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In order to improve the agility and applicability of trajectory planning algorithm for autonomous vehicles, this paper proposes a
novel actor-critic based learning method for decision-making and planning in multi-vehicle complex traffic. It is the coupling
planning of vehicle’s path and speed thus to make the trajectory more flexible. First, generations from the decided action to the
planned trajectory are described by the end-point of the trajectory. Then, the actor-critic based learning method is built to learn an
optimal policy for the decision process. It can update the policy by the gradient of the current policy’s advantage. In this process,
features of the real traffic are carefully extracted by time headway (TH) and speed distribution. Reward function is built by the
safety, efficiency and driving comfort. Furthermore, to make the policy network have better convergency, the policy network is
modularized in two parts: the lane-changing network and the lane-keeping network, which decide the optimal end-point of the
path and speed candidates respectively. Finally, the curved overtaking scenario and the interaction process with human driver are
conducted to illustrate the feasibility and superiority. The results show that the proposed method has better real-time performance

and can make the planned coupling trajectory more continuous and smoother than the existing rule-based method.
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1 Introduction

1.1 Motivation

Nowadays, the researches on autonomous driving still raise
much attention and many companies are putting efforts into
high-level autonomous driving system. Within these tech-
nologies, the ACC, LDW, CWS have come into the markets.
However, the level 3 or 4 according to the SAE classification
that can realize skillful autonomous driving still remains
deep exploration. Previous work about vehicle motion and
dynamics control includes the model predictive control
(MPC), the robust H-infinite controller, like refs. [1-3],
which provide sufficient guarantee to the tracking accuracy.
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Based on this, the decision-making and planning system play
an important role and are worthy of further study.

1.2 Related works

The existing studies on decision-making and planning are
mainly classified in two theories: (1) the machine learning
(ML) based method; (2) the model-based method. Within
these two theories, the ML methods, like the artificial neural
network (ANN), the deep learning and the Bayesian net-
work, etc. [4-8], are popular these days with the repaid de-
velopment of artificial intelligence (AI) and computing
capacity. It can study the huge offline driving data from the
experienced drivers by deep neural network and improve the
network online to adapt to personal style. The online-offline
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combined learning method was developed for the complex
driving scenarios in refs. [9,10], which mainly built the
general regression neural network (GRNN) to formulate the
policy model, thus to realize the human-like personal driv-
ing. This method can be applied for a majority of scenarios,
like the highway scenario, the urban condition or the inter-
section, but the error rate is still hard to eliminate and the
driving style is relatively defensive. On the other hand, for
the model-based method, the existing research mainly fo-
cused on low level autonomous driving, which is limited to
specific scenario and the precondition is critical [11,12]. The
scenario model predictive control was built for lane change
assistance in ref. [13]. The APF model was widely built to
realize path planning with multi constraints [14], which
decided the optimal trajectory according to the gradient of
the potential field force. In summary, the model-based
method is reliable but the applicable scenarios are restricted.
On the contrary, the ML method is flexible but not stable
enough. In this circumstance, this paper combines the re-
liability of the model-based method and the flexibility of the
ML algorithm. Meanwhile, the safety and efficiency in the
decision process are ensured in a prominent position.

For the motion-planning model [15,16], the existing
methods include the path candidate model, the lattices, Be-
zier, etc., [17,18]. These algorithms can address the path-
planning task well, but the speed in the trajectory is roughly
specified [19], which makes the formed trajectory not
smooth enough. Besides, most of these planning methods
simply solve the easy path-finding problem to optimize a
cost function and short of the ability to handle long-horizon
decision making, which lead to the deficiency of tackling
more complex conditions. In this paper, we rebuild the tra-
jectory model, which includes the yaw angle and speed in-
formation decided by the normal and tangential acceleration
respectively. Then the traversal trajectories model is built by
coupling these two profiles, which derives the transition
from the action to trajectory.

