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The multi-objective differential evolution (MODE) algorithm is an effective method to solve multi-objective optimization
problems. However, in the absence of any information of evolution progress, the optimization strategy of the MODE algorithm
still appears as an open problem. In this paper, a dynamic multi-objective differential evolution algorithm, based on the
information of evolution progress (DMODE-IEP), is developed to improve the optimization performance. The main con-
tributions of DMODE-IEP are as follows. First, the information of evolution progress, using the fitness values, is proposed to
describe the evolution progress of MODE. Second, the dynamic adjustment mechanisms of evolution parameter values, mutation
strategies and selection parameter value based on the information of evolution progress, are designed to balance the global
exploration ability and the local exploitation ability. Third, the convergence of DMODE-IEP is proved using the probability
theory. Finally, the testing results on the standard multi-objective optimization problem and the wastewater treatment process
verify that the optimization effect of DMODE-IEP algorithm is superior to the other compared state-of-the-art multi-objective
optimization algorithms, including the quality of the solutions, and the optimization speed of the algorithm.
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1 Introduction

Most daily production and living activities, such as industrial
production, transportation, commerce, and healthcare, are
commonly described as multi-objective optimization pro-
blems (MOPs). These MOPs need to optimize multiple ob-
jectives interrelated or even mutually constrained at the same
time. It is remarkable that the optimal solution of the multi-
objective optimization problems is a Pareto solution set,
which is composed of some optimal solutions obtained si-
multaneously, rather than a single solution [1–5]. Multi-ob-
jective evolutionary algorithms have been widely studied to
solve MOPs in the engineering and scientific applications

during the last three decades, such as the nosiheptide fer-
mentation process, blast furnace gas system, and wastewater
treatment processes. Among these algorithms, the multi-
objective differential evolution (MODE) algorithm, which is
a parallel search algorithm with few parameters and easy
implementation [6,7], has attracted widespread attention
from researchers. However, the solution quality reduces as
the increase of the complexity between the objectives, and
the optimization time increases when there are more and
more optimization goals. The optimization effect will restrict
its application in practice. In order to keep the advantage of
MODE algorithm, it is a significant challenge to improve the
optimization effect, including the quality of solutions, the
uniformity of solutions, and the optimization speed of the
algorithm [8,9].

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021 tech.scichina.com link.springer.com

SCIENCE CHINA
Technological Sciences

*Corresponding author (email: houying@bjut.edu.cn)

https://doi.org/10.1007/s11431-020-1789-9
https://doi.org/10.1007/s11431-020-1789-9
http://tech.scichina.com
http://springerlink.bibliotecabuap.elogim.com
http://crossmark.crossref.org/dialog/?doi=10.1007/s11431-020-1789-9&amp;domain=pdf&amp;date_stamp=2021-04-02


To address the above problem, cooperation with other
methods has been considered as a promising approach for
differential evolution algorithm [10,11]. For example, San-
tana-Quintero et al. [12] presented a hybrid algorithm which
combined MODE with a local search engine for constrained
MOPs. In this algorithm, MODE was utilized to generate an
initial approximation of the Pareto front, and rough set the-
ory was used to improve the spread and quality of the initial
approximation. The results showed that the proposed algo-
rithm could find better results, and was able to solve standard
bi-objective constrained test problems and real-world pro-
blems at a moderate computational cost. Cheng et al. [13]
proposed a grid-based adaptive multi-objective differential
evolution algorithm. In this algorithm, the objective space
was divided into grids according to the non-dominated so-
lutions in the population. Then, the parent selection, para-
meter control, and population update were implemented
based on grid index values exploiting the feedback in-
formation. Experimental results showed that the proposed
algorithm was superior to the other multi-objective evolu-
tionary algorithms on four test suites by using three perfor-
mance metrics. Jamali et al. [14] proposed a multi-objective
differential evolution algorithm with fuzzy inference-based
dynamic adaptive mutation factor (MODE-FM) for MOPs.
In the proposed work, the mutation factor was adjusted by a
nine-rule fuzzy logic inference system, which took the
number of generation and population diversity as inputs.
MODE-FM was successfully used in bi-objective optimiza-
tion processes and a five degree of freedom vehicle vibration
model, and it was superior to the other methods in the lit-
erature. Although these algorithms improve the optimization
effect by combining the advantages of other algorithms, they
destroy the simple but effective search framework of MODE
algorithm. And they consume a long time for calculating
parameters and adjusting structures in algorithms. As a re-
sult, the improvement of optimization effect is limited when
dealing with complex problems [15,16].
In order to maintain the structure of MODE algorithm and

make better use of its advantages, researchers carry out a lot
of exploratory work after analyzing the characteristics of
MODE algorithm deeply [17–19]. Zheng and Zhang [20]
presented a jumping gene multi-objective differential evo-
lution (JGDE) algorithm. In JGDE, the jumping gene op-
erator was employed to promote the population diversity in
the first component, and an elitism leading mechanism was
designed to accelerate the convergence in the second com-
ponent. Experimental studies showed the exploitation ability
and the exploration ability were improved, and JGDE algo-
rithm had the superiority over the other competitive algo-
rithms in both convergence and diversity. Wang et al. [21]
proposed a self-adaptive differential evolution (APDDE)
algorithm to deal with real-time high-dimensional optimi-
zation problems. APDDE algorithm introduced the corre-

