sigmoid function is used to ensure
the output range 0 to 1 [19]. Followed by the activation
function, the pooling layer is adopted to reduce the di-
mensionality of the feature maps. The max-pooling strategy
[20] with a kernel size of 2×2 and a strider of 2 is used in this
study. Finally, a feature map with a dimension of 64×64×16
can be extracted. After a series of similar encoder operations,
the input image x with the dimension of 128×128×3 can be
represented by the deep feature h with the dimension of
4×4×1. Afterwards, the extracted h is converted into a 16-
dimensional vector to facilitate subsequent feature analysis.
In the convolutional decoder, the deep feature h is first sent

into the upsampling layer (U(8×8)) of the decoder d1 for
dimensionality extension, and then successive processed by
the convolution layer (C(4@3×3+1)) and ReLU activation
function. After that, the feature map with the dimension of
8×8×4 is processed by a series of similar decoder operations
for image reconstruction. Finally, the reconstructed image
with the dimension of 128×128×3 is generated.
The CSAE training is only performed using unlabeled

flame images, and the training target is to minimize the re-

Figure 2 (Color online) The architecture of the convolutional sparse autoencoder.

Table 1 Structure and parameters of the CSAEa)

Items Model type Upsampling layer Convolution layer Activation
function Pooling layer Output dimension

Input layer − − − − − 128×128×3

Convolutional encoder

e1 − C(32@3×3+1) ReLU P(2×2+2) 64×64×32

e2 − C(16@3×3+1) ReLU P(2×2+2) 32×32×16

e3 − C(8@3×3+1) ReLU P(2×2+2) 16×16×8

e4 − C(4@3×3+1) ReLU P(2×2+2) 8×8×4

e5 − C(1@3×3+1) ReLU P(2×2+2) 4×4×1

Convolutional decoder

d1 U(8×8) C(4@3×3+1) ReLU − 8×8×4

d2 U(16×16) C(8@3×3+1) ReLU − 16×16×8

d3 U(32×32) C(16@3×3+1) ReLU − 32×32×16

d4 U(64×64) C(32@3×3+1) ReLU − 64×64×32

d5 U(128×128) C(32@3×3+1) Sigmoid − 128×128×3

Output layer − − − − − 128×128×3
a) C represents convolution operation; P represents pooling operation; U represents upsampling operation; ‘−’ represents no operation. C(R@c×c+g) represents the convolution

layer with R filters. Each filter scans the input neurons with a fixed size of c×c and a stride of g. P(p×p+r) represents the pooling layer that condenses the feature map by selecting a
maximum value with a kernel size of p×p and a step of r. U(u×u) represents the upsampling layer to extend the feature dimension to u×u.
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construction error between the input image and the output
image. After adding the sparse constraint in the CSAE
training process, combining eqs. (1) and (5), the established
CSAE loss function is expressed as
L L L= + . (6)CSAE MSE Sparse

The LCSAE is minimized iteratively by using the adaptive
moment estimation (Adam) algorithm [21]. The Adam al-
gorithm has the advantages of high computational efficiency
and low memory consumption.
Besides, overfitting is a common phenomenon in deep

learning network training with a low training error, whereas
high testing error. To avoid the occurrence of overfitting, the
dropout technique [22] is utilized in the CSAE training. The
main idea of the dropout technique is to randomly drop
several neurons from the neural network with a probability of
μ, thereby preventing an excessive co-adaptation between
hidden neurons.

2.2 Least support vector machine for condition pre-
diction

Once the CSAE training is completed, the deep features of
the flame image are extracted by the trained convolutional
encoder. These image features are then further used to train
the LSSVM for combustion operation condition prediction.
The LSSVM is an improved version of SVM, possessing a
least-squares loss function and equality constraints [23]. It is
a binary classifier, usually used for two-stage classification
tasks. A brief review of the LSSVM algorithm for classifi-
cation problems as following.
Assuming an observation dataset {X, Y} of T samples,

where X x= { }t t
M
=1
, Y y= { }t t

M
=1
, xt denotes the tth input sam-

ple, and yt denotes the corresponding sample label, i.e., yt∈
{−1, +1}. Figure 3 presents a geometrical view of the
LSSVM.
The LSSVM aims to construct an optimal hyperplane as a

linear decision boundary that separates samples into two
categories with maximal margin. It mainly solves the fol-
lowing optimization problem:

