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Feedforward control based on an accurate dynamic model is an effective approach to reduce the dynamic effect of the robot and
improve its performance. However, due to the complicated work environment with considerable uncertainty, it is difficult to
obtain a high-precision dynamic model of the robot, which severely deteriorates the achievable control performance. This paper
proposes an iterative learning method to accurately design the industrial feedforward controller and compensate for the external
uncertain dynamic load of the robot. Based on a standard dynamic model, a complete linear feedforward controller is presented.
An iterative design strategy is given to iteratively update the feedforward controller by combining the Moore-Penrose Inverse
and the PID learning rate. Experiments are carried out on a 5-DOF industrial hybrid robot to validate the effectiveness of the
proposed iterative learning method. The experiment results illustrate that the industrial feedforward controller can rapidly
converge to the optimal controller and significantly improve the servo performance by using the proposed method. This paper
provides an effective method for applying iterative learning control to an unopened industrial control system. It is very useful for
the practical control of hybrid robots in industrial field.
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1 Introduction

As the counterpart of serial robots, parallel robots have some
advantages such as high acceleration, high stiffness-to-
weight ratio, and low manufacturing cost [1–3]. But the
small workspace limits their wide applications. Hybrid ro-
bots combining the advantages of series robots and parallel
robots have been proposed and increasingly used in the fields
of machine tools, pick-and-place manipulation, and walking
robots [4–6]. However, hybrid robots belong to strong cou-
pling and nonlinear mechanisms whose dynamics vary with
the configuration of the robot in its large workspace [7]. As a

result, it is difficult to guarantee the high motion perfor-
mance of the hybrid robot in the whole workspace [8]. Thus,
it is necessary to consider the robot dynamics to design the
control system. Many control approaches based on the dy-
namic model are proposed to consider the dynamic effect and
realize high-precision motion control.
The dynamic feedforward control plus feedback control, as

a widely used model-based control approach, is an effective
method to improve the motion accuracy of multi-degree-of-
freedom (DOF) systems such as multi-DOF robots and
multi-axis CNC machine tools [9–11]. Veronesi and Visioli
[12] utilized an identified feedback and feedforward control
system to control a quadruple tanks apparatus and the motion
error of the device is reduced. Lipiński [13] proposed a

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021 tech.scichina.com link.springer.com

SCIENCE CHINA
Technological Sciences

* Corresponding author (email: jhwu@mail.tsinghua.edu.cn)

https://doi.org/10.1007/s11431-020-1738-5
https://doi.org/10.1007/s11431-020-1738-5
http://tech.scichina.com
http://springerlink.bibliotecabuap.elogim.com
http://crossmark.crossref.org/dialog/?doi=10.1007/s11431-020-1738-5&amp;domain=pdf&amp;date_stamp=2020-12-18


model-based feedforward controller, and used it to control a
redundantly actuated 3RRR parallel manipulator with a
perfectly identified dynamic model. However, in industrial
applications, it is difficult to achieve the same ideal perfor-
mance as theoretical results. The main reason is that the high-
precision control system model and the robot dynamic model
cannot be achieved even if system identification technology
and other modeling technology are used. Therefore, due to
the inaccurate control system model and dynamic model, the
designed control parameters which directly relate to the
feedforward control effective are not optimal for the feed-
forward control to compensate the dynamic effect [14–16].
Iterative learning control (ILC) is a typical learning

method that can effectively improve the transient response
and tracking performance of uncertain dynamic systems
[17,18]. The current control signals are iteratively updated
based on the previous motion error signals and the last input
[19–21]. By using ILC, the robot performance can be im-
proved through repeated iterations until the motion error
reaches a minimum [22,23]. A distinct advantage of ILC
over model-based control method is that it does not need to
establish an accurate robot dynamic model. However, in
industrial environment, the typical industrial servo system
does not have an ILC, and thus the ILC cannot be directly
realized in a robot. Taking both advantages of dynamic
model-based feedforward and ILC, it is a good approach that
uses basis functions to reflect dynamic behaviors and an ILC
algorithm to design the control parameters [20].
In this paper, an iterative learning method for realizing

accurate dynamic feedforward control of an industrial hybrid
robot is proposed. According to the standard dynamic model
of a hybrid robot, a complete feedforward controller is de-
signed which includes all the feedforward compensation
signals that the industrial system may provide. Then the
iteration equation is derived and the PID learning rate is used
to optimize the iterative speed. Based on these works, the
ILC is realized offline by using a post-processing program in
industrial environment. Finally, experiments are performed
to validate the effectiveness of the integrated iterative
learning method, and the method is applied to a 5-DOF in-
dustrial hybrid robot.
The rest of the paper is organized as follows. The complete

feedforward control system is analyzed based on the robot
dynamic model in Section 2. Section 3 investigates the
iterative learning method and iteration strategy. Section 4
deals with the experiments, and some concluding remarks
follow in Section 5.