sponding values for individual iteration during the
differential evolution, integrated the detecting values into
two mutation strategies to produce offspring population, and
then implemented a new mutation strategy based on the best
vector of each predefined group to keep balance of the ex-
ploitation and exploration capabilities. The experimental
results showed that the proposed APDDE algorithm had
good performance when dealing with high dimensional and
multimodal problems. Fan et al. [22] designed a self-adap-
tive weight vector adjustment strategy for decomposition-
based multi-objective differential evolution (AWDMODE)
algorithm. In AWDMODE algorithm, an adaptive adjust-
ment strategy, which distinguished the shapes and adjusted
weight vectors dynamically, was introduced to ensure the
accurate and effective of guidance. The experimental results
showed that AWDMODE outperformed the compared al-
gorithms and had the potential to deal with the MOPs. The
above algorithms can improve the optimization effect of
MODE. But they lack theoretical proof of convergence,
which hinders the development and application of the algo-
rithm in engineering fields [23].
Based on the analysis above, in this study, a dynamic

multi-objective differential evolution based on the informa-
tion of evolution progress (DMODE-IEP) algorithm is de-
veloped for MOPs. In DMODE-IEP algorithm, the
information of evolution progress, defined by the fitness
values of individual, is used to describe the degree of evo-
lution. The dynamic adjustment mechanisms for evolu-
tionary parameter values, mutation strategies and selection
parameter value based on the information of evolution pro-
gress are designed in DMODE-IEP, in order to balance the
global exploration ability and the local exploitation ability.
To this end, DMODE-IEP algorithm is effective to improve
the quality of solutions and the speed of optimization.
The remainder of this paper is organized as follows. In

Section 2, the traditional MODE algorithm and the features
of evolutionary process in MODE algorithm are introduced
as preliminaries. In Section 3, the MODE-IEP algorithm is
proposed in detail, including the definition of the information
of evolution progress, the dynamic adjustment mechanisms
of the evolutionary parameter values, mutation strategies and
selection parameter value. Section 4 is devoted to proof the
convergence of MODE-IEP algorithm. Section 5 reports
some experimental results of MODE-IEP, which demon-
strate some merits in optimization accuracy and optimization
speed against other existing methods. Finally, the conclusion
is given in Section 6.
Remark 1: MOPs include maximizing objective function

and minimizing objective function. The maximizing objec-
tive function and the minimizing objective function can be
transformed by mathematical transformation. Therefore,
only the problem of minimizing multi-objective optimization
is discussed in this study.
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2 MODE algorithm

2.1 Optimal solutions of MOPs

In solving MOPs, x* Pareto-dominated x means that for all
functions to be optimized, the function value of x* is less than
or equal to the function value of x on the corresponding
function, and the function value of x* is strictly less than the
function value of x on at least one function.
In the entire domain of feasible solution set, x* is a Pareto

solution if x* is not dominated by any other x. Pareto solution
set is constituted by all Pareto solutions obtained.

2.2 Basic flows of MODE algorithm

MODE algorithm is a parallel direct search method for
MOPs. The multiple solution spaces are searched in parallel
drawing on biological evolutionary ideas for the global op-
timal solutions. The basic flows of MODE algorithm are
similar to the other general multi-objective evolutionary al-
gorithms.
(1) Initialization
Generate initial populations by a random method.
(2) Mutation
Target vector is the parent vector of current generation.

Donor vector is obtained from the parent vector after dif-
ferential mutation operation.
(3) Crossover
Trial vector is formed by exchanging some elements of

donor vector and target vector. At present, the common
modes of crossover are binomial crossover and exponential
crossover.
(4) Selection
The next generation populations are obtained by non-

dominant sorting based on Pareto selection mechanism.
(5) Iteration
Algorithm returns to the second step and continues evo-

lutionary operation if termination condition is not satisfied.
Otherwise, the optimal solutions constitute a Pareto optimal
solution set. Algorithm outputs the optimal solutions and
ends the evolution process.

2.3 Characteristics of evolution progress in MODE
algorithm

The basic flows of MODE algorithm show that the algorithm
generates an initial population by random. The individuals of
the initial population are distributed randomly. The fitness
values of individuals in the initial population depend on the
stochastic distribution of initial individuals. In the process of
MODE, the algorithm performs mutation operations and
crossover operations on the individuals, and then selects the
next population by a greedy selection mechanism. The goal
of selection mechanism is to minimize the value of objective

functions.
With the advancement of the optimization process, all in-

dividuals move towards the optimal solutions and distribute
uniformly on the Pareto front. The distances between the
individual and the optimal solution become smaller, and the
fitness differences between individuals gradually decreased
accordingly. Therefore, the variation on fitness difference
reflects the degree of evolution progress. And it can be used
as a standard for improving parameters.

3 DMODE-IEP algorithm

The scheme of proposed DMODE-IEP (as shown in Algo-
rithm 1) consists of four innovative works. First, the in-
formation of evolution progress (IEP), defined by the fitness
values, is designed to characterize the evolution process and
standardize the information about the evolution progress.
Second, the dynamic adjustment mechanism of evolution
parameter values, based on IEP, is proposed to adjust the
mutation rate and crossover rate dynamically. Third, the IEP-
based dynamic adjustment mechanism of mutation strategy,
is designed to balance the global exploration capability and
the local exploitation capability. Finally, adjustable selection
parameter value, based on IEP, is proposed for improving the
optimization speed. In the following parts, these four works
are described in detail.

