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Event-triggered consensus in leader-following multi-agent systems with actuator fault is considered in this paper, in which the fault
investigated can be multiplicative fault and outage fault. An event-triggered mechanism is utilized to relieve the communication
burden of the interconnected system. Then, control allocation is proposed to solve actuator fault in the multi-agent systems for
the first time. Compared with the existing fault-tolerant methods, the proposed method can guarantee that the consensus errors
converge to zero asymptotically without the traditional rank assumption. Meanwhile, the Zeno behavior of the event-triggered
system is proved to be avoided. Simulation results are also provided to verify the effectiveness of the proposed method.
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1 Introduction

Enlightened by the group behavior in nature, more and
more researchers begin to investigate the multi-agent systems
(MASs), which is composed of multiple individual agents.
Through cooperation among agents, MASs can complete
tasks that are difficult or impossible to be achieved by sin-
gle systems. Moreover, MASs can be applied to plenty of
fields, such as formation control [1–4], flocking [5–7], cov-
erage control [8,9], collective behavior [10,11], containment
control [12, 13], etc. Among the investigation of MASs, the
most important one is the consensus problem, which requires
the states of all the agents to be consistent with the evolu-
tion of time. The detailed investigation on consensus can be
found in ref. [14]. Moreover, due to the limitation of commu-
nication cost in reality, event-triggered method is proposed
to relieve the communication burden. Furthermore, it can
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extend the lifespan of the actuator by effectively reducing the
number of action updates. Compared with single systems, the
communication cost among agents in MASs is larger, which
is more urgent for being reduced. The research of event-
triggered method in MASs has been widely investigated over
the past years, and for more detailed event-triggered research
in MASs, readers can refer to refs. [15–22].

Despite the research history of consensus in MASs is rel-
atively long, few researchers pay attention to the situation
when faults appear during the running process of MASs.
Once faults occur in the interconnected system, they can
cause fatal impact on the stability of the system. Since con-
strained by actual circumstance, such as complex environ-
mental, extraordinary complexity of the tasks, faults are in-
evitable in reality. Therefore, a fault-tolerant control (FTC)
is crucial for engineering application of MASs. Based on
the controller design, the existing fault-tolerant consensus re-
search can be divided into two kinds: time-scheduled FTC
and event-triggered FTC.
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For the time-scheduled FTC, literatures [23–32] mainly
conclude the classic and recent research. In ref. [23], team
consensus for multi-agent systems in presence of actuator’s
partial loss of effectiveness (PLOE) fault is analyzed. In ref.
[24], a cooperative actuator fault accommodation strategy
for linear time-invariant MASs with a directed and switch-
ing topology is proposed. In ref. [25], a robust adaptive
FTC of MASs with undetectable actuator fault is proposed.
In ref. [26], the fault-tolerant tracking control for linear
and Lipschitz nonlinear MASs subject to actuator fault and
the leader’s bounded unknown input is considered. In ref.
[27], the fault-tolerant control for both leaderless and leader-
following MASs with time-varying actuator fault is investi-
gated. In ref. [28], an optimal control approach with an Off-
policy Reinforcement Learning solving the Hamilton-Jacobi-
Bellman equation is proposed for FTC in leaderless MASs.
In ref. [29], a distributed continuous adaptive FTC consensus
protocol for leaderless MASs is investigated.

Moreover, there exists the extreme situation that the actua-
tor is totally loss of effectiveness, which can also be regarded
as the outage fault. And the related research is relatively less.
In ref. [30], consensus problem with actuators’ PLOE and
outage faults is considered, while the consensus errors of the
faulty system cannot converge to zero. In ref. [31], a perfor-
mance fault recovery control problem for MASs with PLOE
and outage faults is considered, which also cannot guaran-
tee the consensus errors converge to zero. In ref. [32], the
cooperative output regulation problem for linear MASs with
both PLOE and outage faults is considered. Although the al-
gorithm in ref. [32] solves the outage fault, its algorithm is
obtained based on the relatively strict rank assumption. It is
decided by the nature of the assumption that it can only han-
dle some special kinds of outage fault. Moreover, the above
assumption exists broadly in literatures dealing with outage
fault in multi-agent systems. That lack of an efficient fault-
tolerant controller dealing with outage fault without the strict
rank assumption motivates us to investigate a more suitable
controller.