2 Dynamic model and control system analysis

2.1 Dynamic model analysis

For a multi-DOF hybrid robot shown in Figure 1, its dynamic

model can be obtained by using the Lagrangian dynamic
equation. Through the equivalent transformation, the dy-
namic model can be written in the following compact form:

M¨
H

H

G f= + + + , (1)

n

T
1

T

where n is the joint number of the robot, τ is the driving
force, M is the inertial matrix of the robot, H1–Hn are the
Hessian matrices of joint 1 to n which are the velocity ma-
trices of Coriolis and centrifugal forces, G is the gravita-
tional term, f is the friction vector, and ¨ and are the
acceleration and velocity vectors of n joints, respectively.
It is assumed that the friction consists of Coulomb friction

and viscous friction. The friction can be expressed as

f f f= + sgn( ), (2)v c

where fv is the vector of viscous friction coefficient, and fc is
the vector of the Coulomb friction coefficient.
Combining eqs. (1) and (2), the dynamic model can be

rewritten as

D ¨ D D D= + + + , (3)1 2 3 4

where D1, D2, D3, and D4 are acceleration, velocity, position,
and constant correlation matrices, respectively.
The multi-DOF robot is a complex nonlinear system. For

nonlinear system, the high-speed and high-precision control
is still difficult. Considering the application convenience and
reliability, the dynamic feedforward control plus feedback
control is still the popular control method in industrial ro-
bots. In general, the control parameters for the feedback
controller and feedforward controllers are tuned on a given
configuration of the robot, and then the control parameters
are used for the whole workspace of the robot. It is equiva-
lent that the robot is regarded as a linear system to study its
control problem. Since the control parameters keep un-
changed, the dynamic characteristics in the given config-
uration are used to represent the dynamic characteristics of
the robot in the whole workspace. However, the dynamic
characteristics maybe have a great change in the whole
workspace. In this paper, D1, D2, D3, and D4 in the dynamic
model are calculated by taking the corresponding average
value of these matrices within the whole workspace or on a
given trajectory.

2.2 Control system analysis

For a multi-DOF hybrid robot shown in Figure 1, it is usually
controlled by a feedback controller and a feedforward con-
troller. Since the control of each joint is similar, a typical
industrial control system of one active joint is given in Figure
2. The control system includes the control plant, a feedback
controller, a feedforward controller, and an iterative learning
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controller.
In Figure 2, θci and θai are the command position signal and

the actual position signal of the joint i, respectively. Fi(s) is
the feedback controller. Pik(s) is feedforward controller
transfer functions of the kth trial. The subscript k denotes the
current number of the trial. Qi(s) is the dynamic transfer
function based on the dynamic model eq. (3).
It should be noticed that because the industrial control

system is not open and cannot be changed, the ILC cannot be
realized directly. In Figure 2, the ILC is implemented by
using a post-processing program. Based on the error signals
and iteration equations, the feedforward control parameters
are updated offline by using a post-processing program.

The complete iterative learning flow is shown in Figure 3.
After the motion error signal is collected and stored in error
memory, a new feedforward controller is obtained by adding
the previous feedforward control signal and the iterative
learning signal learned from the stored error signal. Next, the
new feedforward controller is updated to the control system
and stored in memory. Finally, the robot is controlled to
generate new motion errors. Repeat the iteration until the
error is minimal.

