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The evolution of open-channel flow and morphology can be simulated by one-dimensional (1D) mathematical models. These
models are typically solved by numerical or analytical methods. Because the behavior of variables can be explained by explicit
mathematical determinations, compared to numerical solutions, analytical solutions provide fundamental and physical insights
into flow and sediment transport mechanisms. The singular perturbation technique derives a hierarchical equation of waves and
describes the evolutionary nature of disturbances in hyperbolic systems. The wave hierarchy consists of dynamic, diffusion, and
kinetic waves. These three types of waves interact with each other in the process of propagation. Moreover, the Laplace
transform is implemented to transform partial differential equations into ordinary differential equations. Analytical expressions
in the wave front are subtracted by the approximation of kinetic and diffusion models. Moreover, an analytical solution consists
of a linear combination of the kinetic wave front and the diffusion wave front expressions, pursuing to describe the physical
mechanism of motion in open channels as completely as possible. Analytical solutions are presented as a combination of
exponential functions, hyperbolic functions, and infinite series. The obtained analytical solution was further applied to the
simulation of flood path and morphological evolution in the Lower Yellow River. The phenomenon of increased peak discharge
in the downstream reach was successfully simulated. It was encouraging that the results were in good agreement with the
observed data.
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1 Introduction

Understanding the flow mechanism and morphological
evolution is crucial for river training, flood control, water
resources management, and environmental improvements.
Physically, the flow and sedimentation processes as well as
morphological evolution are inconsistent on temporal and

spatial scales. Moreover, climate change and human inter-
vention have exacerbated the inconsistencies in recent dec-
ades. For instance, highly nonequilibrium sediment transport
due to extreme flooding and watershed erosion further
complicates the evolution of flow hydrodynamics and river
morphology [1,2].
One-dimensional mathematical models have been widely

developed in simulating open-channel flow and morpholo-
gical evolution. The reader may be familiar with some very
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famous models, such as Mike11 [3] and HEC-6 [4]. A de-
tailed review of 1D mathematical models is available in the
literature [5–12]. In many practical cases where the capacity
of sediment transport is low, and the morphology changes on
a long-term scale, 1D models provide considerable sa-
tisfaction, considering the easy setup and calibration effi-
ciency. Nevertheless, the application of 1D models has been
less successful for local alluvial processes such as rapid and
significant riverbed aggradation or degradation. Many re-
searchers have endeavored to address the deficiencies [13–
17]. Studies generally fall into two aspects: (1) physical
background and (2) solutions. In terms of physical back-
ground, the governing equations for 1D models are derived
based on a series of assumptions. The shallow-water equa-
tions are based on the fixed bed assumption. In this case, the
evolution rate of riverbed morphology is considered to be a
relatively low order of magnitude flow with low sediment
concentrations. Therefore, flow bed mobility is not con-
sidered in the flow continuity equation.
In contrast, the spatial gradient of sediment concentration

and temporal momentum transfer between sediment-laden
flows and erodible riverbeds are mostly ignored in the flow-
momentum equations [13–17]. In addition, sediment trans-
port and bed deformation equations are mainly based on the
dynamic wave models [18–21] or diffusion wave models
[18,22]. Sediment transport capacity is expressed by the re-
lationship between the flow rate variables and sediment flux.
Then, an equilibrium condition between aggradation and
degradation rate is assumed.
One-dimensional models are typically solved by numerical

or analytical methods. Numerous numerical schemes and
algorithms have been developed to solve the equations ef-
ficiently [23–26]. Most recently, several modern computa-
tional schemes have been proposed, which can be
conveniently applied to multidimensional physical problems
with complex properties [27–32]. Compared to numerical
methods, analytical solutions are extensively implemented
and provide much important information about the complex
evolution of dynamic systems [33–38]. Because the flow
behavior, sedimentation, and morphology in open channels
can be explained by explicit mathematical determinations
related to specified initial and boundary conditions, the
analytical solution of a hydrodynamic model provides fun-
damental and physical insights into the mechanism of flow
and morphological evolution [34,35]. In addition, the ana-
lytical solution can provide a benchmark for numerical al-
gorithms.
In general, it is difficult to derive analytical solutions for