As to the event-triggered mechanism, few literatures focus
on the FTC in event-triggered multi-agent systems. In ref.
[33], the event-triggered fault-tolerant control for a class of
networked control systems with actuator’s additive fault and
external disturbance is studied. In ref. [34], the distributed
adaptive event-triggered fault-tolerant consensus of general
linear MASs is considered to deal with the multiple fault of
the actuator. In ref. [35], the adaptive double event-triggered
consensus control problem for linear MASs subject to mul-
tiplicative and additive actuator fault is considered. In ref.
[36], a fault-tolerant event-triggered control protocol is devel-
oped to obtain the leader-following consensus of the multi-

agent systems with switching topology and actuator fault. In
ref. [37], a sliding mode FTC algorithm based on event-
triggered technology for second-order leader-follower MASs
is proposed to deal with the actuator’s partial failure. In
ref. [38], the fully distributed observer-based adaptive fault-
tolerant synchronization problem of multi-agent systems with
event-triggered control mechanisms is investigated. In ref.
[39], the problem of consensus tracking control for event-
triggered multi-agent systems with stochastic actuator fault is
investigated. To the best of the authors’ knowledge, ref. [39]
is the only literature that can be used to deal with the out-
age fault in an event-triggered mechanism, and its controller
is obtained by the fixed-gain method. Compared with the
time-scheduled method, the fault-tolerant algorithm in event-
triggered mechanism is rare and the fault considered is some-
what simple. And the event-triggered mechanism can reduce
the occurrence of actuator fault by reducing actuator action
updates. Based on the advantage of event-triggered mech-
anism and the related research state, the authors try to find
a more valid algorithm on dealing with various faults with
event-triggered mechanism.

Moreover, it is noted that control allocation (CA) is applied
to solve different kinds of faults in single systems. Compared
with other traditional FTC methods, control allocation can
deal with faults without reconfiguring the controller, and it
can deal with outage fault. The work in ref. [40] can be
seen as the most pioneering work, in which an on-line slid-
ing mode control allocation scheme for FTC in a single sys-
tems is proposed to deal with PLOE and outage faults si-
multaneously. For more basic knowledge about control al-
location, readers can refer to ref. [41]. Unfortunately, few
researchers consider the application of control allocation in
FTC of MASs. In ref. [42], the fault-tolerant attitude track-
ing control for an over-actuated spacecraft subject to actuator
fault and external disturbances is investigated. In ref. [43],
an active FTC for spacecraft attitude maneuvers with actua-
tor saturation and faults is proposed. Further, in ref. [44], the
relationship between optimal controller design and CA is in-
vestigated. It is shown that for a particular condition, the two
controller designs can have the exactly same performance.
Nevertheless, none of them provides a comprehensive anal-
ysis on control allocation dealing with FTC in MASs. That
absence of more efficient controllers in dealing with actua-
tor fault in multi-agent systems and the superiority of control
allocation in solving various faults motivate us to investigate
a novel fault-tolerant consensus control in leader-following
multi-agent systems.

Based on the above discussion, a novel distributed event-
triggered fault-tolerant consensus control in leader-following
multi-agent systems is proposed in this paper. The main con-
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tributions of this paper can be summarized as follows.
• The dynamics of event-triggered leader-following

multi-agent systems with control allocation dealing with ac-
tuator fault is proposed for the first time, while the existing
works, such as refs. [42] and [43], only consider some par-
ticular application of multi-agent systems with control allo-
cation.
• The obtained controller is event-triggered, which can ef-

ficiently reduce the communication burden of the system. It
is proved that the Zeno behavior of the event-triggered sys-
tem can be avoided. Moreover, the proposed fault-tolerant
consensus controller is distributed, and it can deal with faults
without reconfiguring the controller.
• The controller obtained in this paper can deal with ac-

tuator fault, especially the outage fault, and the faults can si-
multaneously appear in multiple agents. Moreover, the con-
sensus errors of the multi-agent systems with outage fault can
asymptotically converge to zero without the rank assumption,
whereas part of the current related works can only obtain
bounded consensus errors, such as refs. [30, 31]. And the
work in ref. [39] cannot guarantee the optimal performance
of the faulty system under outage fault. The rest of the ex-
isting literatures that can guarantee the consensus errors con-
verge to zero under outage fault are based on the strict rank
assumption in ref. [32], which can only handle some special
outage fault.

The rest of the paper is organized as some preliminary
knowledge is shown in sect. 2. Problem formulation is ex-
pressed in sect. 3. The design and analysis of the proposed
method are given in sect. 4. Simulations are demonstrated
to show the effectiveness of the proposed method in sect. 5.
Finally, a conclusion is summarized in sect. 6.

Notation: Rn denotes the set of n × 1 real vector. Rn×m

is the set of n × m real matrices. I denotes the iden-
tity matrix with appropriate dimensions. ||x|| denotes the
norm of x. W > 0 implys that the matrix is positive defi-
nite. diag(A1, A2, · · · , An) is the block-diagnoal matrix with
A1, A2, · · · , An on its principal diagonal. rank(A) denotes the
rank of matrix A.