2.3 Feedforward controller design

It is well accepted that the hybrid robot cannot obtain good
tracking performance with only kinematic-model based
control. The control based on dynamic model is necessary
for the robot to reduce the external dynamic disturbance
when the robot works at high speed and high acceleration.
Thus, the dynamic feedforward compensation would be de-
signed based on the dynamic model shown in eq. (3).
For a n-DOF robot, its dynamic model is related to its n

active links and gravity. According to the standard dynamic
model eq. (3), the dynamic model Qi(s) shown in Figure 2 is
divided into n+1 parts (Qi1(s)–Qin(s) and Cai). Qi1(s)–Qin(s)
and Cai are the dynamic transfer functions based on the dy-
namic model eq. (3). Specifically, Qij(s) is a transfer function
from the motion of joint j to the coupling effect of joint i. Cai

is a constant external load on joint i. In order to compensate
the dynamic effect, the feedforward controller P(s) is also
divided into n+1 parts (Pi1k(s)–Pink(s) and Ccik). Pi1k(s)–Pink(s)
and Ccik are feedforward compensation transfer functions of
the kth trial. Specifically, Pijk(s) is a transfer function from
the motion of joint j to the compensation signal of joint i. Ccik

is a constant compensation signal of joint i. Therefore, the
control system can be updated, as shown in Figure 4.
Therefore, the transfer function Pijk(s) should be designed

according to the dynamic model Qij(s). From Figure 4, the
output signal of the system can be expressed as

Figure 1 (Color online) A multi-DOF hybrid robot.

Figure 2 (Color online) Typical industrial control system with iterative learning controller.
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G F P C E Q C= ( ( + + ) ( + )), (4)k k ka c c a a

where = ,na a1 a
T

G s G sG = diag( ( ), … , ( )),n1

F s F sF = diag( ( ), … , ( )),n1

P s P s P s

P s P s P s

P s P s P s

P =

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

,k

k ik nk

i k iik ink

n k nik nnk

11 1 1

1

1

= ,nc c1 c
T

C CC = ,k k nkc c1 c
T

e eE = [ ] ,k k nk1
T

Q s Q s

Q s Q s

Q s Q s

Q =

0 ( ) ( )

( ) 0 ( )

( ) ( ) 0

,

i n

i in

n ni

1 1

1

1

C CC = na a1 a
T, the subscript k denotes the number of

the trial, and s represents the Laplace variable.
Thus, the error of the control system can be expressed as

E P C F G Q C= ( + ) + ( + + ), (5)k k kc c
1 1

a a a

where G Q C+ +1
a a a is the external dynamic load.

In eq. (3), since D1, D2, D3, and D4 are calculated by taking

Figure 3 (Color online) Complete iterative learning flow.

Figure 4 (Color online) Updated typical industrial control system.
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the corresponding average value of these matrices within the
whole workspace or on a given trajectory, D1, D2, D3, and D4

are constant. Thus, the dynamic system shown in eq. (3) is
linear. Applying the Laplace transform on the dynamic
model eq. (3) yields

s s sD D D D( ) = [ + +   ]
1

. (6)1
2

2 3 4
a

Substituting the dynamic model eq. (6) into eq. (5) leads to

E P C=
1

+ , (7)k k ck
c

where

s sF D D D D= + +
1

.1
1

2
2 3 4

a

For the feedback controller, the transfer function F is a
continuous function on the interval from 0 to its upper bound.
Therefore, according to Weierstrass’s first approximation
theorem [24], F can be approximately expressed as

f sF , (8)
l

r

l
l1

=0

where fl is the coefficient of the lth order system.
Thus, substituting eq. (8) into Ω leads to

s s s

s s s

s s s

=
1

, (9)

l

m

l
l

l

m
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l

l

m

nl
l

n

l
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l

l

m

iil
l

l

m

inl
l

i n

l

m

n l
l

l

m

nil
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nnl
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11
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1

=0
1 1( +1)

=0
1

=0 =0
( +1)

=0
1

=0 =0
( +1)

a

where m=r+2.
If the errorEk is equal to zero, the command position signal

is equal to the actual position. The following equation can be
obtained:

= 0. (10)c a

Namely, if the error Ek is equal to zero, the compensation
signal Pkθc+Cc would be equal to the external load Ω ac-
cording to eq. (7). Combining eqs. (7), (9), and (10) leads to

P s P s P s C

P s P s P s C

P s P s P s C

s s s

s s s

s s s

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
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( +1)

=0
1

=0 =0
( +1)

Simplifying eq. (11) yields

P s s

C

( ) = ,

= .
(12)ijk

l

m

ijl
l

cik i n

=0

( +1)

Thus, when the transfer function of the feedforward con-
troller satisfies eq. (12), the external load disturbance can be
eliminated and the control error can be reduced. From
eq. (12), one may see that the feedforward compensation is a
complete feedforward compensation including a constant
compensation signal, low order compensation signals, and
high order compensation signals.