3.1 Information of evolution progress

The variation of fitness difference reflects the evolutionary
state of the population, which can be used as the embodiment
of the information of evolution progress. According to the

Algorithm 1 DMODE-IEP algorithm

Input: the population dimension D, the maximum population generation
Tmax, the initial population generation as t=0, the initial popula-
tionsize as NP0, the initial mutation rate as F0, and the initial
crossover rate as Cr0

Output: the non-dominated solutions x

1: x0 ← Generate the initial vector;

2: while t < Tmax do

3: θt← Calculate the information of evolution progress;

4: Ft← Calculate the mutation rate;

5: vt← Generate the donor vector;

6: Crt← Calculate the crossover rate;

7: ut← Generate the trial vector;

8: NPt+1← Calculate the population size of next generation;

9: Obtain the non-dominated solutions of this population generation;

10: Update the population generation t=t+1;

11: end while

12: Output the non-dominated solutions.
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characteristics of evolution progress in MODE algorithm, as
explained in Section 2.3, IEP in the tth generation population
in DMODE-IEP algorithm is given as

f f f f= ( ) / ( + ) , (1)t t t t t

where f t and f t are the maximum value and minimum value
of individual fitness for all objective functions in the tth
generation population.
The value of IEP reflects the characteristics of evolution

progress, realizes a quantitative description of the evolu-
tionary state, and shows evolutionary degree of the algorithm
to a certain extent. Therefore, it can be used as an important
basis for adjusting the evolutionary parameter values and
evolutionary strategies.

3.2 Dynamic adjustment mechanisms of evolutionary
parameter values

It is generally known that the main evolution processes of
MODE algorithm are mutation operation and crossover op-
eration. The main evolutionary parameters are mutation rate
F and crossover rate Cr.

3.2.1 Dynamic adjustment mechanisms of mutation rate
Mutation is an operation that zooms in or zooms out the
target vector xt by the differential vector and the donor vector
vt. It is an important operation in the process of MODE
algorithm.
Mutation rate is an evolutionary parameter that determines

the scaling degree of the differential vector, which affects the
search range of algorithm directly. The smaller mutation rate
means the smaller perturbation to the differential vector,
which is helpful to find the optimal solutions quickly. But it
is prone to fall into the local optimum and increase the
convergence time. A larger mutation rate means a larger
perturbation to the differential vector, which is helpful to
increase the diversity of population. But the randomness of
the algorithm increases, and the efficiency of the algorithm
decreases.
According to the evolutionary law in MODE algorithm,

different mutation rates are required at different stages of the
evolution progress. In DMODE-IEP algorithm, a larger
mutation rate is used to ensure the diversity of the population
at the beginning of the algorithm (the first fifth of the max-
imum generation), and a smaller mutation rate is used to
preserve the optimal solutions at the end of the algorithm (the
last fifth of the maximum generation).
The definition of the mutation rate in the tth generation

population is given as

F F µ µ µ= [ + ( ) ] , (2)p
t

p
t

p L
t

p H
t

p L
t t1

, , ,

where Fp
t is the mutation rate of the pth individual in the tth

generation, Fp
t−1 is the mutation rate of the pth individual in

the (t−1)th generation, µp H
t
, and µp L

t
, are the upper and lower

limits of the mutation rate of the pth individual in the tth
generation, respectively. And µp H

t
, is greater than 1, µp L

t
, is

less than 1.

3.2.2 Dynamic adjustment mechanisms of crossover rate
Crossover is an operation that exchanges some elements
between the target vector and the donor vector. The in-
dividual obtained after the crossover operation is the trial
vector ut.
Crossover rate is an evolutionary parameter that de-

termines the probability of individual mutations, which af-
fects the probability of producing new individuals directly. It
has a great impact on population diversity. The smaller
crossover rate means the smaller probability of mutation for
individuals, which makes it easy to find optimal solutions.
But it is not conducive to maintain population diversity. The
larger crossover rate means the larger probability of mutation
for individuals, which increases population diversity. But it is
not conducive to find optimal solutions quickly.
In DMODE-IEP algorithm, the setting values of crossover

rate are adjusted dynamically by comparing the individual
fitness values with the average fitness value to improve po-
pulation diversity.
The definition of the crossover rate in the tth generation

population is given as

Cr
Cr f f

Cr f f
=

, < ,

[ + ( ) / ], ,
(3)p

t p
t

p
t

m
t

p
t

p L
t

p H
t
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t t
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t

m
t

1

1
, , ,

where Crp
t is the crossover rate of the pth individual in the tth

generation, Crp
t−1 is the crossover rate of the pth individual in

the (t−1)th generation, fp
t is the fitness value of the pth in-

dividual in the tth generation, fm
t is the average fitness value

of the pth individual in the tth generation, p H
t
, and p L

t
, are

the upper and lower limits of the crossover rate for the pth
individual in the tth generation, respectively. µp H

t
, is greater

than 1, µp L
t
, is less than 1.