To decide the optimal trajectory, the reinforcement learn-
ing process is built to replace the common search method
[20]. Thus, the applicability and real-time performance can
be improved to some extent. Many optimization algorithms
are presented to cope with the learning problem. The Q-
learning or deep Q-learning method is widely adopted
[21,22], but the training process will be hard when the state
space is enormous. Therefore, the direct policy search
method is used in this paper that can convergence to the
optimal policy rapidly. Besides, since the traversal trajec-
tories increase a dimension compared to the path candidate
model, the learning process gets more complicated. The
existing learning methods mainly determine the policy for
car-following maneuvers [23] or lane changing behaviors
[24]. For the path and speed coupling condition, the optimal
state values in different traffic scenarios are born different
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and the learning process is nearly impossible to converge to a
stable value for these scenarios. Considering of that, we
modularize the network to the lane-changing network and
the keeping network since training these two networks re-
spectively is more possible to converge. Then the decision
task will be specific and can handle the multi-vehicle com-
plex scenario well.

1.3 Contributions

The structure of this paper is shown in Figure 1, which
mainly includes the generation of the traversal trajectories
and the learning process of the optimal trajectory. The main
contributions are listed below.

(1) The traversal trajectories model is built, which can
reflect all the possible local trajectories the ego vehicle can
reach. It is the coupled trajectory that contains path and speed
profile and can be expressed by a series of end-points.

(2) The learning framework is constructed for the decision
process that includes the actor-critic based learning method,
the novel feature extraction method, and the reward function,
which can make the decision system have good applicability
to multi-vehicle complex scenario.

(3) The policy network is modularized into the lane-
changing network and the lane-keeping network. The
learning process is executed respectively, which makes the
policy network have good convergence.

The remainder of this paper is organized as follows. Sec-
tion 2 gives the generation of the coupled trajectory, which
can infer the action space of the autonomous vehicle. In
Section 3, the actor-critic based learning framework is built
to learning the optimal action by the extracted environment
state. Finally, in Section 4, the validation of the learning-
based decision algorithm is implemented in the curved
overtaking scenario and the human-vehicle interaction pro-
cess. The conclusion is discussed in Section 5.

2 Generation of the traversal trajectories

As to the trajectory candidates, the existing researches
mainly give limited path candidates to search the optimal
one. However, the given candidates rarely consider the speed
profile and cannot cover the whole accessible driving range,
which will make the searched trajectory suboptimal. In
consideration of that, this part gives the generation of the
traversal trajectories which are the coupling planning of path
and velocity.

2.1 Description of the trajectory

The local trajectory or the motion equation over the next
horizon [¢, t+N,] can be expressed as follows:
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Figure 1 (Color online) Architecture of the decision-making system. TH, time headway.
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where s, and /, are the station and lateral position in the road
coordinate respectively; v, and ¢, are the velocity and yaw
J and g/ are the acceleration in the
tangential and normal direction; 7 is the planning period.

Among these parameters, the position (s, /,), velocity v,
and yaw angle ¢, are the state variables that will not mutate.
The acceleration is the input variable. Therefore, the local
trajectory can be described by determining the acceleration
sequence A(?):

At) = {[a "(thn),a (D], [a "(+ 1), a (1 + 10)],

angle respectively; a

T
<o fa"(t+N, =Ll 0,a (N, = 1] 0]}
where the normal acceleration a," = Cv,% C is the curvature
of the trajectory.
2.2 Coupling of path and speed candidates

It can be seen that the normal acceleration decides the cur-
vature of the planned trajectory and the tangential accelera-

tion determines the speed profile of the trajectory. When
those two profiles are obtained, the local trajectory can be
coupled. The following is the coupling of input acceleration
candidates, or the path and speed candidates.

2.2.1 The normal acceleration-path candidates

The normal acceleration sequence is hard to obtain directly,
since the high dispersity of the sequence. However, when the
velocity is determined, the path curvature will be easy to
solve since the driving path is always smooth and converges
to the road direction. Therefore, the normal acceleration
sequence is transformed to solve the path candidates or the
lateral-station (L-S) function.

For the current moment ¢, the path candidates will be
subject to the current position, yaw angle. For the terminal
moment #+N,, the vehicle usually has avoided the sur-
rounding obstacles and tends to be stable, then the yaw angle
and the normal acceleration will be zero. In this process,
when the end-points are given, the local path candidates can
be quartic polynomial fitted by five constraints in the initial

and terminal point refer [25]. Since the lateral offset /,, is
P

limited to the road boundary, it can be expressed as follows:

lHNp =l AL/ C, 0 3)

max>
where [, and /., are upper and lower limit of the road
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boundary; Al=l,,,—lyin; C, is the number of path candidates; i
is the ith path candidate.
Then, the path candidates can be formulated as follows:

2 3 4
I=aytas+ta,s tas +a,s”,

I, =1, tanp, = 3

t >

0l 4)

dl dZ
=34 ’O=—2 2

s.t.

lt+Np - llsHNps

(51+Np’lt+Np) (S/+Np’l/-Np)

where (s, N Ly Np) is the ith end-point of the path candidate.