J b Cw w wmin ( , , ) = 1
2 + 2 , (7)

w b t

t M
t, ,

T
=1

= 2

subject to

y x bw ( ) + = 1 , (8)t t t
T

where J(w, b, ξ) is the structural risk; w and b are weight
vector and bias, respectively; C (C>0) is regularization
constant that balances the importance between the max-
imization of the margin width and the minimization of the
training error; the slack variable ξt is the soft margin error;
Φ(⋅) denotes the nonlinear function mapping input data from
the original space into a high-dimensional feature space. This
nonlinear mapping function is to solve the linear inseparable
problem in the original space. As shown in Figure 4, the
training samples are inseparable in the original space (re-
presented by 2D space) but easy to separate in the high-
dimensional feature space (represented by 3D space).
By using the Lagrange method [24], the optimization

problem eq. (7) can be converted into a group of linear
equations:

( )
L b J b

x b y

w w

w

( , , , ) = ( , , )

( ) + + , (9)
t

t T
t t t t=1

= T

where αt (t=1,…,T) represents the Lagrange multiplier vec-
tor. According to the Karush-Kuhn-Tucker (KKT) condition
[25], the optimal solution of eq. (9) can be determined by

L
w x

L
b
L C

L x b y

w

w

= 0 = ( ),

= 0 = 0,

= 0 = ,

= 0 ( ) + + .

(10)

t

t M
t t

t

t M
t

t
t t

t
t t t

=1

=

=1

=

T

By eliminating w, eq. (10) can be transformed into the
following matrix equation:

C
b1

1 I y
0

+
= 0 , (11)

T

1

where I is a T × T identity matrix; y = [y1, y2,…, yT]
T is the

output matrix; α= [α1, α2,…, αT]
T is the Lagrange multipliers

matrix; 1=[1, 1,…, 1]T is the unit vector;Ω is the T × T kernel
matrix and defined as

Figure 3 (Color online) Graphic representation of the LSSVM. Figure 4 (Color online) Geometrical view of the nonlinear mapping.
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y y x x y yK x x= ( ) ( ) = ( , ), (12)t t t t
T

where xt and x stand for different input points; K(xt, x) is the
kernel function. It is worth noting that the kernel function
defines the feature space of the input data, directly affecting
the generalization performance of the LSSVM. Thus, se-
lecting a proper kernel function is very critical. Through
combining eqs. (11) and (12), α and b can be obtained si-
multaneously. Then, the decision function of the LSSVM for
data classification can be calculated as

x y K x x b( ) = sign ( , ) + , (13)
t

t T
t t t=1

=

where sign(∙) is the sign function, and the sign of the decision
equation determined the category of the input data.
However, the combustion operation condition includes

multiple categories. For this reason, the “one-against-one”
approach [26] is considered for performing the multi-class
classification problem of the binary classifier LSSVM. In
this approach, n(n–1)/2 classifiers are constructed based on
every two categories, where n is the number of categories. A
voting strategy is adopted to determine the final classifica-
tion by the maximum number of votes. For example, com-
bustion operation condition includes four categories: A, B,
C, and D. In the training process, six [4(4–1)/2] classifiers
are constructed based on Avs. B, Avs. C, Avs. D, B vs. C, B
vs. D, and C vs. D, respectively. In the testing process, these
six classifiers perform estimation separately, and the final
prediction result is determined according to the maximum
number of votes.

2.3 Model evaluation criteria

To quantitatively evaluate the prediction performance of the
proposed model, four metrics, including accuracy, precision,
recall and F1-score, are used. The formula for each evalua-
tion metric is expressed as

Accuracy( ) = × 100%, (14)

TP
TP FPPrecision( ) = + , (15)

r TP
TP FNRecall( ) = + , (16)

F p r
p rscore = 2 × ×

+ , (17)1

where φ represents the prediction accuracy; A is the number
of samples that are predicted correctly; B is the number of the
testing samples; TP is the number of true positives; FP is the
number of false positives; FN is the number of false nega-
tives. The F1-score is a harmonic mean of precision and
recall, whose value ranges from 0 to 1. The higher value of
these four evaluation metrics indicates better predictive
performance.