3 Iterative learning method

According to the analysis in Section 2, the formula to cal-
culate the feedforward parameters is obtained. Ideally, when
the feedforward parameters satisfy eq. (12), the control error
can be reduced to zero. In fact, this rarely happens. On the
one hand, the dynamic model of the robot is not completely

accurate due to external uncertain disturbances, elastic de-
formation, transmission system clearance, and other factors.
On the other hand, the actual control system cannot be ac-
curately established and identified either. For example, the
temperature drift, zero drift, and dead zones are difficult to be
identified and modeled accurately. Therefore, if the feed-
forward parameters are calculated by eq. (12), the feedfor-
ward compensation can reduce certain errors, but it cannot
completely eliminate all external load disturbances so that
the control system can reach the optimal control perfor-
mance. Considering the gap between the practice and the
ideal, the iterative learning method is utilized to design the
parameters. By continuously iteratively learning, the para-
meters of the control system can be updated gradually and
the control system performance tends to be optimal.

3.1 Iterative equation

In this section, the iterative learning equation is established
by analyzing the motion error signals. To reduce complexity,
the iterative equations of each joint are analyzed and estab-
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lished. Then, the iterative equations of the whole robot are
obtained.
Assume that the feedforward compensation signal of the

kth trial is expressed as

P s µ s

C s µ

( ) = ,

( ) = ,
(13)ijk

l

m

ijlk
l

cik i n k

=0

( +1)

where μijlk and μi(n+1)k are the feedforward compensation
parameters of the kth trial. Obviously, ξijl and ξi(n+1) in eq. (12)
are the ideal feedforward parameters. The target of this
section is to make μijlk and μi(n+1)k gradually approach ξijl and
ξi(n+1) by using iterative equations.
Based on eqs. (12) and (13), the error eik can be expressed

as
e

s µ s

µ

=

= +

.

(14)

ik i i

j

n

l

m

ijl
l

j i n
j

n

l

m

ijlk
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j

i n k

c a

=1 =0
c ( +1)

=1 =0
c

( +1)

Taking an inverse Laplace transform on the error signal
eq. (14) of joint i yields

L e( ) = ( )

= 1

1 , (15)

i ik ik

i n i

i n ik

1

a1 a a

c1 c c

where ϒik denotes the feedforward controller parameter
vector of joint i of the kth trial:

µ µ
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[ ]

[ ]
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10 1
T

0
T

0
T
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( )i ik is the error signal of joint i in the time domain when
the feedforward controller parameter vector is ϒik and ψi
denotes the ideal feedforward parameter vector of joint i:

= ,i

i i m
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t t t
= d
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2
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a

The error equation of joint i can be obtained by performing
a Taylor first-order expansion on eq. (16). The error equation
of joint i can be expressed as

( ) ( ) + ( ) ( ), (16)i i ik ik
ik ik

ik
i ik

where ( )ik ik
ik

is the Jacobian matrix of the error equation

of joint i. Namely,

µ µ

µ µ

µ µ

µ

J = ( ) =

( ) ( )

( ) ( )

( ) ( )
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= 1 . (17)
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( +1)

T

c1 c c

Thus, based on the Moore-Penrose inverse, the recursive
equation can be expressed as

J JJ= ( ) ( ). (18)ik ik ik ik+1
T 1

According to eq. (18), the number of the iterative equation
is only one, which is less than the number of parameters that
need to be identified. Based on the linear algebra knowledge,
this type of equation has infinite solutions. Thus, we need to
collect system signals when the robot is in different position
and posture, and combine them to form new equations, so
that the number of equations is greater than the number of
parameters. At last, the least-squares method is used to ob-
tain the optimal identification parameters.
Now, we input a set of control signals and collect the error

signals. The time vector of the error signals can be assumed
as

t t t tt = . (19)s s0 1 1

Next, by combining the iterative equations at the different
time, a new iterative equation can be obtained as

( )J J J= ( ) , (20)ik ik ik
t t t t

+1
( ) ( ) ( ) T 1

( )

where

J =

1

1

1

,

t
i
t

n
t

t
i
t

n
t

t
i
t

n
t

t

c1
( )

c
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c
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c
( )

c
( )

c1
( )

c
( )

c
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i i i

s s s

0 0 0
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= .ik
t

ik
t

ik
t

ik
t

( )

( )

( )

( )

i

s

0

Note that the time in the upper right corner indicates that
the signal is collected at that time. For example, ik

t( )0 is the
joint i error signal of the kth trial when the time is t0.