1D mathematical models of flow and morphological evolu-
tion due to the robust nonlinear systems that the model
builds. Some researchers have simplified and linearized the
equations governing wave approximation [39–45]. Integral
transform techniques are implemented to transform partial

differential equations into ordinary differential equations to
formulate analytical expressions [45,46]. The approximation
of the Saint–Venant equation, called the dynamic wave
model, allows other simplified wave models, such as kine-
matic wave [42,43], gravitational wave [41], noninertial
wave [42], and quasi-steady dynamic wave [42,46] models,
to be widely used in open-channel flows under certain cir-
cumstances. Furthermore, Hayami [47] established an ana-
lytical solution for the diffusion wave model of channel
flows, considering upstream boundary conditions. The dif-
fusion wave model is developed by ignoring the local ac-
celeration and convection acceleration terms. The solution
applies to different patterns of friction laws and cross-section
shapes. Following Hayami [47], Tingsanchali and Mana-
ndhar [48] developed an analytical diffusion model for flood
routing that considers backwater effects and lateral flows.
Tsai [42] obtained analytical solutions for kinetic wave,
noninertia wave, gravity wave, and quasi-steady dynamic
wave models of shallow-water waves in open channels. The
analysis emphasized on downstream boundary condition
feedback. Kazezyılmaz-Alhan and Medina [34] derived an
analytical solution for diffusion waves with constant wave
velocity and hydraulic diffusivity in overland flows.
The purpose of this study is to obtain an analytical solution

for a 1D mathematical model of flow and morphological
evolution in open channels. The literature review indicates
that most of the research to date has solely focused on the
propagation of water waves. It is necessary to emphasize that
the analytical description for flow, sediment, and morpho-
logical evolution provided in the present study was first re-
ported. Moreover, unlike in previous studies, complete
governing equations that incorporate the interaction between
flow and sediment transport have been adopted to make re-
presentative models further. The set of governing equations
is linearized, and a singular perturbation technique is im-
plemented. A hierarchical equation of waves is derived that can
characterize the disturbance evolution in a quasi-steady hy-
perbolic system. The Laplace transform is used to subtract the
analytical expression of flow, sediment, and morphological
evolution. Analytical solutions in the literature are mainly
conducted on separate kinetic or diffusion wave models. This
study linearly combines kinetic and diffusive wave front ana-
lytical expressions to address interactions in wave hierarchy and
avoid potential deviations in simplification. The analytical ex-
pressions obtained are further applied in practical situations.
The present work can provide an insightful approach to study
the hydrodynamics of open-channel flows and improve the
accuracy of mathematical modeling.

2 Mathematical model

For a hydraulically wide rectangular open channel with a
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constant width and an erodible bed composed of uniform
sediment particles, the governing equations for the 1D
mathematical model are [13,17]
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where h=flow depth; u=mean velocity of flow; s=volumetric
suspended sediment concentration; Δz=vertical variation of
bed elevation; p=bed sediment porosity; i0=bed slope; if=
friction slope; seq=volumetric equilibrium suspended sedi-
ment concentration; ρw and ρw=density of sediment and clear
water, respectively; ρm=density of a flow-sediment mixture,
ρm=(1−s)ρw+sρs; ρb=density of saturated bed material,
ρb=pρw+(1−p)ρs; αs=nonequilibrium adaptation coefficient of
suspended load; ωs=settling velocity of single sediment;
g=gravity acceleration; t and x=independent variables of
time and streamwise coordinate, respectively.
Eq. (1) is the modified version of the Saint–Venant con-

tinuity equation that incorporates sediment concentration and
riverbed deformation [13,17]. Eq. (2) is the modified Saint–
Venant momentum equation. The term (d) in eq. (2) denotes
the longitudinal gradient of suspended sediment concentra-
tion, and the term (e) represents the momentum exchange
between the sediment-laden flow and the riverbed [13, 17].
In the context of alluvial processes with low sediment
transport rate and weak bed deformation, terms (d) and (e) in
eq. (2) are usually omitted. The parameters s and Δz in eq. (1)
are treated as zero. Hence, eqs. (1) and (2) are simplified to
the traditional Saint–Venant equation. The importance and
need for incorporating sediment transport and bed de-
formation feedback into the shallow-water equation can be
found in the literature [13–17]. In this study, eqs. (1) and (2)
were adopted to make the model more representative.
Eqs. (3) and (4) are the nonequilibrium transport equations

for suspended load in the sediment-laden flow and movable
riverbed, respectively. The term (seq−s) on the right side of
eqs. (3) and (4) denotes the detachment rate (seq>s) or the
deposition rate (seq<s).
There are still some parameters that need to be determined

to close the model. In open-channel flows, the friction slope
can be calculated by Manning’s formula i n u h= /f s