The normal acceleration in moment ¢+ can also be ac-
quired as follows:

" ln s
A = Cz+kvtik = 2( ) 3/2 Vtik’ (5)
(1+17(s))

where C,., is the curvature of the path candidate.

With the path function in the road coordinate system, the
corresponding vehicle attitude in the global coordinate in
Figure 2(a) can be transformed according to the coordinate of
road centerline (x_s,, y_s,, w_s,) as follows:

x,=x_s,—1-sin(p,),
Y, =y_s,+l-cos(p), (6)
¢ =0~V s,

where ¢, is the yaw angle in the global coordinate. The path

candidates of different driving postures are vividly shown in
Figure 2(b).

2.2.2 The tangential acceleration-speed candidates
As to the tangential acceleration sequence g/, it determines
the speed profile of the trajectory. Usually, the slope and the
second derivatives of the station-time (s-7) function can re-
flect the speed and tangential acceleration respectively. The
following is the solution of the s-¢ function according to the
constraints in the initial and terminal moment.

The same as the path candidates, the normal acceleration in
this process is temporarily ignored and set to zero. For the
terminal moment ¢+N,, the vehicle is stable and the tan-

vA (@)

Y (m)
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gential acceleration will tend to zero. In addition, the velocity
is usually an ascending and descending process for the
common overtaking or car-following process. Therefore, the
speed in the terminal moment is set to the same as the initial
moment. Finally, when the end-station is given, the s-
function can also be quartic polynomial fitted as follows:

s(t) =py +p1t+p212+p3t3+p4t4,

Sy :S|1‘9 Ve = ds/dt

¢ 7
, 0=,

t+Np

s.t.

_ _ ds/
St+Np - S|t+Np5 VHNP - dt
t+N,

where Ve, is the end-speed of ego vehicle decided by the
end-station s, N

The solution process is similar to that of the path candi-
dates and is ignored there. For the end-station, it is influ-
enced by the current velocity v, and the performance of the
vehicle’s accelerator and brake, specifically as follows:

- 2
Sy =8, v, T+a,T°/2,

Spin =S, +v,T+d,T?/2,

®)

where a, and d, are the acceleration and deceleration of the
common driving respectively. Here a, takes 2 m/s’; d, takes
-3 m/s’.

Then, the speed candidates can be got by the end-station as

SN, = Swin * As/Cg S oy 9

where As=s,.x—Smin» C 18 the number of speed candidates.
With the s-¢ curvature function, the tangential acceleration
candidates in moment & can be derived as

ay =s"(Ol (10)

2.2.3  Coupling of tangential and normal acceleration

In this paper, to make the trajectories traversal and smooth,
the path and speed are coupled-planned by the built kine-
matic equation. The tangential and normal acceleration se-
quences are given respectively above. When those two
directions work simultaneously, the traversal action candi-
dates are coupled as the matrix A(f), specifically as follows:

Figure 2 (Color online) (a) Vehicle position in the Frenet coordinate; (b) the path candidates for different driving postures.
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A, A0 A (1)
A1) Ay(?) Ay (1)

A =| . A0 , (11)
Ac (1) A () Ac (D)

where

A1) = {[af"(flt), a; ()], [a;"(t+ 1), a; (1 + 1],
< [a/(t+N, = 1|).a/(t+N,~ 1|t)]}T,

i is the ith path candidate and j is the jth speed candidate.

Then the decision process can be transformed to the re-
inforcement learning process. The corresponding traversal
trajectories in the straight, curved road and the turning in-
tersection are graphically shown in Figure 3, which can re-
flect all the end-points the vehicle can arrive in the upcoming
planning horizon. It can be seen that the end-points form a
two-dimensional feasible region. When the optimal end-
point is determined from the region, the coupled trajectory
can be finally decided.

3 The actor-critic based learning process

It reveals that the coupled trajectories can be expressed by
the end-points of the trajectories in Section 2. Usually, the
optimization algorithm can be adopted to get the optimal
trajectory from the trajectory candidates [20]. However,
when there are too many candidates, the real-time perfor-
mance will deteriorate. Therefore, this paper takes the
learning method to get the optimal end-point of the trajec-
tory, which can learn a sophisticated decision network that
can handle the real complex traffic.