2 Preliminary

2.1 Basic graph theory

This paper considers the multi-agent systems with one leader
agent and N follower agents. A directed graph is ap-
plied to model the communication topology of the multi-
agent systems, which is denoted by G = (V,E,A). V =
{υ1, υ2, · · · , υN} is the set of all follower agents, E ⊆ V × V
denotes the edge between follower agents, A = [ai j]N×N

stands for the corresponding adjacency matrix. The element

of E is ei j, i, j = 1, 2, · · · ,N , when there exists communica-
tion from agent i to agent j, ei j = (υi, υ j) ∈ E. Otherwise,
ei j < E. And eii < E, i = 1, 2, · · · ,N. If ei j = (υi, υ j) ∈ E,
then ai j is defined as 1. Otherwise, ai j = 0. The definition of
neighbor of agent i is defined asNi = {υ j ∈ V|e ji = (υ j, υi) ∈
E}. The node υ0 denotes the leader agent, and if there exists
an edge between the leader agent and the follower agent i,
d0i = 1, i ∈ {1, 2, · · · ,N}. Otherwise, d0i = 0. Define ma-
trix D = diag(d01, d02, · · · , d0N) ∈ RN×N . The definition of
Laplacian matrix L ∈ RN×N is

li j =


N∑

k=1,k,i

aik, i = j,

−ai j, i , j.

Therefore, the whole information of the leader-following
MAS can be described as G = L + D, and the element of
matrix G can be gi j, i, j = 1, 2, · · · ,N. Moreover, if there ex-
ists a directed path from every agent to every other agent, the
graph is said to be strongly connected.

For the stability analysis of the interconnected system, we
suppose the following assumption holds.

Assumption 2.1 The communication topology among the
follower agents is strongly connected. And there exists at
least one follower agent that is connected to the leader agent,
i.e., there exists at least one d0i > 0, i ∈ {1, 2, · · · ,N}.

For more detailed property that a strongly connected graph
meets, readers can refer to ref. [45].

2.2 Control allocation

Control allocation (CA) is one effective method to handle ac-
tuator redundancy for different control strategies handing ac-
tuator fault [46].

The following Figure 1 demonstrates the main structure
of control allocation. Generally, the controller design of CA
consists of three parts. Firstly, an algorithm is designed to
calculate an virtual control input v that can maintain the sta-
bility of the system in a fault-free condition. Then, a control
allocation algorithm is proposed to map the virtual control in-
put into individual actuator dimensions to guarantee that the
total control input u generated in each dimension of the actu-
ator amounts to the desired virtual control input. Finally, the
control input in each dimension will be computed to achieve
its desired value.

r v u y

x

Control
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Control

allocation
System

Figure 1 Control allocation.



882 Wang X X, et al. Sci China Tech Sci April (2021) Vol. 64 No. 4

Remark 2.1 Control allocation is common in handling
various kinds of actuator fault in single systems. Compared
with the traditional fault-tolerant control methods, it can deal
with faults without reconfiguring the controller. Furthermore,
it is able to handle the outage fault without controller accom-
modation and can guarantee the consensus errors converge to
zero asymptotically.

3 Problem formulation

In this section, the dynamics of leader-following multi-agent
systems with control allocation and the event-triggered mech-
anism in multi-agent systems are demonstrated.

3.1 System dynamics

A class of linear leader-following multi-agent systems with
one leader agent and N follower agents is considered in this
paper. Suppose that the state of agents is denoted by xi ∈ Rn,
i = 0, 1, 2, · · · ,N, the controller is described by ui ∈ Rm,
i = 1, 2, · · · ,N. It is assumed that m > n throughout this
paper.

The dynamic of the leader-following fault-free MASs can
be formulated as

ẋ0 = Ax0, (1)

ẋi = Axi + Bui, i = 1, 2, · · · ,N, (2)

where 0 denotes the leader agent, and i = 1, 2, · · · ,N denotes
the follower agents, A ∈ Rn×n, B ∈ Rn×m are the correspond-
ing matrices.

Moreover, the following assumptions are supposed to hold
throughout this paper.

Assumption 3.1 The matrix pair (A, B) is controllable.
Assumption 3.2 The matrix B in eq. (2) is not full rank,

i.e., rank(B) < min(m, n).
Remark 3.1 According to Assumption 3.2, the matrix B

can be factorized as B = BvC, where Bv ∈ Rn×k, C ∈ Rk×m,
and rank(B) = rank(Bv) = rank(C) = k.