3.2 Accelerated iteration

For ILC, iterative efficiency and speed are critical. If the
speed is too slow, the iterative learning method may be worse
than the empirical exhaustive method. At the same time, if
the input and output of the system do not have an ideal linear
relationship, it will also bring challenges to the application of
iterative algorithms. Therefore, the PID learning rate is used
to optimize the iterative speed [25]. The iterative equation
can be expressed as

( )
( )

J J J

K K K

= ( )

× + d + ,
(21)

ik ik

ik ik ik

t t t

t t t

+1
( ) ( ) ( ) T 1

p
( )

i
( )

d
( )

where Kp, Ki, and Kd are n×n matrices of learning propor-
tional, integral, and derivative gains, respectively.
When the iterative learning process is performed, the Kp,

Ki, and Kd parameters can be increased or decreased to ac-
celerate the iterative efficiency according to the iterative
result. The basic principle of adjusting Kp, Ki, and Kd

parameters is to increase Kp and Ki or decrease Kd when the
iterative speed is slow. In addition, due to the existence of
noise signals, the signal-to-noise ratio of the error signal is
relatively high at the beginning of the iteration. The iterative
learning method can use PD or P learning laws to increase
iterative speed. When the motion error gradually decreases,
the signal-to-noise ratio is also reduced. Then, PI learning
laws can be used to reduce the interference of noise signals,
and improve the iterative precision and robustness.

3.3 Iteration strategy

Based on the previous work, the iteration strategy of de-
signing the accurate feedforward controller by using the
iteration eq. (21) is given in Figure 5.
(1) Preparation. According to the robot dynamic model and

the empirical method, the initial feedforward parameters can
be manually tuned and set as ϒ0. Meanwhile, Kp, Ki, and Kd

are set to all-one matrix, zero matrix, and zero matrix, re-
spectively.
(2) Signal collection. The robot is controlled to move a

typical trajectory and the error signals of all joints are col-

lected and recorded as e k
t( ).

(3) Iteration. Based on eq. (21) and the error signal e k
t( ), the

new feedforward parameters can be obtained as ϒk+1.
(4) Update parameters. Update the control parameters ϒk+1

of the control system.
(5) Signal repeated collection. The robot is controlled to

repeat the motion trajectory in step (2), and the error signals
of all joints are collected again. The error signal is recorded
as e k

t
+1

( ) .
(6) Improve iteration speed. To improve the iteration

speed, the learning parameters, Kp, Ki, and Kd, should be

adjusted. Kp can be updated by ( )K e e= k k
t t

p +1
( ) ( )

K( )k k+1
+

p, where K p represents the new Kp. The
parameters Ki and Kd can be slightly increased or decreased
based on the principle proposed in Section 3.2.
(7) Error analysis. The error signals e k

t
+1

( ) and e k
t( ) are

compared and analyzed. If the mean absolute error is no
longer reduced or even increased, stop the iteration; other-
wise, to step (3).

Figure 5 Iteration flow.
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4 Experiments

4.1 Robot prototype and control system

To demonstrate the feasibility and effectiveness of the pro-
posed iterative learning method, the method is implemented
on the prototype of a 5-DOF hybrid spray-painting robot. As
shown in Figure 6, the robot is designed and manufactured
by Tsinghua University and Jiangsu Changhong Intelligent
Equipment Company, China. The dynamic model is derived
in ref. [26] and the geometrical and inertial parameters are
given in ref. [26]. The robot is controlled by the Turbo
UMAC controller made by DELTATAU. The encoder is an

absolute position encoder with a resolution of 2500 incre-
ments per revolution. In the experiments, the current and
velocity loop controllers are realized in servo drivers. The
position loop controller is implemented in the Turbo UMAC
controller. The Turbo UMAC controller gives the analog
output with range −10–10 V and quadruples the encoder’s
angle measurement. The block diagram of the control system
is shown in Figure 7.
Based on the D-H method and the Lagrangian dynamic

formulation, the kinematic and dynamic models of the hybrid
robot can be derived. The kinematic model of the robot is
expressed as

u
v
w

c s
s c c s s c c s s c c c
s s c s c c c c s s c c

=
( + )

( )( + ) + ( )( )
( )( ) ( )( + )