2 2 4/3,

Chezy’s formula i u hC= /f
2

z
2, or Darcy-Weisbach’s formula

i f u h= / (8g )f D
2 , where ns is the Manning coefficient, Cz is

the Chezy coefficient, and fD is the Darcy-Weisbach coeffi-
cient [42]. The Chezy coefficient Cz varies with flow depth,
and the Darcy-Weisbach coefficient fD is a function of
Reynolds number and flow roughness. The Manning coef-
ficient n is considered to be constant in a fully developed
turbulent flow [46]. To avoid complex calculations, Man-
ning’s formula is used in this study.
The equilibrium suspended sediment concentration is

calculated as ( )s k uJ h= / g
m

eq s w s
s, where ks and ms are two

empirical parameters, ks=0.452 and ms=0.762, and Jw is the
hydraulic slope [49].
The nonequilibrium adaptation coefficient of the sus-

pended load αs in eqs. (3) and (4) is the ratio of near-bed
sediment concentration to depth-averaged sediment con-
centration. αs varies from 0.001 for deposition to 1.0 for
erosion [9]. In addition, the settling velocity of sedimentωs is

expressed as ( )s s d= (1 1.25 ) 1 + / 2.25s 0

3.5
[9], in

which ωs is the sediment settling velocity in clear water and
d is the median diameter of bed material.

3 Wave hierarchy of 1D mathematical model

Eqs. (1)–(4) mathematically constitute a nonlinear hyper-
bolic system whose analytical solution is very difficult to
obtain without approximation [34,46]. Flood propagation
and nonequilibrium sediment transport in open channels can
demonstrate the evolution of disturbances applied to uniform
flows in equilibrium [46,50]. Hence, eqs. (1)–(4) are line-
arized into a quasi-steady hyperbolic system. As a result, a
wave hierarchy dynamic equation can be constructed.

3.1 Wave hierarchy equation

To nondimensionalize eqs. (1)–(4), the scaling variables are
introduced as follows:
u U u h H h z H
s s s J J J

= , = , = ,
= , = , (5)

w w

0 0 0

eq0 0 w

whereU0,H0, seq0, and Jw0 denote the characteristic scales for
flow velocity, flow depth, equilibrium sediment concentra-
tion, and hydraulic slope, respectively. In addition, a typical
horizontal length L0 is introduced as a uniform flow drop at
depth H0, x=L0x′, and t=(L0/U0)t′.
For open-channel flows, disturbances applied to a uniform

flow with equilibrated sediment transport can be expressed
as [46,50,51]

u u h h J J
s s

= 1 + , = 1 + , = 1 + ,

= 1 + , = ,
(6)

* * * *
w

*
w
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where ε* denotes the magnitude of the disturbance; u*, h*, Jw
*,
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s*, and ξ* are the perturbed quantities of magnitude O(1).
Substituting the relationships in eqs. (5) and (6) into eqs.

(1)–(4) and slightly algebraic manipulation, we obtain the
following quasi-steady hyperbolic system of equations
governing the perturbed quantities:

h
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, U HF = / g0 0 0 is the uniform

flow Froude number with equilibrium sediment transport.
The wave hierarchy equation in eqs. (7)–(10) can be de-

rived using eqs. (8)–(10) after eliminating h*, u*, and s* from
eq. (7). The detailed procedure for algebraic manipulation is
given in the Appendix. The factorized form of the wave
hierarchy in eqs. (7)–(10) is

m µ t x

m m µ t
C

x

m t
a

x

1 +

+ + 2 +

+ 4
3

2 + = 0, (11)

i
i

i
i

i
i

s =1

4
*

s s =1

3
*

s =1

2
*

where λi (i=1, 2, 3, 4) satisfies the function

F
F

F
F

( ) = 3 + 3 1 1 . (12)4 3 0
2

0
2

2 0
2

0
2

Ci (i=1, 2, 3) corresponds to three real zeros of a cubic
function,

( )