When faults occur, the real control input of agent i on the
hth level can be uF

ih, which can be formulated as

uF
ih = (1 − ρih(t))uih, i = 1, 2, · · · ,N, h = 1, 2, · · · ,m, (3)

where 0 ≤ ρih(t) ≤ 1 represents the extent of failure. ρih(t) =
0 indicates a fault-free condition; 0 < ρih(t) < 1 denotes the
partial loss of effectiveness (PLOE) fault; ρih(t) = 1 implies
the outage fault. When all the ρih(t), i = 1, 2, · · · ,N, h =
1, 2, · · · ,m is zero, the system is fault-free. Moreover, it is
supposed in this work that the leader agent remains healthy
during the operation of the system.

Remark 3.2 The partial loss of effectiveness, which can
also be called the multiplicative fault, exists broadly in real-
ity and has been investigated over the past years. And lots of
controllers have been proposed to guarantee the stability of
the faulty systems. However, few literatures focus on deal-
ing with the outage fault. And the outage fault is common in
reality and desperates for being handled, while the results on
analyzing outage fault is not satisfactory for real applications,
such as refs. [30–32, 39].

Based on eqs. (1) and (2), the dynamics of the leader-
following MASs with control allocation can be expressed
as ẋi = Axi + Bvνi,

νi = Cuiv, i = 1, 2, · · · ,N,
(4)

where νi ∈ Rk denotes the virtual control input calculated in
the control allocation manner.

For further investigation, we have the following assump-
tion.

Assumption 3.3 In the presence of up to any (m − k)
actuators undergo outage fault, the remaining actuators can
still be used to implement control signals to achieve a desired
control objective [47].

Remark 3.3 The Assumption 3.3 guarantees the ex-
istence of fesible solutions of the faulty system. Com-
pared with refs. [32] and [47], the algorithm proposed
in this paper does not need the traditional rank assump-
tion: rank(B(I − Pi(t))) = rank(B), where Pi(t) =
diag(ρi1(t), ρi2(t), · · · , ρim(t)), i = 1, 2, · · · ,N. Theoretically
speaking, the traditional rank assumption can only deal with
some special outage fault since the rank assumption is too
strict.

The object of this paper is to derive all the follower agents
to converge to the leader, which is the classic consensus prob-
lem. The definition of consensus in math can be expressed as

lim
t→∞
||xi(t) − x0(t)|| = 0, i = 1, 2, · · · ,N,

where || · || usually denotes the 2-norm.

3.2 Event-triggered mechanism

In event-triggered mechanism, the controller updates only at
some discrete instants, which can efficiently save the com-
munication cost among agents and extend the lifespan of the
actuator. Especially for the faulty system, it can reduce the
occurrence of faults by reducing actuator action updates.

For agent i, the time sequence {ti
k}∞k=0 with monotonically

increased property is regarded as the set of triggerd instants.
The element of this sequence satisfies that: 0 ≤ ti

k < ti
k+1, k =
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1, 2, · · · ,where ti
k is the kth triggered instant of agent i. More-

over, the state and controller of agent i at ti
k can be denoted as

x̂i,k, ûi,k, where x̂i,k = xi(ti
k), ûi,k = ui(ti

k) for all k ∈ N+. And
the obtained event-triggered controller for agent i is denoted
by ûi.

4 Proposed fault-tolerant consensus controller

The main result of the research is proposed in this section.
A control allocation method is utilized to guarantee the con-
sensus of the faulty multi-agent systems with event-triggered
mechanism. And the Zeno behavior of the event-triggered
mechanism is proved to be avoided.

Firstly, to describe the difference in the neighbor of agent
i, we define the consensus error of agent i as

ei(t) =
∑
j∈Ni

ai j(xi − x j) + d0i(xi − x0), i = 1, 2, · · · ,N. (5)

Remark 4.1 The following work is devoted to minimize
ei(t). Based on Assumption 2.1 and the transitivity of states,
if eq. (5) is minimized for all agents, the consnesus of the
system can be achieved.

In the event-triggered mechanism, the consensus error of
agent i at ti

k can be denoted as êi,k. And we define δi =

ei(t) − êi,k, t ∈ [ti
k, t

i
k+1) for agent i. In order to obtain the

optimal event-triggered controller, we have the following as-
sumption.

Assumption 4.1 The event-triggered sampling controller
is Lipschitz continuous in a compact set [48]. Then there ex-
ists a constant M such that

||ui − ûi|| ≤ M||δi||. (6)

Based on the control allocation and adaptive dynamic
programming, the following performance index function of
agent i is defined as

Jiv =

∫ ∞

0

[
νT

i Riv(t)νi + eT
i (t)Qei(t)

]
dt, i = 1, 2, · · · ,N, (7)

where Q ∈ Rn×n and Riv(t) ∈ Rk×k are diagonal positive defi-
nite matrices.