3.3 Dynamic adjustment mechanisms of mutation
strategies

Mutation is a key step of differential evolutionary algorithm.
There are several mutation strategies can be chosen de-
pending on different mutation mechanisms. The mode of
mutation strategies is distinguished by the type of target
vector and the number of difference vectors used. The
common mutation strategies include as follows.
(1) DE/rand/1

Fv x x x= + ( ) ; (4)p
t t

p
t t t

r1 r2 r3

(2) DE/best/1
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Fv x x x= + ( ) , (5)p
t t

p
t t t

best r1 r2

where vp
t is the trial vector of the pth individual in the tth

generation, Fp
t is the mutation rate, xr1

t, xr2
t and xr3

t are three
different random individuals in the tth generation, x t

best is the
best individual in the tth generation, r1, r2, and r3 are random
real numbers different from p within the range of population
size.
DE/rand/1 is a mutation strategy based on the random

individual in the population. It is helpful for maintaining
population diversity, but it increases the search scope. DE/
best/1 is a mutation strategy based on the best individual in
the population. It has a fast convergence speed, but it is easy
to fall into the local optimum.
In DMODE-IEP algorithm, DE/rand/1 and DE/best/1 are

used simultaneously to take advantage of their respective
advantages. DE/rand/1 is used at the early stage of the al-
gorithm, which focuses on enhancing the global exploration
capability. DE/best/1 is used at the end stage of DMODE-
IEP algorithm, which focuses on enhancing the local ex-
ploitation capability.
The mutation strategy in the tth generation population is

described as

F

F
v

x x x

x x x
=

+ ( ), > 2
3 ,

+ ( ), 2
3 ,

(6)p
t

t
p
t t t t

t
p
t t t t

r1 r2 r3
0

best r1 r2
0

where θ0 is the IEP in initial population.

3.4 Dynamic adjustment mechanisms of selection
parameter value

Selection is an operation that sorts all individuals sequen-
tially to get optimal solutions by a non-dominant sorting
strategy. The smaller population size means fewer compar-
isons and shorter time. However, it reduces the diversity of
population and weakens the explore ability. The larger po-
pulation size means wider distribution and more individuals.
However, it increases the calculation time and reduces the
search ability.
In DMODE-IEP algorithm, the individuals are pre-sorted

according to their fitness values. The population size is ad-
justed based on the IEP dynamically. The population size
increases to provide more alternative solutions at the be-
ginning of algorithm, and the population size decreases to
improve the speed at the end of algorithm.
This proposed DMODE-IEP adopts a Pareto-based selec-

tion mechanism to sort the target vector and the donor vector
in the tth generation, and selects NPt+1 individuals for the
next generation finally.

NP NP= (1 ) . (7)t t t+1

It can be seen that the population size decreases gradually

as the algorithm progresses, which can reduce the number of
comparison operations and decrease the optimization time
significantly. The lower limit of population size is half of the
initial population in order to ensure the optimization per-
formance of the algorithm.

3.5 Procedure of DMODE-IEP algorithm

The procedure of the dynamic multi-objective differential
evolutionary algorithm based on the information of evolution
progress is as follows.
(1) Step 1: Initialization
The population dimension, the initial population size, the

initial mutation rate and the initial crossover rate are defined
in this step. A D-dimensional initial population with a po-
pulation size of NP0 is generated randomly according to eq.
(8).

x x x

q D p NP

x = , , … , ,

= [1, 2, , ], = [1, 2, , ] .
(8)p p p p q

0
,1

0
,2

0
,

0 T

0

The initial population generation of DMODE-IEP algo-
rithm is set as t=0, the maximum population evolutionary
generation is set as Tmax, the initial mutation rate is set as F

0,
and the initial crossover rate is set as Cr0.
(2) Step 2: Mutation
IEP is calculated according to eq. (1). The mutation rate of

the population is calculated according to eq. (2). The donor
vector is produced by the mutation strategy obtained from
eq. (6).
(3) Step 3: Crossover
The crossover rate of the population is calculated accord-

ing to eq. (3). The trial vector is produced by the crossover
operation obtained from eq. (9) using binomial crossover
strategy.

u
v Cr q q

x
=

, rand[0, 1] , = ,

, others,
(9)p q

t p q
t

p
t

p q
t,
, rand

,

where up q
t
, is the trial vector obtained by crossover in the tth

generation, rand[0, 1] is the random number between 0 and 1,
and qrand=1, 2, …, D is a flag bit chosen at random to ensure
at least one element in the target vector can be inherited
during evolution.
(4) Step 4: Selection
Population size of the next generation is calculated ac-

cording to eq. (7). Individuals of the next generation are
obtained by a non-dominance sorting strategy.
(5) Step 5: Iteration
Return to Step 2. Repeat mutation, crossover, selection,

and generate new individuals if generation is less than Tmax.
Otherwise, the Pareto solution set is formed by the best in-
dividuals, and the evolutionary process ends.
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4 Proof of convergence

4.1 Related definitions and lemmas

Definition 1 xpʹ and xp are reachable if

{ }x xP lim = 0 > 0
t p p .