, (22)
5 9 11 2

5 9 1 2 11 1 11 5 9 1 11 1 2 11

5 9 1 2 11 1 11 5 9 1 11 1 2 11

x
y
z

s l c l c l l c
h s l c c c s s l l s s c c c l v

h h c l s c c c s l l c s s c c l w
=

( ( + ) + ( ) )
+ ( ) + ( )( ) +

+ + ( + ) ( )( + ) +
, (23)

0

0

0

2 12 5 9 11 3 3 8 4 4

2 1 3 1 2 3 1 3 8 4 1 4 1 2 4 12

1 2 1 3 1 2 3 1 3 8 4 1 4 1 2 4 12

where [u v w]T is the direction vector of the sprayer, [x0 y0 z0]
T is the position of the end of the sprayer. θ1−θ11, l1−l11, and

Figure 6 (Color online) Five-DOF hybrid spray-painting robot. (a) The robot is painting a car; (b) kinematic model.

Figure 7 (Color online) Block diagram of the control system.
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h1−h2 respectively indicate the rotation angles of robot links,
link length, and platform height, as shown in Figure 6(b).
Notice that sθ1 and cθ1 denote the sine and cosine of angle θ1
respectively, and a similar convention will be adopted
throughout the following formulations.
The dynamic equation of the robot [26] can be expressed

as

M ¨ V G= ( ) + ( , ) + ( ) + , (24)f

where M( ) is the mass matrix of the robot, V( , ) is the
coefficient matrix of Coriolis and centrifugal forces,G( ) is
the gravitational term, and τf is the friction torque.
The control system of each active joint is shown in

Figure 7. Kaff, Kvff, and Ktff are the acceleration feedforward
parameter, the velocity feedforward parameter, and the
constant feedforward parameter, respectively. It can be seen
that the feedforward control system is simpler than the sys-
tem shown in Figure 4. Due to high reliability and ease of
operation, the actual industrial control system generally does
not contain complete feedforward parameters. Since the
complete iterative learning equation (eq. (20)) has been de-
rived, we only need to delete the equation corresponding to
the missing parameters, recombine the remaining equations,
and iteratively calculate. The final feedforward parameters
can be obtained.

4.2 Iterative experiment

To verify the effectiveness of the iterative learning method, a
complex spray-painting trajectory is planned for designing
the feedforward parameters. The trajectory is shown in
Figure 8.
It should be noted that it is a 40-second complex trajectory

which is carefully and well designed. During the 40 s mo-
tion, the trajectory includes most of the robot workspace and
all work states of the robot. Thus, based on this trajectory, we
can optimize the robot to reach optimal performance within
the whole workspace. For the sake of convenience, we divide

the trajectory into several figures as shown in Figures 9. In
Figure 9(a) and (b), the robot is in an initial and ready state.
In this state, the robot slowly moves to the starting point and
waits for the start signal to start painting. In Figure 9(c) and
(d), the robot rotates 90° and is in a “lying down” work state.
In this state, the robot is painting the side of the car, such as
the door, the A-pillar, and the B-pillar. In Figure 9(e) and (f),
the robot is in an “upright” normal work state. In this state,
the robot is painting the upside of the car, such as the bonnet
and the roof panel.
Next, the initial feedforward parameters are designed

based on the dynamic model (eq. (24)) and engineer ex-
perience. Then, the iterative learning method is utilized to
tuning the feedforward parameters by following the iteration
flow shown in Figure 5. The parameters of the feedforward
parameters are shown in Figure 10 as the trial increases.
From Figure 10, the acceleration and constant feedforward
parameters converge rapidly, which illustrates that the
iterative learning method has high convergence speed and
high efficiency.
Figure 11 shows the tracking performance of each active

joint of the robot. One may see that the root-mean-square
(RMS) values of the errors are decreased greatly because the
iterative learning method makes the acceleration and con-
stant feedforward parameters tend to be accurate, and the
feedforward controller can accurately compensate the ex-
ternal uncertain dynamic characteristic of the robot.

Figure 8 Typical spray-painting trajectory.

Figure 9 (Color online) A 40-second complex trajectory of robot. (a), (b)
Robot is in an initial and ready state. (a) 1 s; (b) 8 s. (c), (d) Robot rotates
90° and is in a “lying down” working state. (c) 12 s; (d) 18 s. (e), (f) Robot
is in an “upright” normal work state. (e) 23 s; (f) 33 s.
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For better observation, the trajectory of the end of the
sprayer is obtained by using the kinematic model (eq. (22)).
The tracking error of the robot can be obtained by subtracting
the actual trajectory from the command trajectory. The va-
lues of the tracking errors of the robot are shown in Figure 12
as the trial increases.
From Figure 12, after ten trials, the average position errors

are reduced from 0.18 to 0.06 mm, which is reduced by

approximately 66%. The result verifies the effectiveness of
the proposed iterative learning method.