One can further obtain optimal uiv by solving the following
problem:

min uT
ivW

−1
i (t)uiv,

subject to Cuiv = νi,
(8)

where W−1
i (t) = (Wi

−1(t))T ∈ Rm×m > 0.
Usually, Wi(t) indicates the actuator effectiveness of agent

i. In a fault-free condition, Wi(t) is chosen to be an unit ma-
trix I. If there exists fault in the actuator of agent i, Wi(t)

can be chosen as Wi(t) = (1 + ε)I − Pi(t), ε → 0+ is a
constant positive number to guarantee the matrix Wi(t) to
be positive definite when outage fault occurs, and Pi(t) =
diag(ρi1(t), ρi2(t), · · · , ρim(t)). Since rank(C) = k, C has a
nullspace of dimension m − k, in which uiv can be perturbed
without affecting the system dynamics [44].

For comparision, the performance index function in the
traditional optimal manner is defined as

Jiu =

∫ ∞

0

[
uT

i (t)Riu(t)ui + eT
i (t)Qei(t))

]
dt, i = 1, 2, · · · ,N,

(9)

where Riu(t) ∈ Rm×m is diagonal positive definite.
Further, to distinguish the controller obtained by eqs. (7),

(8) from (9), ui calculated by eq. (9) is replaced with uiu, so
as to the consensus error ei(t).

Based on the following three Lemmas that exist in litera-
tures, we can further analyze the stability of the MASs.

Lemma 4.1. [44]
Consider eqs. (7) and (9) and assume that the matrices

Riu(t) and Riv(t) are related as

CR−1
iu (t)CT = R−1

iv (t).

Then the following holds: If u∗iu and ν∗i are the optimal con-
trols associated with eqs. (7) and (9), then

Cu∗iu = ν
∗
i .

And the corresponding xi − tra jectories are the same.

Lemma 4.2. [44]
The control laws generated by eqs. (7), (8) and (9) are the

same in the following case. If, for given Riv(t) and Wi(t), the
matrix Riu(t) is chosen as

Riu(t) =Wi
−1(t) + CT[Riv(t) − (CWi(t)CT)−1]C.

Lemma 4.3. [49]
For a system formulated by

ẋ = f (t, x(t),u(t)). (10)

Its corresponding performance index function is

J(x(0),u) =
∫ T

0
g(t, x(t),u(t))dt + h(x(T)), (11)

where f (t, x(t),u(t)) and g(t, x(t), u(t)) are continuous func-
tions on R1+n+m. x(0) denotes the initial state of the system.

Let H(t, x,u, λ) = g(t, x(t),u(t)) + λ f (t, x(t),u(t)) be the
Hamiltonian function. If u∗ is the controller that yields a lo-
cal minimum for the performance index function (11), and
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x∗(t), λ∗(t) are the corresponding state and co-state. Then it
is necessary that

ẋ∗(t) = f (t, x∗, u∗) =
(
∂H(t, x∗, u∗, λ∗)

∂λ

)
, x∗(0) = x(0),

λ̇∗(t) = −∂H(t, x∗, u∗, λ∗)
∂x

, λ∗(T ) =
∂h(x∗(T ))
∂x

.

(12)

And for all t ∈ [0,T ],

∂H(t, x∗,u∗, λ∗)
∂u

= 0. (13)

Further, the trigger function for agent i at t ∈ [ti
k, t

i
k+1) is

defined as

fi = ||δi|| −
||riû∗i ||
M||ri||

, i = 1, 2, · · · ,N, (14)

where Riu(t) = rT
i (t)ri(t). And when fi > 0, the event is

triggered, which means the time ti
k+1 occurs; when fi ≤ 0, the

controller of agent i does not update.
Based on the discussion and Lemmas 4.1–4.3, the main

theorem proposed in this paper can be expressed as follows.

Theorem 4.1. For the system formulated by eqs. (1), (4)
with eqs. (7) and (9) as its corresponding performance in-
dex functions. Suppose Assumptions 2.1, 3.1, 3.2, 3.3, 4.1
hold. If for given Riv(t) and Wi(t), Riu(t) is selected as
Riu(t) = Wi

−1(t) + CT[Riv(t) − (CWi(t)CT)−1]C. The trig-
ger function fi for agent i at t ∈ [ti

k, t
i
k+1) satisfies: fi ≤ 0.

Then the optimal controller u∗iv for agent i, i = 1, 2, · · · ,N, at
t ∈ [ti

k, t
i
k+1) in dealing with both fault-free and faulty condi-

tion can be û∗
iv

(t) = −0.5giiWi(t)CT(CWi(t)CT)−1CR−1
iu (t)BTλ̂∗i (t),

˙̂λ∗
i
(t) = −(2Qêi,k + ATλ̂∗i (t)),

(15)

where λ̂∗
i
∈ Rn denotes the auxiliary variable to be calcu-

lated. Moreover, the event-triggered leader-following MASs
is asymptotically stable in both fault-free and faulty condi-
tion.