The occurrence probability of event {·} is set as P{·}, the
norm in feasible region is set as ‖·‖∞, an arbitrary solution is
set as xp, and xp is marked as xpʹ when xp experiences mu-
tation operation and crossover operation.
Lemma 1 [24] The algorithm can converge to the global

optimal solution set if the multi-objective optimization pro-
blem has global optimal solutions and satisfies the following
conditions.
(1) xpʹ is reachable from xp by mutation and crossover, as

any two solutions in the feasible domain.
(2) The evolution of population is monotonic. xp

t+1 is better
than xp

t, or at least not worse than xp
t.

4.2 Proof

Theorem 1 DMODE-IEP converges to the global optimal
solutions with probability one if the multi-objective opti-
mization problem has a global optimal solution set and f(x) is
continuous in its search space.

{ }x xP lim = 0 = 1 , (10)
t

*

where x is the optimal solution set, and x* is the standard
Pareto optimal solution set.
Proof
(1) vp is obtained from arbitrary solution xp by mutation in

DMODE-IEP algorithm. An arbitrary vector is selected as
the difference vector in the evolutionary process of
DMODE-IEP, and the mutation rate is an arbitrary value in
the feasible domain. Therefore, the probability that vp is an
arbitrary point is greater than zero.
(2) up is obtained from vp by crossover in DMODE-IEP

algorithm. The probability of reaching from vp to up is

P D Cr= 1 1
cr

p
t

NP

+1 . Cr > 0p
t+1 and D>0, so Pcr>0, up is

reachable from vp.
Hence, xp and xpʹ are two arbitrary solutions in the feasible

domain. xpʹ is reachable from xp by mutation and crossover.
(3) A non-dominant sorting strategy is used during selec-

tion in DMODE-IEP algorithm, which guarantees the solu-
tion set in the (t+1)th generation is better than that in the tth
generation, at least not inferior to the solution set in the tth
generation.
Hence, the evolution is monotonic. xp

t+1 is better than xp
t, at

least not inferior to xp
t.

(4) Eq. (10) is proved by Lemma 1. DMODE-IEP algo-
rithm converges to the global optimal solutions with prob-
ability one.

5 Experiments and result analysis

To verify the optimization effect of DMODE-IEP algorithm,
experiments are carried out on the standard test functions,
CEC2018 many objectives benchmark problems and was-
tewater treatment examples. All the experiments are pro-
grammed with MATLAB version 2014, and are run on a PC
with a clock speed 2.6 GHz and 4 GB RAM, under a Mi-
crosoft Windows 8.0 environment.

5.1 Experiments of the standard test functions

Standard test functions ZDT1 and DTLZ2 are selected for
experiments.
(1) Standard test function ZDT1

( )( )
f x x

f x g x x g x

g x x m

m x i m

 Min

( ) = ,

( ) = ( ) 1 / ( ) ,

( ) = 1 + 9 / ( 1),

s.t. =30,   0 1,  = 1, 2, … , .

(11)

i

m

i

i

1 1

2 1

=2

(2) Standard test function DTLZ2

f x x x g x

f x x x g x

f x x g x

g x x

m x i m

Min

( ) = cos 2 cos 2 (1 + ( )),

( ) = cos 2 sin 2 (1 + ( )),

( ) = sin 2 (1 + ( )),

 ( ) = ( 0.5) ,

s.t. =12, 0 1,  = 1, 2, … , .

(12)

i

m

i

i

1 1 2

2 1 2

3 1

=3

2

5.1.1 Experimental design
Based on empirical value, the initial crossover rate is 0.5, the
initial mutation rate is 0.2, and the initial population size is
200. The values of these parameters will be adjusted adap-
tively as the evolution progresses. And the maximum gen-
eration is 300.
The quality of optimal solutions is described quantitatively

by inversed generational distance (IGD) and spacing (SP).

P P x P PIGD( , ) = mindis( , ) / , (13)
x P

* *

*

SP K d d= ( 1) ( ) , (14)
i

K

i
1

=1

where P* is the standard Pareto optimal solution set, P is the
Pareto optimal solution set obtained by DMODE-IEP, and
mindis(x, P) is the minimum Euclidean distance between x
and P. K is the number of non-dominated solutions, d is the
average Euclidean distance of all solutions, and di is the
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Euclidean distance between the ith solution and its nearest
solution.
IGD is a performance index that describes the distance

between Pareto optimal solutions and standard Pareto opti-
mal solutions. Pareto optimal solutions are closer to standard
Pareto optimal solutions when IGD is smaller. SP is a per-
formance index that characterizes the distribution uniformity
of the optimal solutions. The distribution uniformity is better
when SP is smaller.

5.1.2 Experimental results
The standard test functions ZDT1 and DTLZ2 are experi-
mented by DMODE-IEP algorithm adopting the above ex-
perimental design. Figure 1 shows the comparisons of
optimal solutions and standard Pareto optimal solutions on
ZDT1 and DTLZ2.
As shown in Figure 1(a), the optimal solutions of the two-

objective optimization problem can be obtained by
DMODE-IEP algorithm effectively. The obtained optimal
solutions, which are basically consistent with the standard
Pareto optimal solutions, have high quality. They also have
uniform distribution and a wide range. As shown in Figure 1(b),
the three-objective optimization problem can be solved by
DMODE-IEP algorithm effectively. The optimal solutions
obtained are approximated to the standard Pareto optimal
solutions, and spread over Pareto front uniformly. These
optimal solutions have good convergence, uniformity, and
diversity.