4.3 Discussion

From Figure 10, it can be seen that the velocity feedforward
parameter changes a little, while the acceleration and con-
stant feedforward parameters vary greatly. It is because the
velocity feedforward parameter is only relevant to the in-
ternal control system itself and is independent of the external
robot. Since a feedback control system is an error-driven
system, the control system inevitably has errors. Coin-
cidentally, the control system errors can be compensated by
the velocity feedforward compensator.
Let us review the control system again, as shown in

Figure 7. If the position and velocity errors of the control
system are zero, namely, the command angle is equal to the
actual angle, and the command angular velocity is equal to
the actual angular velocity. Then the equations can be written
as

EA CA RA
ES CS RS

= = 0,
= = 0, (25)

where EA and ES are the angle error and the angular velocity
error, CA and CS are the angle command and the angular
velocity command, and RA and RS are the actual angle and

Figure 10 (Color online) Feedforward parameter values as the trial increases. (a) Velocity feedforward parameter values; (b) acceleration feedforward
parameter values; (c) constant feedforward parameter values.

Figure 11 (Color online) RMS values of the errors in all joints.

Figure 12 (Color online) Tracking errors of the end of the sprayer. (a) Values of the tracking errors of the end of the sprayer; (b) average tracking errors.
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the actual angular velocity, respectively.
According to Figure 12, the output signal of the Turbo

UMAC controller (OA) can be written as
OA Atr EA Kd RS Oa Ov Kp Ot= ( × × + + ) + , (26)
where Atr is the scaling term between the command angle
and the corresponding signal in the control system, Ov, Oa,
and Ot are the feedforward compensation signals of velocity,
acceleration, and constant, respectively. Ov, Oa, and Ot can
be expressed as
Ov Kvff CV= × , (27)

Oa Kaff CAA= × , (28)

Ot
Ktff CV

CV
Ktff CV

=
( > 0),

0 ( = 0),
( < 0),

(29)

where CV and CAA are the first and second derivatives of the
angle command, respectively.
Combining eqs. (25)–(29) leads to

Kvff Ktr Kp Kd

Kaff
Ktff

= 1
× + ,

= 0,
= 0.

(30)

Therefore, when Kvff=1/(Ktr×Kp)+Kd, the error can be
reduced to zero. It demonstrates that the velocity feedfor-
ward parameter only depends on the internal control system.
In the actual tuning process, the empirical tuning method can
only tune the robot when it stops at a certain position and
posture. Thus, the method can accurately design the velocity
feedforward parameters which are relevant to the internal
control system and independent of the robot dynamic char-
acteristics. But it is difficult to accurately design the accel-
eration and constant feedforward parameters which are
strongly related to the robot dynamic characteristics. Thus,
after iterative learning, the acceleration and constant feed-
forward parameters rapidly converge to the optimal para-
meters, and the iterative learned and accurate feedforward
controller can compensate the external dynamics of the ro-
bot, which significantly improves the robot performance and
reduces the motion error by 66%.

5 Conclusion

In this paper, an iterative learning method has been proposed
to accurately design and iteratively updated feedforward
controller parameters. Based on a standard dynamic model, a
complete feedforward controller is designed. On the basis of
such a control scheme, an iterative learning method is rea-
lized offline to optimize the feedforward control parameters
by using a post-processing program in industrial environ-
ment. Then, experiments are carried out on the prototype of a

5-DOF industrial hybrid robot. After the proposed iterative
learning method is applied, the average position errors are
reduced from 0.18 to 0.06 mm, which is reduced by ap-
proximately 66%. The experiment results consistently vali-
date that the proposed method is effective in improving the
robot motion performance and can compensate unmodeled
uncertainties to attenuate the tracking error. This work pro-
vides an effective method for applying ILC to an unopened
industrial control system. It is very useful for the practical
control of hybrid robots in industrial field.
Because the commercial control system is not open and

cannot be changed, the ILC can only be realized offline by
using a post-processing program. In our future research, we
will focus on improving the efficiency of the proposed
method.
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