3.1 The learning framework

Firstly, we need to build the policy approximator to represent
the policy. Usually, the neural network is taken to proximate
the decision policy, which can output the action probability
according to the input state. It will be introduced in
Section 3.3.

With the policy representation, the policy gradient method
is used to get the optimal policy, but the learning variance is
big, which will result in slow convergence. Thus, the actor-
critic method is proposed by adding the baseline to reduce
the learning fluctuation, as shown in Algorithm 1.

First, the parameters of policy network are randomized and
an experience trajectory is generated by interacting with the
vehicle road environment as follows:

Tt = {Zt’ ap r[7Z[+19a)‘+17 r[+1a "'azﬁ—Nd}’ (12)

where N, is the decision horizon.
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The purpose is to max the expected cumulative discount
reward of the trajectory.

Algorithm 1 The actor-critic learning algorithm

1. Initialize the actor with stochastic parameter values 6
2. Initialize the critic with stochastic parameter values 6,
3. for episode =1,2,3... do

4. Randomize the initial state z,

5. Sample N, experiences from the state with the current policy 6:

Z,A,5152,, 0,0, z

e S R O

6. Calculate the return:

@ - t+Ny k- N +1,,6
Re)=2, 7 =2, "V )
7. Calculate the Advantage: 4 /0 = R(z,) Vo(z/)

8. Gradient of the actor policy 6:
t+N
VU@,.0) =2 " Viogl(, 0)4,

. L. o t+N 8
9. Gradient of the critic 6, V V™ =Y "¢V (¥/(z)~ R)’
10. Update the policy parameter: 6 = 0+ aV U(z,, 0)

11. Update the critic parameter: 0, = 0 + 'V v
12. end for

0" = argmax(U (z,, 0)), (13)
where 0 is the policy parameters; U(z,, 0) =ETIN9[R(1[)],

Rx)=2" »"'n.

Usually, the gradient descent method is adopted to update
the policy and the importance sampling is used to get the
policy gradient as follows [26]:

VU(z,,0) = E,_,[Vlogp(z,0)R(z,)]. (14)
The baseline-value function is added to the reward to re-
duce the variance fluctuation as

VU(t,,0) = E, [V logn(z,0)4/"], (15)
where A,g is the advantage function: A [‘9 =R(z)-V %z s

Vv 9(2[) is the value function of the current policy 6.

Then, the policy gradient can be expressed by the experi-
ence trajectory as

14N,

VU(r,0) =Y. Viegp(z,, )4, . (16)
k=t

With the policy gradient, we can further update the policy
network parameters.

0=0+aVU(z,0), (17)

where o is the learning rate of the policy network, or the actor
network.

At the same time, the approximator of the value function or
the critic network is also built the same as the policy net-
work. It can be updated by the gradients of mean square error
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Figure 3 (Color online) The traversal trajectories for autonomous vehicles in the next driving horizon for (a) the straight road, (b) the curved road, and (c)

the turning intersection.

loss between the estimated value V g(z,) and the computed
accumulated reward R,.

1+N,

V=Y V)R, (18a)
k=t

0,=0,+BV V">, (18b)

where £ is the learning rate of the value function network, or

the critic network.

3.2 State and reward in this process

The learning architecture has been built above, and then we
need to determine the traffic state. The state of ego vehicle is
the position (s,, /,), velocity v, and yaw angle ¢,, which has
been introduced in Section 2.1. The action can be represented
by the end-points of the local trajectories. However, the
decision state should not only include the state of ego ve-
hicle, but also include that of surrounding vehicles. Usually,
the nearest vehicles in the same lane will decide the speed of
ego vehicle. The adjacent vehicles of two sides will influence
the lane-changing behaviour. Therefore, the input state
should cover the velocity and position distribution of ego
vehicle and surrounding vehicles.

As shown in Figure 4, to guarantee the state space con-
sistent for each decision period, the time headway (TH) is
preferable than the space headway, since the effective space
will diminish as speed changes. Then the observe window is
discretized to simplify the decision states, thus to make the
training process more efficient. The specific input state is
shown in Figure 4(b), mainly including the position dis-
tribution and velocity of the front and rear vehicle.