5.1.3 Result analysis
In order to test the effect of improvement mechanisms, dif-
ferent versions of DMODE-IEP algorithm are defined as
follows. DMODE-IEP-1 algorithm is DMODE-IEP algo-
rithm without information of evolution progress. DMODE-
IEP-2 algorithm is DMODE-IEP algorithm without proposed
dynamic adjustment mechanism of evolution parameter va-
lues. DMODE-IEP-3 algorithm is DMODE-IEP algorithm
without proposed dynamic adjustment mechanism of muta-

tion strategies. DMODE-IEP-4 algorithm is DMODE-IEP
algorithm without proposed adjustable selection parameter
value.
All results were averaged on 30 independent runs. The

optimization effects of DMODE-IEP algorithm, α-DEMO
algorithm [25], MODE-RMO algorithm [26], non-domi-
nated ordering genetic algorithm (NSGA-II) [27], and multi-
objective particle swarm algorithm (MOPSO) [28] on ZDT1
and DTLZ2 are shown in Tables 1 and 2. The optimization
times are shown in Table 3.
The optimization effects of DMODE-IEP on ZDT1 are

shown in Table 2. The mean and variance of IGD are 1.14×
10−3 and 1.21×10−4, respectively. The mean of IGD is better
than other DE-based algorithms, and it is only one-fifth of
NSGA-II algorithm (5.63×10−3). The variance of IGD is
suboptimal, and it is just higher than MODE-RMO algorithm
(1.13×10−4). The mean and variance of SP are 2.44×10−3 and
5.31×10−4, respectively. The mean and variance of SP have
the smallest value in all DE-based algorithms, and even in all
algorithms compared. Obviously, DMODE-IEP algorithm
can get high quality optimal solutions. The improved stra-
tegies of DMODE-IEP algorithm have significant ad-
vantages in solving two-objective optimization problems.
Table 3 presents the optimization effects of DMODE-IEP

on DTLZ2. The mean and variance of IGD are 3.02×10−3 and
4.33×10−5, respectively. The mean of IGD is suboptimal,
which is just higher than MODE-RMO (1.03×10−3). The
variance of IGD is better than other DE-based algorithms,
and even it is the best one in all algorithms. The mean and
variance of SP are 6.43×10−2 and 4.53×10−3, respectively.
The mean of SP is better than other algorithms. The variance
of SP is the smallest in all DE-based algorithms, and just
higher than MOPSO (4.23×10−3). From the above analysis, it
can be seen that DMODE-IEP has good convergence and
diversity for three-objective optimization problems.
As shown in Table 4, the optimization time of DMODE-

IEP on ZDT1 is 92 s. It is better than the other algorithms.
The optimization time of DMODE-IEP on DTLZ2 is 213 s,

Figure 1 (Color online) Comparisons of optimal solutions and standard Pareto optimal solutions. (a) ZDT1; (b) DTLZ2.
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which is slower than other DE-based algorithms. Overall, the
search speed of DMODE-IEP has advantages in solving two-
objective and three-objective optimization problems.

5.2 Experiments of CEC2018 many objectives bench-
mark problems

Based on empirical value, the initial crossover rate is 0.5, the
initial mutation rate is 0.2, and the initial population size is

300. The values of these parameters will be adjusted adap-
tively as the evolution progresses.

5.2.1 Experimental design
The MaF series benchmark problems [5] as CEC2018 many
objectives benchmark problems are selected for experiments.
Four groups of many objectives benchmark problems are
shown in Table 4, and run on PlatEMO.

5.2.2 Experimental results
The many objectives benchmark problems are experimented

Table 2 The optimization effects of different algorithms on DTLZ2

Algorithm
IGD SP

Mean Variance Mean Variance

MODE-IEP-1 1.14×10−2 6.53×10−5 7.91×10−1 4.86×10−3

MODE-IEP-2 5.96×10−3 5.11×10−5 8.43×10−2 4.63×10−3

MODE-IEP-3 5.67×10−3 5.32×10−5 8.66×10−2 4.69×10−3

MODE-IEP-4 1.17×10−2 6.55×10−5 7.97×10−1 4.92×10−3

MODE-IEP 3.02×10−3 4.33×10−5 6.43×10−2 4.53×10−3

α-DEMO 5.10×10−3 7.24×10−5 5.65×10−1 5.67×10−3

MODE-RMO 1.03×10−3 3.27×10−4 5.26×10−1 4.84×10−3

NSGA-II 2.13×10−1 5.71×10−3 5.03×10−1 5.71×10−3

MOPSO 1.07×10−2 4.54×10−5 3.55×10−1 4.23×10−3

Table 1 The optimization effects of different algorithms on ZDT1

Algorithm
IGD SP

Mean Variance Mean Variance

DMODE-IEP-1 2.12×10−3 1.82×10−4 4.13×10−2 3.16×10−3

DMODE−IEP-2 1.63×10−3 1.15×10−4 3.56×10−3 7.11×10−4

DMODE-IEP-3 1.72×10−3 1.43×10−4 3.71×10−3 7.86×10−4

DMODE-IEP-4 2.14×10−3 1.87×10−4 4.12×10−2 3.22×10−3

DMODE-IEP 1.14×10−3 1.21×10−4 2.44×10−3 5.31×10−4

α-DEMO 1.65×10−3 1.77×10−4 2.67×10−2 6.81×10−4

MODE-RMO 1.61×10−3 1.13×10−4 3.77×10−2 1.15×10−3

NSGA-II 5.63×10−3 3.37×10−4 5.29×10−2 9.32×10−3

MOPSO 2.11×10−3 1.58×10−4 3.75×10−2 2.65×10−3

Table 3 The optimization times of different algorithms (unit: s)