Proof.
For the event-triggered leader-following multi-agent sys-

tems, the authors define the following two kind Lyapunov
functions for agent i:

Viv(eiv(t)) =
∫ ∞

t
(νT

i Riv(t)νi + eT
ivQeiv)dt, i = 1, 2, · · · ,N,

(16)

Viu(eiu(t)) =
∫ ∞

t
(uT

iuRiu(t)uiu + eT
iuQeiu)dt, i = 1, 2, · · · ,N.

(17)

Moreover, the time derivative of the consensus error for
agent i with event-triggered mechanism by the two foremen-
tioned methods can be calculated as

ėiv(t) = Aeiv(t) + giiBû∗iv −
∑
j∈Ni

Bû∗jv, i = 1, 2, · · · ,N, (18)

ėiu(t) = Aeiu(t) + giiBû∗iu −
∑
j∈Ni

Bû∗ju, i = 1, 2, · · · ,N. (19)

Due to the relationship between Riv(t) and Riu(t),
Viv(eiv(t)) and Viu(eiu(t)) can obtain the controller that can
have the same property in handling the optimal problem. That
is, if u∗

iu
obtained by minimizing eq. (9) can guarantee the

stability of eqs. (1), (2) in a fault-free condition, then u∗iv
obtained by minimizing eqs. (7), (8) can guarantee the con-
sensus of eqs. (1), (4) in spite of faults.

Therefore, we will later devote to analyzing whether u∗
iu

can maintain the stability of eqs. (1), (2) in a fault-free con-
dition.

Based on Lemma 4.3, we can obtain the traditional time-
triggered optimal controller as u∗

iu
(t) = −0.5giiR−1

iu BTλ∗i ,

λ̇∗i (t) = −(2Qeiu + ATλ∗i ).
(20)

Furthermore, one can obtain

eT
iu(t)Qeiu(t) + u∗Tiu (t)Riuu∗iu(t)

= −λ∗Ti (t)

Aeiu(t) + giiBu∗iu −
∑
j∈Ni

Bu∗ju

 . (21)

According to ref. [50], one can get that ∂Viu
∂eiu
= λ∗i (t). Espe-

cially in the triggered instant ti
k, we have the following:

∂VT
iu

∂êiu

Aêiu + giiBû∗iu −
∑
j∈Ni

Bû∗ju

 = −[êT
iuQêiu + û∗Tiu Riuû∗iu].

(22)

For agent i in the event-triggered mechanism, we have
u∗ju = û∗ju, j ∈ Ni, at t ∈ [ti

k, t
i
k+1). Thus, we can obtain the

following equation:

−2u∗Tiu Riu = gii
∂VT

iu

∂eiu
B. (23)

The time derivative of the corresponding Lyapunov func-
tion of agent i can be calculated as

V̇iu(eiu) =
∂VT

iu

∂eiu
ėiu

=
∂VT

iu

∂eiu
(Aeiu(t) + giiBû∗iu −

∑
j∈Ni

ai jBû∗ju). (24)
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Take the above eqs. (22), (23) into eq. (24), one can obtain
that

V̇iu(eiu) =
∂VT

iu

∂eiu

Aeiu(t) + giiBû∗iu −
∑
j∈Ni

Bû∗ju


= − eT

iu(t)Qeiu(t) − u∗Tiu (t)Riuu∗iu(t)

−
∂VT

iu

∂eiu
(giiBû∗iu −

∑
j∈Ni

Bu∗ju)

+
∂VT

iu

∂eiu
(giiBû∗iu −

∑
j∈Ni

Bû∗ju). (25)

Due to that u∗ju = û∗ju, j ∈ Ni at t ∈ [ti
k, t

i
k+1), we can then

simplify (25) as

V̇iu(eiu(t)) = − eT
iu(t)Qeiu(t) + u∗Tiu Riuu∗iu(t) − 2u∗Tiu Riuû∗iu(t)

= − eT
iu(t)Qeiu(t) + ||riu∗iu − riû∗iu||2 − ||riû∗iu||2

≤ − eT
iu(t)Qeiu(t) + M2||ri||2||δi||2 − ||riû∗iu||2.

(26)

Based on the trigger condition, we can know that: ||δi||2 ≤
||riû∗iu ||

2

M2 ||ri ||2 at t ∈ [ti
k, t

i
k+1). Thus, the above formula can be

V̇iu(eiu) ≤ −eT
iu(t)Qeiu(t) . (27)

Because the matrix Q is positive definite, we can know
that the consensus error eiu, i = 1, 2, · · · ,N can asymptoti-
cally converge to zero.