For the longitudinal position, the surrounding vehicles can
be expressed by the nearest neighbour since the grids are

Lane number

2

o
o
o
o
o
o

s/l0.0;,0:0,0:,1 .0 00 0 25

1 05 02 0 02 05 1 18 3 v v, v
TH (s) v (m/s)

Figure 4 (Color online) (a) The real multi-vehicle traffic; (b) the ex-
tracted traffic state, where the relative positive and velocity can be got by
vehicular radar and lidar, the ground truth can be got by camera.

given sufficient.
Th, = Théi- for &, = argmin|k — ¢, (19)

where Th;, is the time headway of the surrounding vehicle &, &
is the set of the discrete time-headway, defined as
&=1{-1,-0.5,-0.2,0,0.2, 0.5, 1, 1.8, 3}.

For the lateral position, when the surrounding vehicle is
changing lane and straddling two lanes, it will cause threat
risk to the following vehicles on these two lanes. When the
lane changing task is completed, the original lane will be
spared. In this process, it will occupy two lanes if the edge of
the vehicle passes the lane boundary and can be expressed as
follows:



990 Xu C, et al.  Sci China Tech Sci

L= it [l =1 < 5o, (20)

where /, is the lateral position of vehicle £, {"is the set of the
lane number {={1, 2, 3...}; L is the lane width, & is the
distance from the vehicle side to CG.

The output action space has been shown in Section 2.2.3,
which can be expressed by the end-points of the trajectory
candidates. When calculating the reward r, of the taken ac-
tion a,, the common reward items are mainly the driving
safety, the efficiency and the comfort as
n=E+iE+..C, 2D
where F, is the safety assessment function; E, is the effi-
ciency; C, is the riding comfort; 4, and 4. denote the weight
on efficiency and comfort respectively.

Firstly, the existing indicators about safety include the time
to collision (TTC), TH and time to brake (TTB) [27,28]. But
they can only reflect the threat tendency and are hard to
measure the actual risk. To solve this problem, the safe
distance model is built to measure the risk as

2 2
o
a0 =yt §9 -G 6, (22)

where v, and v, are the velocity of ego vehicle and sur-
rounding vehicle respectively; ¢, is the react time; d,, is the
maximum deceleration, here takes 5 m/s’; G is the safety gap
when they stopped, about 0.5 m.

We define the safety as “1”, when the actual distance ex-
ceeds the safe distance as eq. (23):

l’ des(t) 2 dsf(t)’
(23)

F= dy Y’
2-17-| d (1) < d (1)

For the vehicle’s efficiency, it is not the faster the vehicle
drives, the more efficient it will be. When the driving speed
goes beyond the reference speed of the road, it will be hard
for the vehicle to avoid some imminent collision. Mean-
while, many traffic accidents may happen owing to the fur-
ious driving. Accordingly, the efficiency is defined by the
closeness to the reference speed v, as follows:

E, = 1=y, = Vieg| / Vieg- (24)

As to the comfort, it is relatively easy to represent. When

Traffic state (3x11)

-1 -05 -02 0 02 05

Hidden layer
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the vehicle stays at the current lane and keeps the constant
speed, the comfort is maximal to “0”. On the contrary, the
accelerating and lane-changing behaviour will reduce the
comfort. The reduced comfort can be expressed as follows:

C==J(8,=8)°+(L,~L)*, (25)

where S,, L, are the decided end-point of the longitudinal and
lateral position; S,, L, are the end-point of the uniform motion
and lane-keeping behavior.

3.3 The training process

The decision process from the traffic state to the action has
been built above. The following is the learning process to
obtain an optimal policy network.

3.3.1 Modularization of the policy network

As we know, driving in a smooth traffic is already very
profitable and the reward is quite high. On the contrary, the
reward in terrible traffic will be unsatisfying, even if taking
the favourable driving behavior. In addition, the transfer
from the busy traffic to the smooth traffic will be quite a long
time. For a training episode, it is hard to experience all those
complex scenarios and the policy can only be locally optimal
for a specific scenario.

In view of that, this paper modularizes the network to the
lane-changing network and the keeping network respec-
tively. Then the decision task will be specific, where the lane
keeping policy is responsible for safety and efficiency, the
lane-changing policy handles safety and comfort. With these
distributed decision networks, the coupled end-point of the
local trajectory can be obtained. The policy network is
shown in Figure 5, which has three hidden layers and a soft-
max layer, the neurons of the hidden layers are all 100. The
input is the extracted environment state and the output is the
probability of end-points. Finally, the most probable end-
point of the lane-changing network and the lane-keeping
network are taken as the decided behavior.