Algorithm ZDT1 DTLZ2

DMODE-IEP-1 117 223

DMODE-IEP-2 111 217

DMODE-IEP-3 112 219

DMODE-IEP-4 114 220

DMODE-IEP 92 213

α-DEMO 101 209

MODE-RMO 98 211

NSGA-II 121 227

MOPSO 110 218

Table 4 The description of the many objectives benchmark problems

Group Properties Problem

1 Linear MaF1

2 Concave
MaF2

MaF6

3
Nonseparable, Convex MaF11

Nonseparable, Concave MaF12

4
Multimodal MaF7

Unimodal MaF13
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by DMODE-IEP algorithm adopting the above experimental
design. Figures 2–5 show the optimal solutions of the
benchmark problems with three and ten objectives.

5.2.3 Result analysis
The characteristic of problem in the first group is linear, and

there is no single optimal solution in any subset of objectives.
As shown in Figure 2, DMODE-IEP algorithm is effective
for this kind of three objective optimization problem, but it
needs to be improved in the process of solving ten objectives.
The characteristic of problem in the second group is concave.
As shown in Figure 3, DMODE-IEP algorithm is valid for

Figure 2 The optimal solutions of benchmark problems with three and ten objectives are shown by Cartesian coordinates and parallel coordinates,
respectively (Group 1). (a) The optimal solutions of 3-objective MaF1; (b) the optimal solutions of 10-objective MaF1.

Figure 3 The optimal solutions of benchmark problems with three and ten objectives are shown by Cartesian coordinates and parallel coordinates,
respectively (Group 2). (a) The optimal solutions of 3-objective MaF2; (b) the optimal solutions of 10-objective MaF2; (c) the optimal solutions of 3-
objective MaF6; (d) the optimal solutions of 10-objective MaF6.
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dealing with degenerate fronts problems, and it performs
concurrent convergence on different objectives. The char-
acteristic of problem in the third group is complicated fitness
landscapes. As shown in Figure 4, DMODE-IEP algorithm
can handle scaled disconnected fronts effectively. The mul-
timodal and unimodal problems are visible in the fourth
group. As shown in Figure 5, the disconnected and degen-
erate fronts can be obtained by DMODE-IEP algorithm.

5.3 Experiments of wastewater treatment process

The optimal control of wastewater treatment process is a
multi-objective optimization control problem, including en-
suring water quality, improving wastewater treatment effi-
ciency, decreasing wastewater treatment costs, and reducing
energy consumption.

5.3.1 Experimental design
The activated sludge process is a common method for
treating wastewater in China, which is a biochemical treat-
ment technology based on the activated sludge. The main
treatment process consists of a reaction tank, secondary se-

dimentation tank, sludge return system, and excess sludge
removal system.
(1) Experimental design
The optimized values of the dissolved oxygen concentra-

tion in the fifth tank (SO,5) and the nitrate nitrogen con-
centration in the second tank (SNO,2) are calculated by
DMODE-IEP for energy conservation and emission reduc-
tion based on the benchmark simulation platform of waste-
water treatment. A proportional integral controller is used to
track the optimal values by operating oxygen transfer coef-
ficient in the fifth zone and internal return flow.
(2) Optimization control objective
The operation cost of wastewater treatment plant includes

aeration energy consumption of the blower, pumping energy
consumption of the reflux pump, and transportation cost of
the sludge. Aeration energy and pumping energy are the
main components of energy consumption, the sum of which
accounts for more than 80% of the operation cost. At the
same time, there are strict regulations on the quality of water
discharged. Wastewater treatment plants are required to pay
corresponding sewage charges according to the discharge of
pollutants.

Figure 4 The optimal solutions of benchmark problems with three and ten objectives are shown by Cartesian coordinates and parallel coordinates,
respectively (Group 3). (a) The optimal solutions of 3-objective MaF11; (b) the optimal solutions of 10-objective MaF11; (c) the optimal solutions of 3-
objective MaF12; (d) the optimal solutions of 10-objective MaF12.
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Therefore, the minimization of aeration energy (AE),
pumping energy (PE), and effluent quality (EQ) is defined as

the optimization control target. The optimization control
objective is given as
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where KLal(t) is the oxygen transfer coefficient of tank l, Vl is
the volume of tank l, KLal(t)=0–10 h