According to the above analysis, we can conclude that
the optimal controller u∗iv can guarantee the consensus of the
event-triggered leader-following MASs with PLOE and out-
age faults.

The proof is completed.
Remark 4.2 As long as the virtual control input νi ∈

Rk can guarantee the consensus of multi-agent system in a
fault-free condition, fault-tolerant control in event-triggered
leader-following multi-agent systems is addressed automati-
cally by Wi(t) without reconfiguring the controller in spite of
faults, which is decided by the nature of control allocation.

Theoretically speaking, the significant difference between
the time-scheduled controller and the event-triggerd con-
troller is that the latter can reduce the communication cost.
Thus the number of event-time must be finite to guarantee the
efficiency of the event-triggered controller. The Zeno behav-
ior means that the number of triggers by the event is infinite
in a limited time. In other words, if agent i causes Zeno be-
havior, the event-triggerd mechanism can be the same with
the traditional time-scheduled mechanism, which cannot re-
duce the communication cost. In this part, we will analyze the
Zeno behavior in this proposed event-triggered controller.

Usually in liteatures, if (ti
k+1 − ti

k) has a lower positive
bound, then it is divergent. Thus the Zeno behavior can be
excluded. Therefore, the researchers usually need to give the
minimum lower bound on the interval of the trigger time,
which can effectively illustrate the feasibility of the algo-
rithm. The following theorem shows the Zeno behavior of
the proposed controller.

Theorem 4.2. The Zeno behavior of the event-triggered
leader-following multi-agent systems can be avoided, and the
lower bound T i

k = ti
k+1− ti

k of agent i, i = 1, 2, · · · ,N, between
two triggered instants can be bounded by

T i
k >

||riû∗i ||
M||ri|| × ||Aêi + giiBû∗i −

∑
j∈Ni

Bû∗j ||
. (28)

Proof.
Firstly, one can know that the time derivative of the con-

sensus error for agent i can be

ėi(t) = Aei(t) + giiBû∗i −
∑
j∈Ni

Bû∗j , i = 1, 2, · · · ,N.

Moreover, according to ref. [37], the following inequation
by some mathmatically calculation can be obtained:

d||ei − êi||
dt

≤ ||ėi − ˙̂ei||

= ||ėi||

= ||A[ei(t) − êi] + Aêi + giiBû∗i −
∑
j∈Ni

Bû∗j ||.

Based on ||x+ y|| ≤ ||x||+ ||y||, the following inequation can
be obtained:

||ėi − ˙̂ei|| ≤ ||A[ei(t) − êi(t)]||

+ ||Aêi(t) + giiBû∗iu −
∑
j∈Ni

Bû∗j ||.

Because the solution of differential equation dy
dx + P(x)y =

S (x) can be expressed as

y = e−
∫

P(x)dx
[∫

S (x)e
∫

P(x)dxdx +C
]
,

the solution of the above inequation can be calculated as

||ei − êi||

≤ e||A||T
i
k

∫ ti
k+1

ti
k

||Aêi + giiBû∗i −
∑
j∈Ni

Bû∗j ||e
−

∫ tik+1
tik
||A||dt

dt

 .
To further calculation, the following inequation is obtained

as

||ei − êi|| ≤ T i
k ||Aêi + giiBû∗i −

∑
j∈Ni

Bû∗j ||.
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Because when the function is triggered, the δi meets the
following:

||ei − êi|| >
||riû∗i ||
M||ri||

.

As for ||riû∗i ||, it is greater than zero. According to the
property of norm, if ||riû∗i || = 0, then riû∗i = 0. Moreover, due
to Riu(t) = rT

i (t)ri(t), one can get that û∗Ti Riu(t)û∗i = 0. Fur-
ther, because Riu(t) is positive definite, it is then obtained that
û∗i = [0, 0, · · · , 0]T. However, the proposed controller is ob-
tained by supposing the Assumption 3.3 hold, which implies
that û∗i , [0, 0, · · · , 0]T. Thus, one can obtain that ||riû∗i || > 0.

Thus, the lower bound of T i
k can be obtained as

T i
k >

||riû∗i ||
M||ri|| × ||Aêi + giiBû∗i −

∑
j∈Ni

Bû∗j ||
.

Because the above inequation holds, we can conclude that
the Zeno behavior can be excluded in the proposed event-
triggered controller.

The proof is completed.
Remark 4.3 At the begining of the operation, ||Aêi +

giiBû∗i −
∑

j∈Ni

Bû∗j || cannot be zero. However, with the con-

troller involved, the consensus error ei(t) can be decreased.
When ||Aêi + giiBû∗i −

∑
j∈Ni

Bû∗j || → 0, we can know that

T i
k → ∞, which means that the event is no longer triggered,

and the consensus is achieved.
Moreover, the general control system block diagram of the

ith following agent, i = 1, 2, · · · ,N, can be expressed by the
following Figure 2.