3 Experiments on a 300 MW coal-fired boiler

3.1 Experimental setup

To evaluate the effectiveness of the proposed hybrid model
(CSAE-LSSVM) for predicting the combustion operation
condition, experiments were conducted on a 300 MW tan-
gentially coal-fired boiler. This boiler adopted a direct-
blowing pulverizing system and was equipped with five
groups of roller mills. Only four groups were utilized under
the normal operation conditions, and the remaining one mill
was usually on standby in case of accidents. The outlet of
each mill is connected to four tilting burners, which are ar-
ranged at four corners of the boiler. The detailed structural
design of the experimental boiler can be found in refs.
[27,28].
In this study, the combustion operation condition of the

burner connected with one of the mills is selected as the
research object. Figure 5 presents the structure and practical
implementation of the flame imaging system. The flame
imaging system is mainly composed of a color camera and an
optical endoscope. The color camera (HIKVISION MV-
CA003-50GC) is used to record the flame image with a re-
solution of 640(H) × 480(V) pixels at 20 f/s (frames per
second). The optical endoscope can extend into the furnace
and transmit the combustion flame to the camera through a
set of lenses. It is equipped with a 90° angle of objective

Figure 5 (Color online) The physical implementation of the flame imaging system. (a) Schematic diagram of the flame image imaging system; (b) practical
implementation.
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view lens, which provides a wider visual range and covers
the main reaction area (i.e., root region) of the flame.
Moreover, the front end of the endoscope has bent 45° to
overcome the limitation of the installation position.
The flame imaging system is mounted on the viewport

located on the side of the burner and protected by cooling air
that ensures that the camera operating temperature does not
exceed 50°C. The temperature is monitored in real-time,
with an over-temperature alarm function. The pressure of the
cooling air is always higher than that of the boiler. Then, the
cooling air can flow into the boiler through the front end of
the optical endoscope, thus achieving a cooling effect. Also,
the cooling air is conducive to keeping the monitoring win-
dows clean for a long time running.

3.2 Flame image acquisition under different operation
conditions

During the experiment, the coal-fired boiler was undergoing
a peak shaving process. In this case, the boiler will con-
tinuously adjust the operational variables to meet the demand
for energy fluctuations. Table 2 depicts the flame image
dataset obtained from eight combustion operation condi-
tions. These operation conditions are determined by the coal
quantity and air volume. For each condition, 1000 RGB
(Red, Green, and Blue) flame images were collected. Note
that the coal quality is consistent in this experiment.
Examples of flame images under different operation con-

ditions are shown in Figure 6. Although the size, brightness
and structure of the flame image are different, it is difficult to
identify the condition based on these physical appearances
accurately. In view of this, how to predict the operation
condition effectively and accurately is desirable and yet
challenging.

3.3 Dataset and model establishment

To eliminate the influence of different image sizes and ac-
celerate the convergence of the prediction model, all flame
images are resized to 128(H) × 128(V) and normalized to 0 to

1 using the min-max scale [29]. Especially, the dimension of
the input images is chosen empirically based on the trade-off
between the prediction accuracy and prediction time of the
model. Figure 7 illustrates the overall structure of the flame
image dataset used for training and testing the prediction
model. Take S1 (containing 1000 images) as an example,
80% of the data is randomly selected to form training dataset
A1 (containing 800 images), and the remaining 20% is used
as testing dataset B1 (containing 200 images). Subsequently,
93% of the dataset A1 is selected to form dataset C1 (con-
taining 720 images), and the rest of 7% forms dataset D1.
Considering eight conditions, the dataset for unsupervised
CSAE training contains 5952 unlabeled images, defined as
dataset C; the dataset for supervised LSSVM training con-
tains 448 labeled images, defined as dataset D; and the da-
taset for the CSAE-LSSVM testing contains 1600 labeled
images, defined as dataset B.
From the dataset structure, a large amount of unlabeled

data is used for feature extraction network CSAE training,
and only a small amount of labeled data is used for condition
identification network LSSVM training.
The CSAE-LSSVM training includes two independent

steps, i.e., unsupervised CSAE training and supervised
LSSVM training. In the CSAE training process, all the
weight parameters are initialized by Gaussian distribution
with a standard deviation of 0.02 and updated via back-