−1, l=3, 4, 5, cycle T=7,
Qa(t) is the internal return flow rate, Qr(t) is the sludge flow
rate, Qw(t) is the pollutant flow rate, SSe(t) is the con-
centration of suspended solids, CODe(t) is the chemical
oxygen demand, SNkj,e(t) is the total nitrogen concentration,
SNO,e(t) is the ammonia concentration, BODe(t) is the bio-
chemical oxygen demand, Qe(t) is the effluent flow rate, SNH

is the ammonia nitrogen concentration, COD is the chemical
oxygen demand, TSS is the total suspended solids, Ntot is the
total nitrogen concentration and BOD5 is the five-day bio-
chemical oxygen demand.
It can be seen that the oxygen transfer coefficients in three

aerobic tanks are operable variables of AE. The concentra-
tion of dissolved oxygen at the end of aerobic tank not only
affects the nitrification reaction but also affects the deni-

Figure 5 The optimal solutions of benchmark problems with three and ten objectives are shown by Cartesian coordinates and parallel coordinates,
respectively (Group 4). (a) The optimal solutions of 3-objective MaF7; (b) the optimal solutions of 10-objective MaF7; (c) the optimal solutions of 3-
objective MaF13; (d) the optimal solutions of 10-objective MaF13.
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trification reaction through internal return flow. Thus, the
controllable variable of AE is SO,5, and the operable variable
of AE is the oxygen transfer coefficient in the fifth tank
(KLa5). It can be seen that the internal return flow, external
return flow, and sludge discharge are operable variables for
operating PE. The nitrate nitrogen concentration at the end of
anoxic tank affects the rate of denitrification. Thus, the
controllable variable of PE is SNO,2, and the operable variable
of PE is internal return flow (Qa).
Therefore, SO,5 and SNO,2 are controllable variables, while

KLa5 and Qa are operating variables in the wastewater
treatment process by the analyzing influencing factors of AE
and PE.
(3) Parameter setting
The initial crossover rate of DMODE-IEP is set as 0.4, the

initial mutation rate is set as 0.2, the initial population size is
set as 500, and the maximum evolutionary generation is set
as 500. The controller coefficients for SO,5 are Kp=200 and
Ki=50, the controller coefficients for SNO,2 are Kp=8000 and
Ki=5000.
5.3.2 Experimental results
(1) Sunny days

The wastewater treatment system operates smoothly
without influence from the external environment on sunny
days. The influent flow and pollutant concentration express
cyclic changes during day and night, weekdays and week-
ends. The multi-objective optimization of wastewater treat-
ment on sunny days is carried out by DMODE-IEP. The
optimal setting values of SO,5 and SNO,2 are shown in Figure 6.
As shown in Figure 6, the optimal setting values are ad-

justed dynamically by DMODE-IEP according to the chan-
ges of influent flow and water quality with the goal of energy
saving and emission reduction. The changing trends of op-
timal setting values of SO,5 and SNO,2 are consistent with the
changes of influent water. The values are high during the day
and weekdays, but low during at night and on weekends.
(2) Rainy days
The wastewater treatment system is affected by rainfall.

The water inflow increases suddenly, and the pollutant
concentration decreases significantly. The multi-objective
optimization of wastewater treatment on rainy days is carried
out by DMODE-IEP. The optimal setting values of SO,5 and
SNO,2 are shown in Figure 7.
As shown in Figure 7, the optimal setting values of SO,5 and

Figure 6 (Color online) The optimal setting values (on sunny days). (a) The value of SO,5; (b) the value of SNO,2.

Figure 7 (Color online) The optimal setting values (on rainy days). (a) The value of SO,5; (b) the value of SNO,2.
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SNO,2 are adjusted by DMODE-IEP according to the influent
water condition on rainy days, with the increase of the in-
fluent water and the decrease of the pollutant concentration.

5.3.3 Result analysis
The optimal setting values of SO,5 and SNO,2 are tracked by the
proportional integral controller, manipulating oxygen trans-
fer coefficient in the fifth tank and internal recirculation flow.
The details of emission pollutants on sunny days and rainy
days are shown in Tables 5 and 6.
As shown in Tables 5 and 6, the indexes of emission

pollutants are qualified, and the water quality meets the na-
tional wastewater discharge standards. Most of the values are
close to the limit values, which can reflect the good effect of
optimal control and low energy consumption of the system.

6 Conclusions

In this paper, a dynamic multi-objective differential evolu-
tion algorithm based on the information of evolution pro-
gress is proposed to improve the optimization effect of the
multi-objective differential evolution algorithm. The pro-
posed DMODE-IEP algorithm adjusts evolution parameter
values, mutation strategies, and selection parameter values
dynamically to improve the quality of optimal solutions and
reduce the search time. It is proved that DMODE-IEP al-
gorithm can converge to the global optimum theoretically.
The conclusions are obtained by comparing with other multi-
objective optimization algorithms.
(1) The information of evolution progress, defined by fit-

ness, reflects the characteristics of the evolution process and
realizes the quantitative description of the evolutionary de-
gree.
(2) The dynamic adjustment mechanisms of evolutionary

parameter values, mutation strategies, and selection para-
meter values are designed based on the information of evo-
lution progress, in order to balance the global exploration
ability and the local exploitation ability.
(3) The experimental results show that the quality of the

solutions and the optimization speed of DMODE-IEP algo-
rithms are better than other algorithms when solving stan-
dard test functions. Meanwhile, DMODE-IEP algorithm can
be applied to the wastewater treatment process to obtain the
dynamic optimal setting values of dissolved oxygen and
nitrate nitrogen, providing an effective optimization method
for the complex system.
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