C C
m m µ

m m µ
C

m µ m

m m µ
C

m m µ

F

F F
F

F

( ) =

2 + + 2 + 16
3

+ + 2

10
3

1

+ + 2

+
+ + 2 , (13)

3 s 0
2

s

s s

2

0
2

0
2

s

0
2

s

s s

0
2

s s

and for ai (i=1, 2),

a m m a= 4
3

10
3 / 4

3
2 , = 0. (14)1

s s 2

The quasi-steady hyperbolic system that governs the flow
and sediment transport under nonequilibrium conditions in
open channels is reduced to the wave hierarchy eq. (11).
Needham [50] constructed a wave hierarchy equation for
bed-load transport under equilibrium conditions:

U
J T t

C
x

t
a

x

2g (1 + ) +

+ + = 0, (15)

i
i

i
i

0

w0 0 =1

3
*

=1

2
*

where ε measures the effect of bed-load sediment transport
on flow resistance.

3.2 Properties of wave hierarchy

A consideration of eq. (11) indicates that the wave hierarchy
consists of three types of waves with different energy mag-
nitude. The higher fourth-order wave λ is denoted as a dy-
namic wave, the lower second-order wave a has the property
of a kinetic wave, and the “middle” third-order wave C is
recognized as a diffusion wave in this study. A physical
understanding of wave hierarchy can be shown as dis-
turbances (i.e., variations of flow and sediment conditions
within boundaries) applied to a uniform flow with equili-
brium sediment transport in open channels carried by dy-
namic, diffusion, and kinetic waves. The propagation
characteristics of these waves are different from each other.
Moreover, these three types of waves interact with each other
during evolution [51].
The four real zeros of the function in eq. (12) are

F= 11 0
1, λ2=0, λ3=1, and F= 1 +4 0

1, where λ1 and λ2 are
analogous to traditional dynamic waves of fixed bed hy-
draulics [7,51]. λ2 and λ3 are the bedform wave and sediment
wave, respectively. Figure 1 shows variations of λ. It is ob-
served that λ only depend on F0 but is independent of the
coupling of sediment transport and river mobility. In sub-
critical flows, the sequence of the dynamic wave speed is
λ1<0<λ3<λ4. In contrast, the sequence is 0<λ1<λ3<λ4 in su-
percritical flows.
Because the coefficients in eq. (13) are complex, the

asymptotic polynomial approximation can be used to solve
the three roots of the cubic function in eq. (13). The sequence
of the diffusion wave speed is C1<0<C2<C3. Research on the
“mysterious” diffusion wave is rarely found in the literature.
It is tempting to infer that the diffusion wave C plays a non-
negligible role in the evolution of the imposed disturbances.
It may determine the accuracy of predictions. A considera-
tion of eq. (13) demonstrates that C is not only dependent on
F0 but also on flow friction and equilibrium sediment con-
centration. Figure 2 shows variations in C with different seq0
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values. This indicates that sediment concentration “slows
down” the propagation of diffusion wave C.
For the kinetic waves ai (i=1, 2), an observation from eq.

(14) indicates that a2 is a diffusive bedform wave, and a1 is
analogous to a “flood wave”. It is necessary to note that if the
terms (d) and (e) are omitted in eq. (2), a1 is reduced to 5/3.
This is the kinetic wave speed in fixed bed hydraulics. As
shown in Figure 3, the propagation of the kinetic wave a1 is
affected by equilibrium sediment concentration in a uniform
flow. The higher the seq0, the faster the a1 propagates.

4 Analytical solution

Compared to numerical methods, analytical solutions for
linearized mathematical models provide fundamental and
physical insights into flow mechanisms and morphological
evolution in open channels [46]. The Laplace transform is
effectively implemented to formulate analytical expressions
[45,46,48].