Table 2 Overview of the combustion operation condition used in this
study

Condition Coal quantity (t/h) Air volume
(km3/h) Total images

S1 62.8 603.8 1000

S2 69.9 620.8 1000

S3 74.6 628.3 1000

S4 87.1 642.2 1000

S5 89.5 667.3 1000

S6 93.6 673.9 1000

S7 95.2 688.1 1000

S8 96.5 695.9 1000

Figure 6 (Color online) Examples of flame images under eight combustion operation conditions.
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propagation using the Adam algorithm [30]. The sparse
penalty term is utilized to further improve CSAE feature
learning ability, where the sparse rate β is set to be 0.4, and
the sparse target ptarget is set to be 0.08. Besides, the dropout
technique is also introduced in the CSAE training with the
dropout rate μ=0.2, which is determined via cross-validation
compared to other rates such as 0.1, 0.3, 0.4, and 0.5. The
LSSVM training is performed based on the CSAE feature
and label information of the dataset D. Moreover, in com-
parison with different kernel functions such as linear and
polynomial, the radial basis function (RBF) is selected as the
kernel function.
All the calculations in this study were implemented in the

Python programming language with an Intel i7-8700K CPU,
64 GB RAM and GeForce GTX 1080 Ti GPU. For each
experimental result, ten trials are repeated to reduce parti-
cularity, contingency, and randomness.

4 Results and discussion

4.1 Image feature visualization

Once the CSAE training is completed, the CSAE is used to
extract the flame image features. The extracted dis-
criminative features can be visualized through the t-dis-
tributed stochastic neighbor embedding (t-SNE) technique
[31]. The t-SNE method provides an effective solution for
high-dimensional data visualization, which can convert the
extracted 16-dimensional image features into a 2-dimen-
sional (2D) feature map with maximum preservation of data
structure. Figure 8 shows the 2D feature map of the flame
image in testing dataset B.
It can be seen that the image features in the same condi-

tions are clustered automatically, while the image features in
different conditions are separated well. This result shows that
even though the original flame images are difficult to dis-
tinguish intuitively, their features have a good separability in
the feature space. Notably, some mixing points are appeared
and mainly concentrated in combustion operation S4 and S5.
This confusion reflects some similarities between flame
images, especially from adjacent operation conditions.
Nevertheless, most feature points can be distinguished, in-
dicating the effectiveness of CSAE in image feature ex-
traction.

4.2 Prediction accuracy

After the CSAE-LSSVM training, dataset B (containing 200
labeled images per condition) is used to examine its pre-

Figure 7 (Color online) Overview of the training and testing dataset.

Figure 8 (Color online) Image feature visualization under eight com-
bustion operation conditions.
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diction performance. As shown in Figure 9, the confusion
matrix summarizes the classification results of the eight
combustion operation conditions. In the confusion matrix,
columns represent the actual labels, and rows represent the
predicted labels. Diagonal cells show the number and accu-
racy of correctly estimated samples, while off-diagonal cells
display the number of misclassified samples.
It can be seen that S1, S7, and S8 can be fully identified

with the accuracy of 100%. Especially, the prediction accu-
racy of S5 is the lowest with the accuracy of 92.50%, where
only 185 images are correctly classified, and the remaining
images are mainly misclassified into S4. Followed by S4, the
accuracy is only 94.00%, showing the appearance of con-
fusion with S5. This result is consistent with that given in
Figure 8, that is, misclassification is prone to occur under S4
and S5. Because of this, it can be inferred that if the flame
images of different conditions cannot be completely sepa-
rated in the feature space, it will inevitably affect the pre-
diction accuracy of the subsequent classifiers. This
suggesting that the representative features of flame image
play a decisive role in high-precision combustion operation
condition prediction. Although some misclassifications oc-
cur, most of the testing images can be accurately classified,
and the average prediction accuracy has reached 98.06%
(refer to Table 3). This sufficiently confirms that the pro-
posed CSAE-LSSVM performed well in predicting the
combustion operation condition.