3.3.2  Learning of the policy network

The learning parameters of these policy networks are shown
in Table 1. To make the policy explore adequate scenarios,

Output (probability)

Soft-max

9 % - 0

Figure 5 (Color online) The decision network that consist of the lane-changing network and the lane-keeping network, where p; (i=1-Cp) is the probability

of path candidates, g; (=1-Cs) is the probability of the speed candidates.
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Table 1 Training parameters
Variables Value Description
T, 0.5s Decision period
H, 50s Decision horizon
Cp 3 Number of path candidates
Cs 3 Number of speed candidates
[ 0.001 Learning rate of actor network
p 0.001 Learning rate of critic network
b 0.9 Discount factor

the experience horizon takes longer to 50 s. The following is
the training results.

For the lane-changing network, the decision states are
mainly the position distribution of the surrounding vehicles.
The purpose of the network is to choose a proper lane that
can greatly improve the driving safety and make the cost of
comfort worthy. The result of the lane-changing network is
shown in Figure 6(a). It can be seen that the reward maintains
a low level in the initial training phrase. After a thousand of
episodes, the reward function converges to a high level that
can handle complex scenarios.

For the lane-keeping network, the decision states are the
relative distance and speed of the front or rear vehicle in the
same lane. The purpose is to improve the efficiency as much
as possible while ensuring the safety. This scenario has been
studied by many researchers and the training process is re-
latively simple. The results are shown in Figure 6(b).

—&—Episode reward

Episode reward
<)
o

o

-100

May (2021) Vol.64 No.5 991

4 Validation and discussion

To verify the feasibility of the decision and planning algo-
rithm, this section gives the validation and test. First the
overtaking scenario is simulated in the curved road with
walking pedestrians and parked vehicles. Furthermore, to
validate the interaction performance with human driver, the
driver in loop experiment is carried out in multi-vehicle
scenario with contrast to the existing rule-based method.

4.1 Performance in the curved overtaking scenario

This scenario includes the walking pedestrians in the speed
of 1.2 m/s, and two separate parked vehicles in the S-shaped
curved road. Since the road is curved and the low speed of
traffic participants, the expected speed of ego vehicle is set to
7 m/s. Figure 7 gives the planned trajectory of three styles
including: the cautious style, the moderate style and the agile
style.

The set parameters are shown in Table 2. For the decision
process, the global coordinate is transformed to the Frenet
coordinate to extract the traffic state. Then the policy net-
work provides the optimal end-point to decide the corre-
sponding trajectory.

It can be seen that the agile style maintains a high speed in
this process, but it causes many detours thus makes the ef-
ficiency of the curved road unprofitable. On the contrary, the
cautious style can adjust the speed well to get through the
winding road. However, the speed in this process fluctuates a

@)

1 1 1 1
0 100 200 300 400

—O—Episode reward

200

Episode reward
=)
o

o

1 1 1 1 1 1
500 600 700 800 900 1000

Episode number

200

300

400
Episode number

Figure 6 (Color online) The training results of the lane changing network (a) and the lane keeping network (b).
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Figure 7 (Color online) The planned trajectory in curved scenario. (a) The decided personal trajectories; (b) the corresponding speed profile.

Table 2 Simulation parameters

Variables Value Description
T, 0.1s Planning period
N, 20 Planning horizon
L 35m Lane width
b 0.95m  Distance from the vehicle side to CG
Cp 2 The number of path candidates
Cs 3 The number of speed candidates
y 0.9 The discount factor
Vv, 7 m/s Initial speed of ego vehicle
Ae 0.2/0.5/0.7 Weight on efficiency for three styles
Ae 0.8/0.5/0.3  Weight on comfort for three styles

lot and the riding comfort is also influenced by the frequent
acceleration and deceleration behavior. It reveals that the
agile or cautious style is not always advantageous for the
overtaking process. In contrast, the moderate style can make
a compromise and behaves well in efficiency and comfort. In
the following, we will make interaction with the human
driver in the moderate style.