5 Simulation

To verify the effectiveness and superiority of the novel
method, the simulation results of event-triggered leader-
following multi-agent systems are shown in this section.

The directed communication graph of the system is shown
in Figure 3, where vertex 0 denotes the leader agent and ver-
texes 1–5 denote follower agents.

The corresponding Laplacian matrix L and G are

L =



1 −1 0 0 0

0 1 −1 0 0

0 0 1 −1 0

0 0 0 1 −1

−1 0 0 0 1


,G =



2 −1 0 0 0

0 1 −1 0 0

0 0 1 −1 0

0 0 0 1 −1

−1 0 0 0 1


.

Define the state of the system as xi = [xi1, xi2]T ∈ R2, i =
0, 1, 2, 3, 4, 5. The parameters of the system are set as

A =

 1 −2

1 0

 , B =

 1 0 0

2 0 0

 , Bv =

 1

2

 , C =
[

1 0 0
]
,

Q = 10I10×10, Rv = 10I5×5,M = 500.

In order to show the effectiveness of the proposed method,
the following simulation results are shown.

In this simulation, the faults occur in the operation of the
system, which is common in practice. The overall running
time of this simulation is T=25 s. The detailed simulation
parameters are as follows.

For t ∈ (0, 12.5], the system is fault-free and the related
matrices can be set as

W1(t) =W2(t) =W3(t) =W4(t) =W5(t) =


1 0 0

0 1 0

0 0 1

 .

For t ∈ (12.5, 25], faults occur in different follower agents
with various kinds and the faults can be modelled by the fol-
lowing functions:

Optimal 
method

Control 
allocation

Plant

Leader 
system

x0

xi
*ûiv

vi

Actuator
fault

Ki(t)

ie
Event-

triggered 
condition

Event-triggered mechanism

êi

Neighbor
agents

xj

Figure 2 The control block diagram of the ith following agent.
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0

5 1

4

3

2

Figure 3 Communication topology.

P1(t) =


1 0 0

0 sin(tπ/30) 0

0 0 1

 , P2(t) =


t/60 0 0

0 1 0

0 0 0.8

 ,

P3(t) =


e−t/30 0 0

0 1 0

0 0 0.1

 , P4(t) =


1 0 0

0 (t/30)2 0

0 0 1

 ,

P5(t) =


1 0 0

0 0.4 0

0 0 0.9

 .
And ε is set to be 0.0001.
Remark 5.1 In the simulation, the selection of Pi(t), i =

1, 2, 3, 4, 5, obeies the following two rules: (1) the diagonal
elements of Pi(t) falls within the range of [0, 1], which indi-
cates the extent of actuator fault; (2) the occurence number of
1 inPi(t) is no more than m−k, which obeies the Assumption
3.3.

The corresponding simulation results are Figures 4–6.
Since faults occur at the time t=12.5 s, Figure 4 indicates
that the consensus in both PLOE and outage faults can be
reached without reconfiguring the controller. In Figure 5, the
subgraph denotes the initial states of all agents, and we can
see from Figure 5 that all agents converge to the same state
with the evolution of time.

The following Figure 6 shows that the Zeno behavior of
the system can be avoided. The triggered time can be shown
in Figure 6.

According to Remark 4.3, we can know that when the con-
sensus is achieved the event is no longer triggered, which
explains why the system is not triggered after some specific
time instants.

Remark 5.2 The event-triggered fault-tolerant consensus
control for leader-following MASs with control allocation is
propsed for the first time. And the exisiting literatures in this
filed is relatively rare. Moreover, the advantage between this
paper and the existing literatures can be directly obtained by
the previous discussion. Thus, a comparision simulation with
other methods is not included in this section.
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Figure 4 Tracking error in each dimension. (a) Error of xi1, i = 1, 2, · · · , 5.
(b) Error of xi2, i = 1, 2, · · · , 5.
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6 Conclusion

Event-triggered fault-tolerant control in leader-following
multi-agent systems with control allocation has been studied
for the first time in this paper. The proposed method can deal
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Figure 6 Event-time of each follower agent.

with multiplicative fault and outage fault without reconfigur-
ing the controller. Compared with the existing research on
FTC in multi-agent systems, the proposed method can guar-
antee the consensus errors converge to zero asymptotically
without the strict rank assumption and can save communi-
cation cost effectively. Moreover, the Zeno behavior of the
system has been proved to be avoided. And we will focus
on investigating the consensus of event-triggered multi-agent
systems with more general kinds of faults in the future.
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