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Rehabilitation robots for stroke patients have drawn considerable attention because they can reduce the economic and labor costs
brought by traditional rehabilitation. Control methods for rehabilitation robots have been developed to stimulate the active motion
of patients and to improve the effectiveness of rehabilitation care. However, current control methods can only roughly adjust the
system’s stiffness and may fail in achieving satisfactory performance. To this end, this paper introduces a novel cost function
consisting of the tracking error term and the stiffness term. The cost function contains an interaction factor that represents the
patient’s motion intention to balance the weight of these two terms. When the patients try to actively do training tasks, the weight
of stiffness term increases, which leads to the larger allowable tracking error and lower stiffness eventually. An iterative updating
law of the stiffness matrix is given to reduce the proposed cost function. Theoretical analysis based on the Lyapunov theory is
given to ensure the feasibility of the proposed algorithm. Furthermore, a force estimation is used to improve interaction control
performance. Finally, simulation experiments are provided to show the effectiveness of the proposed algorithm.
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1 Introduction

It has been reported that the number of stroke patients aged
40 and over in China has increased to 12.42 million. 70%
of stroke patients suffer from the effect of disability [1]. Re-
habilitation of stroke patients usually needs long-term help
from physical therapists, which brings a heavy economic bur-
den for those patients. Meanwhile, the gap between the num-
bers of patients and physical therapists has limited the avail-
able rehabilitation care [2]. To solve this issue, rehabilita-
tion robots have been used to assist the repetitive rehabili-
tation training tasks. The main design methodology of the
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rehabilitation robot includes the platform type robot and the
exoskeleton type robot. The exoskeleton type robot needs to
be worn on the patient’s body, which applies few constraints
on the patient’s ordinary movement. There are considerable
applications of the exoskeleton type robot in the area of the
rehabilitation, i.e., the upper limb exoskeleton, lower limb
exoskeleton and hand exoskeleton [3–5]. The platform type
robot is fixed on the stationary platform rather than putting on
the patient’s body. Hence the platform type robot can bring a
lower burden than the exoskeleton based robot. One typical
application of the platform type robot is the ankle rehabilita-
tion robot [6–9]. Different from other robots [10–13], there
exist a large amount of interactions during the rehabilitation
training. Therefore, the safe and efficient interactive control

http://crossmark.crossref.org/dialog/?doi=10.1007/s11431-020-1671-6&domain=pdf&date_stamp=January 18, 2021
https://doi.org/10.1007/s11431-020-1671-6
tech.scichina.com
springerlink.bibliotecabuap.elogim.com
https://doi.org/10.1007/s11431-020-1671-6
mailto:{long.cheng@ia.ac.cn}


Cao R, et al. Sci China Tech Sci April (2021) Vol. 64 No. 4 837

becomes one key issue of the rehabilitation robot.

For guaranteeing the compliant physical interaction be-
tween robots and a variety of environments, impedance con-
trol has been adopted for the interaction control during the
past thirty years [14, 15]. Impedance control aims at keep-
ing the desired force relationship between the robot and the
environment [16, 17]. As a special implementation of the
impedance control, the admittance control calculates the de-
sired reference trajectory from the desired interaction re-
lationship and the measured interaction force, and the de-
sired reference trajectory is then tracked by using the posi-
tion tracking controller. When the environment is unknown,
some adaptive impedance/admittance controllers have been
adopted by using the optimal control methods or the adap-
tive control methods [18–20]. For example, in ref. [21], the
authors designed a fuzzy logic based gain regulator to im-
plement the adaptive admittance control which is applied on
a redundantly actuated ankle rehabilitation robot. However,
when the environment is time-varying, designing one appro-
priate impedance controller still faces grand challenges.

Towards this challenge, iterative learning control has been
used in this area [22]. Iterative learning control can adjust the
stiffness parameter trial after trial during repetitive tasks. For
tackling the situation that the interaction force may be differ-
ent in each trial (i.e., in a human-robot interaction), a con-
trol law motivated by the human central nervous system was
proposed [23]. In this human-like control method, an itera-
tive adaptive law was designed to minimize the tracking error
and the stiffness term (the difference of the desired stiffness
and the controller stiffness). Furthermore, a robot controller
adapting the stiffness and reference trajectory simultaneously
and a bio-inspired controller imitating human motor learning
properties were provided for the interaction with the time-
varying environment [24, 25]. However, in a rehabilitation
training scenario, iterative learning control only focuses on
how to adjust the controller to ensure the convergence of the
system’s state as well as the interaction force. It cannot stim-
ulate the active participation of the patients, which limits its
usage in rehabilitation.