4.3 Comparative study and performance analysis

The performance of the hybrid model (CSAE-LSSVM) is
verified under different hyper-parameter, such as dropout

rate and kernel functions. Furthermore, to verify the super-
iority of the hybrid model, a comprehensive comparative
study is performed with other typical networks, including
different feature extraction networks and condition predic-
tion models.

4.3.1 Effect of different dropout rates and kernel functions
To tackle the overfitting problem, the dropout technique is
involved in the CSAE training process. Since the dropout
rate is a vital hyper-parameter, it is meaningful to study its
impact on prediction performance. Besides, the kernel
function has a significant influence on the generalization
ability of the LSSVM. Thus, the LSSVM performance under
three different kernel functions is also investigated. The three
kernel functions are specifically expressed as
(1) Linear function (LF): K x x x x( , ) = ;t t

(2) Polynomial function (PF): K x x x x z( , ) = ( + ) ;t t
v

(3) Radial basis function (RBF):K x x x x( , ) = exp 2 ,t
i

2

2

where z, v, and σ are parameters of the kernel function.
Figure 10 presents the prediction results of the CSAE-
LSSVM, where the dropout rate is changed from 0 to 0.5
with a step size of 0.1.
The result demonstrates that, with the increase of the

dropout rate, the prediction accuracy of these three networks
has experienced a process of first increasing and then de-
creasing. The best performance was obtained at a dropout
rate close to 0.2. This verifies that the reasonable dropout
method can improve the CSAE performance, but a high
dropout rate may lose important neurons, resulting in the
degradation of classification performance. The result also

Figure 9 (Color online) Confusion matrix of classification results of the testing dataset.
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indicates that the CSAE-LSSVM with PF kernel function
can achieve the highest prediction accuracy in all cases, so it
is preferred.

4.3.2 Effect of different feature extraction networks
To verify the superiority of the CSAE feature method, a
comparative study is carried out with other feature extraction
methods, such as empirical formula (EF), principal compo-
nent analysis (PCA) and convolutional autoencoder (CAE).
The EF method uses the pre-defined empirical formula to
derive various statistical features from the flame image. In
this study, seven different statistical features were con-
sidered, including geometric parameters (ignition point and
ignition area) and luminous parameters (luminous region,
brightness, non-uniformity, mean intensity and flame area).
The PCA is an effective data dimensionality reduction
method that can discover the principal variables of the flame
images. For the CAE, its structure is the same as the CSAE,
except that sparse constraint is not considered. For a fair
comparison, different types of features are input to the same
LSSVM to perform prediction. Table 3 summarizes the
prediction accuracy, F1-score and prediction time of the
neural network established based on different feature ex-
traction methods.
The EF-based feature extraction method is at a relatively

low level in terms of prediction accuracy and prediction
time. More importantly, these pre-defined formulas are often

accompanied by a complicated feature selection process,
which relies heavily on prior expert knowledge. The result
also indicates that, although PCA-LSSVM achieves the
fastest prediction time (i.e., 1.15 ms/image), its accuracy is
lower than the CSAE-LSSVM. This is mainly because PCA
is a simple linear transformation method that cannot extract
the essential data features. Compared with CAE-LSSVM,
CSAE-LSSVM achieves a more satisfactory performance
with an accuracy of 98.06% and an F1-score of 0.98, al-
though its consumption time is slightly higher (i.e.,
3.06 ms/image) due to the increased sparse constraint.
However, from a practical engineering perspective, the pre-
diction time of the CSAE-LSSVM is acceptable, satisfying
the requirement of real-time processing data acquired by the
color camera with a frame rate of 20 f/s. It can be concluded
that the CSAE-LSSVM is better than the shallow PCA-
LSSVM, indicating that the hybrid deep learning network
can extract more representative flame image features. The
CSAE-LSSVM is superior to the CAE-LSSVM, suggesting
that the sparse constraint can further enhance feature learning
ability. In summary, the CSAE is more recommended as an
optimum feature extraction network for flame images.