4.1 Kinetic wave front expansion

FollowingWhitham [51], a simplified treatment named wave
front expansion is defined as

t V x , (16)

where V denotes the wave front.
By using eq. (16) in eqs. (7)–(10), the partial derivative of

time is replaced by a spatial derivative along the character-
istic line of kinetic wave propagation in a quasi-steady hy-
perbolic system. Then we can obtain
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A consideration of eq. (17) indicates that the perturbed
quantities u*, h*, and s* are expressed as a function of ξ*.
Once the analytical expression of ξ* is established, a com-
plete analytical solution for eqs. (7)–(10) can be obtained.
Substituting expressions of eq. (17) into eq. (11) with some
algebraic manipulation, the wave hierarchy developed in the
kinetic wave front arrives at
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Eq. (18) is a type of convection-diffusion equation. The
left side of eq. (18) denotes that the kinetic wave dominates

Figure 1 (Color online) Speed variation of dynamic waves with Froude
number.

Figure 2 (Color online) Speed variation of diffusion waves with Froude
number.

Figure 3 (Color online) Speed variation of kinetic waves with Froude
number.

2610 Ding Y, et al. Sci China Tech Sci December (2020) Vol.63 No.12



the convection of morphological evolution. Moreover, the
source terms on the right side of eq. (18) address the diffu-
sion in morphological evolution. An observation of coeffi-
cients τi and υi denotes that the diffusion wave propagation Ci
and interactions between dynamic waves λi and kinetic
waves ai affect the diffusion characteristics. In the situation
of a kinetic wave propagating downstream (a2>0), there exist
τ2>0 and υ2>0. This means that the kinetic wave is attenuated
by the dissipation of the source [51,52].

4.2 Laplace transform

The following integral defines the Laplace transform of ξ*:

Z x x t x t tL( , p) = { ( , )} = ( , )e d , (19)t*
0

* P

where Z is the transformed ξ* and P is a complex variable.
To avoid mathematical difficulties, the second term on the

right side of eq. (18) is omitted in the process of deriving the
analytical expression, given that the third derivative plays a
relatively weak role in dissipation. Implementing eq. (19)
into eq. (18), the ordinary differential equation (ODE) of the
transformed domain is

Z
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The transformed initial and boundary conditions for eq.
(18) are expressed as
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where fu(p) denotes the upstream boundary condition.
The general solution for eq. (20) in the transformed do-
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Considering the relationship in Laplace transform [52]

Z x b bt Z xL L{ ( , p+ )} = exp( ) { ( , p)}, (24)1 1
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By using eq. (24), eq. (23) can be further expressed as
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Based on the residue theorem for complex variable func-

tions [53], the residues in eq. (25) can be calculated by
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Finally, the analytical solution for eq. (18) is
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The analytical expression in eq. (28) consists of an ex-
ponential function, hyperbolic function, and infinite series.
The calculation is mathematically feasible. Considering the

relationships in eq. (17), analytical expressions of h*, u*, and
s* for the kinetic wave front can be written as
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4.3 Diffusion wave front expansion

The wave hierarchy in eq. (11) can be expanded for the
diffusion wave as follows:

t C x x+ = + , (30)i i i
* * *

2 *
2

where

( )

m a C a C

m µ C C
=

4
3

2 ( )( )

+ m + 2
,i

i i

j
j i

j i

s 1 2

s s
=1

3

( )
C C C C

m µ m m µ C C
= ( )( )( )( )

+ + 2
.i

i i i i

j
j i

j i

1 2 3 4

s s s
=1

3

The left side of eq. (30) denotes that the diffusion wave
dominates the convection of morphological evolution. If the
second term on the right side of eq. (30) is ignored, then eq.
(30) is transformed into a non-homogeneous convection
equation, and its solution is
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where G is a function of x−Cit and can be specified by the
initial and boundary conditions.
Analytical expressions of h*, u*, and s* for the diffusion

wave front are written as
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Tsai and Yen [46], Kazezyılmaz-Alhan and Medina [34]
established analytical solutions for the diffusion wave model.
As shown in eq. (32), the solution expressions they obtained
were a similar form of an exponential function.