To overcome this limitation, an idea of “assist-as-needed
(AAN) control” has been proposed in ref. [26], which con-
siders the fact that stimulating the patient’s motion intention
is helpful to his/her recovery [27]. With the AAN controller,
the robot only gives the needed force when the patient’s func-
tional capability is not sufficiently strong to complete the
training tasks. When the patients can drive the robot to com-
plete tasks, the robot system should be compliant and fol-
low the motion of the patient. To achieve this idea, a min-
imal controller was designed for the upper limb rehabilita-
tion [28]. The designed controller consists of a sensor-less

force observer and an impedance controller. The stiffness pa-
rameter of the impedance controller is iteratively updated by
the designed updating law, and the stiffness parameter is ad-
justed with respect to the rehabilitation task’s motion error.
When the patients try to move actively and the motion er-
ror is greater than the desired value, the stiffness parameter
decreases and the ultimate bound of the allowable tracking
error increases, vice versa. From another view of achieving
the AAN control, an adaptive human-robot interaction con-
trol based on the series elastic actuator (SEA) was proposed
in refs. [29, 30]. The designed control method divided the
control mode into the robot-in-charge mode and the human-
in-charge mode. A smooth switching law was given to guar-
antee the stability of the whole system. However, these con-
trollers cannot minimize tracking errors and stiffness terms,
which leads to a worse performance compared with the afore-
mentioned iterative learning control.

In this paper, a novel iterative adaptive control method is
proposed to achieve the AAN controller. First, a novel cost
function with an interaction factor is proposed to balance the
weight of the tracking error and the stiffness term. The in-
teraction factor in this paper is designed according to the in-
teraction force. However, any other measured signals that
can reflect the patient’s motion intention can be used to de-
termine the interaction factor (i.e., the tracking error or the
surface electromyography (sEMG) [31]). A larger interac-
tion factor caused by the strong motion intention leads to the
higher weight of the stiffness item, which means that the algo-
rithm tends to reduce the stiffness term rather than the track-
ing error. Hence, the performance of the whole system can
be adaptively adjusted according to the patient’s motion in-
tention. An iterative updating law of the stiffness matrix is
given to reduce the cost function. The ultimate bounded set
of the tracking error and the stiffness parameter is analyzed
based on the Lyapunov theory. The main contributions and
innovations of this paper are listed as follows.

(1) A novel cost function with an interaction factor is
given, and this interaction factor represents the motion inten-
tion and affects the weight of each term in the cost function.

(2) An appropriate iterative updating law is designed to
reduce the proposed cost function. The allowable bounded
set of the ultimate tracking error and stiffness parameters are
theoretically analyzed.

(3) The controller with a force estimation is presented to
further improve the performance of the whole system.

2 Methodology

2.1 System model

In this paper, the dynamic model of the rehabilitation robot
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can be written by the following Euler-Lagrange equation:

M(q)q̈ +C(q, q̇)q̇ +G(q) = τc + τi, (1)

where q, q̇ and q̈ denote the joint position, velocity and ac-
celeration, respectively. M(q) and C(q, q̇) denote the inertia
matrix and the Coriolis fore matrix, respectively. G(q) is the
gravity vector. τc and τi denote the control torque and the
interaction torque with the patient, respectively. One com-
mon property of Euler-Lagrange dynamics is listed as follows
[32].

Property 1. The matrix Ṁi(qi(t))− 2Ci(qi(t), q̇i(t)) is skew-
symmetric.

Define a state variable s as follows:

qe = q − qd,

s = q̇e + qe,
(2)

where qd is the desired rehabilitation task trajectory. qe and
q̇e denote the position error and the velocity error with re-
spect to the desired trajectory, respectively. s represents the
filtered tracking error, which is usually used in the design of
robot controller [33]. It can be proven that s goes to zero if
and only if qe goes to zero.