4.4.3 Effect of different classifiers and proportions of la-
beled data
After extracting the representative features of the flame
image, it is critical to select an appropriate classifier, which is
beneficial to the accurate analysis of the features. A trial is
carried out to compare the LSSVM performance with other
typical classifiers, such as ANN, random forest (RF), and
logistic regression (LR). Meanwhile, the prediction of the
LSSVM under three different kernel functions is also con-
sidered. Typically, due to the different structures of the
neural network classifiers, the demand for labeled data is
also different. It is desirable to adopt an optimal classifier
that can provide better accuracy with minimum labeled data,
which will help reduce the burden of preparing high-quality
and large-scale labeled data. Therefore, the proportion of
labeled data has also been carefully investigated. In this
study, the proportion of labeled data refers to the proportion
of dataset D to dataset A, as shown in Figure 7. Figure 11
shows the prediction accuracy of different classifiers based
on CSAE features, where the proportion of labeled data
varies from 1% to 8% with a step size of 1%.
The LSSVM with the PF kernel function always maintains

the highest prediction accuracy in all cases. As the propor-
tion increases from 1% to 7%, the accuracy of all classifiers
increases rapidly. Although only 6% of the labeled images
are available, the minimum prediction accuracy reaches 95%
(provided by the ANN), which meets the accuracy require-
ments of actual engineering [5]. With the further increase of
the proportion, the prediction accuracy improves slightly but
stabilized after 7%. The obtained results not only demon-

Table 3 Prediction network performance based on different feature ex-
traction methods

Prediction net-
work Accuracy (%) F1-score

Prediction time
(ms/image)

EF-LSSVM 63.06% 0.63 33.93

PCA-LSSVM 91.75% 0.91 1.15

CAE-LSSVM 96.94% 0.97 2.48

CSAE-LSSVM 98.06% 0.98 3.06

Figure 10 (Color online) Performance testing of the CSAE-LSSVM
under different dropout rates and kernel functions.
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strate the LSSVM with PF kernel function achieves the best
performance in predicting the combustion operation condi-
tion but also reflect that 7% of the label data can provide a
high-precision prediction. Therefore, it can be determined
that the proposed prediction model is suitable for prediction
tasks with limited labeled data.

5 Conclusions

A novel hybrid deep neural network model (CSAE-LSSVM)
is proposed to predict the combustion operation condition.
The CSAE is used to feature extraction of flame images, and
the LSSVM is utilized to predict the combustion operation
condition based on the extracted flame features. The pro-
posed model overcomes the shortcomings of the traditional
techniques where prior expert knowledge and massive la-
beled data are required. Experiments were carried out on a
300 MW tangential coal-fired boiler and collected flame
images under different operation conditions and to evaluate
the prediction model. The main conclusions of this study can
be drawn as follows.
(1) Flame structure changes with the combustion operation

conditions. Although flame images in different conditions
are difficult to distinguish based on their physical appear-
ance, the extracted features can be separated accurately. For
the examined conditions, the established CSAE-LSSVM
provided 98.06% prediction accuracy and 3.06 ms/image
prediction time, superior to other prediction models.
(2) The CSAE can automatically extract the representative

features of the flame image in an unsupervised manner. In
comparison with other feature extraction methods, the CSAE
not only achieves good prediction accuracy but also revoke
the tedious process of feature selection. More importantly,
practically proved that representative flame features are the
key factor in obtaining satisfactory prediction performance

of combustion operation condition.
(3) This study conducts a detailed exploration, including

the sparse constraint method, reasonable selection of kernel
function, and the optimum dropout rate. Through the cross-
validation method, it is suggested that the polynomial func-
tion is more suitable with a dropout rate of 0.2.
(4) Experimental results demonstrate that the proposed

model performs well in dealing with the problem of limited
labeled data, which significantly reduces the demand for
image labels. Consequently, the proposed model has a great
application prospect in combustion operation condition
prediction.
Overall, the proposed model can easily be applied to other

combustion processes such as heavy-oil, biomass co-com-
bustion, etc. The future work will be focused on tailoring the
proposed model for predicting combustion operation condi-
tions in more combustion facilities.
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