4.4 Analytical expressions

As aforementioned discussed, the kinetic wave and diffusion
wave approximations are widely used in the modeling of
open channel hydraulic flows. The kinetic wave approx-
imation is appropriate for a channel with a moderate slope
and weak backwater from downstream. However, it cannot
account for the gradually varying flow condition as the dis-
perse term is neglected [39]. The diffusion wave approx-
imation is applicable in channels with slopes ranging from

0.001 to 0.0001, and it introduces the physical diffusion [7].
Moreover, analytical solutions in the literature are mostly
conducted to separate kinetic wave or diffusion wave mod-
els. To consider the interactions in the wave hierarchy and to
avoid the potential lack of simplification, this study makes a
linear combination of the analytical expressions in the ki-
netic wave front together with those in the diffusion wave
front. It is necessary to note that, if the kinetic wave or
diffusion wave model was initially adopted as the mathe-
matical model, as most of the studies in the literature did, it is
impossible to illustrate the interactions between waves of the
different magnitude of energy or to describe the physical
mechanism of motion in the open channel as complete as
possible. Thus, the analytical solution to the 1D mathema-
tical model of flow and morphological evolution is given as

h x t a
a a m x t

a
a m µ

x t
x

C
C C m t G x C t

C
C m µ t G x C t

x

u x t a
a m x t a

m µ
x t

x
C
C m t G x C t

C
m µ t G x C t

x

s x t a
a x t C

C t G x C t

x t x t t G x C t

( , ) = 1 1 (1 ) ( , )

(1 )
( , )

+1 1 (1 ) exp( ) ( )

(1 ) exp( ) ( ) ,

( , ) = (1 ) ( , ) +
( , )

+(1 ) exp( ) ( )

+ exp( ) ( ) ,

( , )=(1 ) ( , )+(1 ) exp( ) ( ),

( , ) = ( , )+exp( ) ( ).

(33)

i

i i
a

i

i

a

i

i i
i i

i

i
i

i

i

i
a

i a

i

i
i i

i
i

i

i

i
a

i

i
i i

a i i

*
s

*

s

*

s

s

*
s

*
s

*

s

s

* *

* *

i

i

i

i

i

i

5 Applications

The analytical solutions of eqs. (33) and (28) were applied in
August 1992 in the Lower Yellow River region of China by
simulating flood path with hyperconcentrated sediment
transport [54]. As shown in Figure 4, the channel length L0
considered is approximately 150 km from Xiaolangdi Gauge
Station to Huanyuankou Gauge Station. The average bed
slope Jw0 is 0.12‰. The Manning coefficient ns is 0.015.
Figure 5 shows the upstream boundary conditions of flood
discharge and sediment concentration of the 1992 flood
event. The flood route of Xiaolangdi Station can be roughly
divided into two stages. The first stage flood peak was
3000 m3 s−1, and the sediment concentration in the water
body was relatively low. A few days later, a second stage
flood route with a peak of 4570 m3 s−1 occurred shortly after
the first stage. The sediment concentration in the second
stage rose sharply to over 535 kg m−3. Flood routes of the
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two stages interacted during the propagation process, and the
peak value of the flood peak reached 6260 m3 s−1 at the
downstream Huayuankou Station. Amplification of down-
stream flood discharge is very different from common sense,
but there was little rainfall or tributary confluence along the
flood route. Figure 5 shows a uniform flow condition with
equilibrium sediment transport. The flow discharge is
1000 m3 s−1, and the equilibrium sediment concentration seq0
is 100 kg m−3. Considering the average river width of 500 m
in the reach between Xiaolangdi and Huayuankou, and the
bankfull depth H0 of about 10 m, the uniform flow velocity
U0 is calculated as 0.2 m s−1.
Figure 6 shows a simulation of the flood route in the open

channel between the Xiaolangdi and Huayoukou Gauge
Stations in the “92.8” flood. The latter flood peak with a high
propagation speed gradually “catches up” with the former
that propagates slowly, resulting in the superposition of flow
discharges. Moreover, the “92.8” flood developed into an
almost single peak shape as it passed through Huayuankou
Station. The peak flood discharge of Huayuankou Station
reaches about 6000 m3 s−1, which is significantly higher than