4.2 Interacting with human driver for multi-vehicle
complex scenario

In this section, the driver in loop experiment is built to va-
lidate the performance when interacting with real human
driver in multi-vehicle complex scenario. The experiment
scenario is shown in Figure 8, where the traffic environment

Table 3 Traffic setting

Human driver

The learning based
decision system

Actor-critic
agent

The surrounding leading vehicle

Figure 8 (Color online) The multi-vehicle interactive scenario.

is built by Prescan 8.4 and Matlab 2020a, the black vehicle
(No. 2) is controlled by the Logitech G29 steering wheel and
pedals. Specifically, this scenario contains three preceding
vehicles that decide the tendency of the traffic flow, the blue
autonomous vehicle (No. 1) that follows the red vehicle (No.
3) and the black human driver (No. 2). The initial setting of
the traffic is shown in Table 3.

Since the low driving speed of front red vehicle (No. 3), the
ego vehicle will seek chances to change to the middle lane.
This will result in the interaction with human driver and the
ego vehicle has to decide in real-time based the human dri-
ver’s behavior. In this process, the style of human driver and
ego vehicle are all moderate. The proposed learning-based
decision algorithm is contrast with the common rule-based
method when the driving input keeps consistent, thus to
evaluate the advantage of the learning-based method. The
results are shown in Figure 9, which contains the human

Initial lane

Initial speed (m/s) Expected speed (m/s)

Vehicle ID Initial position (m)
Ego vehicle B
(No. 1) 3,735
Human driver
(No. 2) (-18,0)
Red vehicle (No. 3) (32, -3.5)
Green vehicle (No. 4) (54, 0)
White vehicle (No. 5) (10, 3.5)

3

12 13
10 Decided by human
10 10
13 13
15 15
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Figure 9 (Color online) The interaction results contrast to the rule-based method. (a) The human driver’s throttle and steer signal; (b) path in this process;
(c) speed in this process contrast to the existing algorithm; (d) the action increment in this process; (e) the calculated time contrast in this process.

driver’s throttle and steer signal, the ego vehicle’s decided
path and speed profile. The acceleration increment and the
computing time are also given in this process. The following
is the discussion.

The interaction process can be divided into three phases:
the deceleration and car-following phase, the lane-changing
and accelerating phase, the lane-keeping phase. For the first
phase in 0-2 s, since the lower speed of front red vehicle
(No. 3), it will be risky to change lane directly. Then the ego
vehicle decelerates to keep the driving safety and attempts to
change lane according to the rear human driver’s reaction.

When the human driver perceived ego vehicle’s lane-
changing tendency, it deaccelerates a little to cooperate.
Thus, the policy network decides the lane changing behavior
and then ego vehicle accelerates to improve the efficiency in
the second phase from 2 to 5 s. For the last phase, the human
driver also accelerates since the long gap to ego vehicle
shown in Figure 9(c). From then on, the ego vehicle and the
human vehicle continue the interactive car-following pro-
cess. The speeds of these two vehicles tend to consistent
eventually.

For the rule-based method, the decided behavior is gen-
erally corresponding to the learning method. But the driving
posture is constantly adjusted to make the reward of each
moment always optimal, which results the planned path and
speed fluctuate a lot shown in Figure 9(b) and (c). However,
the behavior of the learning-based method is pretrained by
the actor-critic method and the decided behavior is de-

termined when facing the relevant environment state. The
action increment in Figure 9(d) shows that the learning
method has a better driving comfort than the rule-based
method. In addition, Figure 9(e) reveals that computing time
of the learning method is also advantageous and can increase
by over 50% in some moments since the policy network is
rapid and stable. On the contrary, the rule-based method will
hesitate for these complicated moments.

5 Conclusions

In this paper, an actor-critic based learning method for path
and speed coupling planning in multi-vehicle complex sce-
nario is proposed. It mainly includes generation of the tra-
versal trajectories by a series of end-points and building of
the learning framework. Besides, the policy network is
modularized into the lane-changing network and the lane-
keeping network to make it have good convergence. The
actor-critic based learning method is adopted to make the
policy network learn rapidly. Thus, the algorithm can decide
an optimal driving behaviour and plan the coupled trajectory
in real-time for multi-vehicle complex scenario.

However, the proposed algorithm fairly relies on the pre-
trained network and lacks the ability to handle some emer-
gency condition that has not been experienced. It remains
further study to enhance the policy network with wider ap-
plicability.
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