the flood discharge of 4500 m3 s−1 measured at the upstream
Xiaolangdi Station. This can be explained by the character-
istics of kinetic wave propagation in sediment-laden flows.
Based on the analysis above, the kinetic wave propagation is
affected by the equilibrium sediment concentration in a
uniform flow. The higher the sediment concentration, the
faster the kinetic wave propagates. The latter flood peak is
significantly accelerated due to the rapid increase in sedi-
ment concentration, which is a key factor of the analytical
solution obtained in this study. Figure 7 shows the temporal
variation of flow discharge at Huayuankou Station. The
calculated results are in good agreement with the measured
data. The root mean square error is about 9.1%, and the
overall accuracy is 90.9%. The phenomenon of increasing
flow discharge is successfully simulated.
Figure 8 shows a comparison of simulation results and

measured data of morphological evolution at Huayuankou
Station. The “92.8” flood clearly shows that the riverbed has
undergone rapid and extensive erosion and deposition. In the
initial sections of the flood route, the flow intensity continues
to increase, and the sediment capacity increases. Due to

Figure 4 Locations of Xiaolangdi and Huanyoukou Gauge Stations along the Lower Yellow River.

Figure 5 (Color online) Measured discharge and sediment concentration processes at Xiaolangdi and Huayuankou Gauge Stations [48].
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nonequilibrium sediment transport, the riverbed is gradually
eroded. With the largest increase in flood peak, the elevation

of the riverbed dropped to 4 m. Although sediments are
hyperconcentrated in the floodwater, the morphological
evolution is degraded. As the peak flood flow decreases, the
flow intensity continues to weaken. Therefore, sediment
concentrations become oversaturated due to former bed
erosion, converting morphological evolution into deteriora-
tion. The root mean square error between simulation results
and measured data of morphological evolution at Huayuan-
kou Station is about 12.7%, and the overall accuracy is
87.3%. The calculation results shown in Figure 8 reasonably
reflect the process of morphological evolution.

6 Concluding remarks

This study presents results on analytical solutions for 1D
mathematical models of flow and morphological evolution in
open channels. Complete governing equations that in-

Figure 6 Simulation of flood route in the reach between Xiaolangdi and Huayuankou Stations. (a) t=80 h; (b) t=100 h; (c) t=120 h; (d) t=140 h; (e) t=160 h;
(f) t=180 h.

Figure 7 Simulated temporal variation of flow discharge at Huayuankou
Station.
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corporate the interaction of flow and sediment transport were
adopted. In addition, singular perturbation and Laplace
transform techniques were implemented.
A hierarchical equation of waves has been derived to ex-

plain the evolutionary nature of disturbances in hyperbolic
systems. The wave hierarchy consists of three types of waves
with different energy magnitudes: dynamic, diffusion, and
kinetic waves. The propagation characteristics of these
waves are different from each other. These three types of
waves interact with each other during evolution. The dy-
namic wave depends only on the Froude number. Kinetic and
diffusion waves are dependent on a coupling of sediment
transport and river mobility. The higher the sediment con-
centration, the faster the kinetic wave propagation, but the
slower the diffusion wave path.
An analytical solution was obtained by a linear combina-

tion of analytical expressions in the kinetic wave front and
the diffusion wave front. The obtained analytical solution
can describe the physical mechanism of motion in open
channels as completely as possible. Analytical solutions are
displayed as a combination of exponential functions, hy-
perbolic functions, and infinite series. The analytical solu-
tions of eqs. (33) and (28) were applied by simulating the
flood route with hyperconcentrated sediment transport in the
Lower Yellow River region in China. It was found that the
calculation results were in good agreement with the mea-
sured data. The phenomenon of increased flow discharge
was successfully simulated, and the process of morphologi-
cal evolution was reasonably explained.
The analytical solution derived in this study is based on the

perturbation method with the following assumptions: (1) a
relatively small perturbation, and (2) first-order perturbation.
These assumptions can induce some discrepancies, as shown
in Figures 7 and 8. However, local variations in the evolution
of flow transport cannot be well represented. Mathemati-

cally, a set of governing equations for flow motion, sediment
transport, and morphological evolution build a fourth-order
nonlinear hyperbolic system. Strong nonlinearities often
break the perturbed and asymptotic approximations of non-
linear problems. The homotopy analysis method can be
adopted in future studies to improve the applicability of
analytical solutions.
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