The following impedance controller combined with the er-
ror feedback and the compensation of the system dynamics is
adopted:

τc = −K(t)s + M(q)(q̈d − q̇e) +C(q, q̇)(q̇d − qe) +G(q), (3)

where K(t) is the stiffness matrix and it reflects the relation-
ship between the tracking error and the control torque. A
greater K(t) means that the same tracking error can lead to a
greater control torque, which makes the robotic system more
“stiff”. For rehabilitation tasks, choosing an appropriate stiff-
ness parameter is difficult due to the different rehabilitation
situation of the patients. To solve this problem, this paper
uses the iterative algorithm to find the proper stiffness param-
eter in the next subsection.

2.2 Iterative adaptive control law

A cost function for minimizing the tracking error and the
stiffness matrix is given as follows:

V(t) = Vp(t) + Vc(t), (4)

where

Vp(t) =
1
2

sTM(q)s,

Vc(t) =
1
2

∫ t

t−T
w2

i vec(K(τ))Tvec(K(τ))dτ,

and vec(·) denotes the column vectorization operator. T is the
interval length of every training trial. wi is the interaction fac-
tor used to denote the human motion intention. In this paper,
the interaction force is used to construct wi as follows:

wi =
1

1 + e−(τk−1
i −τ∗)

,

where τk−1
i represents the mean value of interaction force in

the (k − 1)th training trial and τ∗ denotes the desired inter-
action force determined by the patient’s rehabilitation condi-
tion. In practice, the desired interaction force can be directly
obtained by recording the interaction force between the pa-
tient and the experienced therapist during the manual reha-
bilitation training. The interaction factor follows the formula
of the sigmoid function which maps the interaction force to
a value within the interval (0, 1). In fact, any monotone and
smooth function ranged from (0, 1) can be considered as a
candidate function for the interaction factor.

Remark 1. The reason of minimizing Vp(t) is to reduce the
tracking error during the ith training trial. The reason of min-
imizing Vc(t) is that a smaller K(t) can lead to a “less” in-
tervention from the rehabilitation robot, which stimulates the
active participation of patients. Therefore, the cost function
defined by eq. (4) is expected to be minimized.

Define an auxiliary variable X(t) = wivec(K(t)). Rewrite
Vc(t) to be Vc(t) = 1

2

∫ t
t−T XT(τ)X(τ)dτ. To reduce the cost

function defined by eq. (4), an iterative updating law of X(t)
is proposed as follows:

δX(t) = X(t) − X(t − T ) = vec(ssT) − γ

1 − wi
X(t), (5)

where γ > 0 denotes the forgetting factor. Note that eq. (5)
can be rewritten as

X(t) =
1 − wi

1 + γ − wi
[vec(ssT) + X(t − T )]. (6)

Taking the fact that X(t) = wivec(K(t)) into eq. (6) can obtain
the iterative updating law of K(t):

vec(K(t)) =
1 − wi

(1 + γ − wi)wi
[vec(ssT) + wi−1vec(K(t − T ))].

(7)

Lemma 1. The stiffness matrix K(t) in eq. (7) is always
symmetric positive definitive if K(t), k ∈ [0,T ) is symmetric
positive definitive.

Proof. For the first iteration, it follows form eq. (7) that
K(t) = 1−wi

(1+γ−wi)wi
[vec(ssT) + wi−1vec(K(t − T ))], t ∈ [T, 2T ).

Since sTs is symmetric positive semi-definitive, K(t) (t ∈
[0,T )) is symmetric positive definitive and 0 < wi < 1, it
is easy to verify that K(t) (t ∈ [T, 2T )) is symmetric positive
definitive. By repeating the same procedure, the correctness
of this lemma can be proven.
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Because the stiffness matrix K(t) is always positive defini-
tive, its minimal eigenvalue λK is positive.

The entire control block diagram of the proposed “assist-
as-needed” controller is given in Figure 1. The iterative adap-
tive law uses the state information and the interaction force to
generate the new stiffness matrix. Then the impedance con-
troller uses the updated stiffness matrix and the tracking error
to calculate the control force. Driven by the obtained control
force, the robot system tracks the desired rehabilitation tra-
jectory and keeps an impedance relationship with the patient.

Theorem 1. Under the iterative updating law defined by
eq. (5) and the controller defined by eq. (3), the first-
order difference of overall cost function satisfies that σV(t) =
V(t) − V(t − T ) ≤ 0 until ∥s∥ and ∥vec(K(t))∥ ultimately go to
a bounded set Ω defined in the following proof, which means
that eqs. (3) and (5) lead to the decrease of eq. (4).
Proof. Taking eq. (3) into eq. (1) leads to

M(q)q̈ +C(q, q̇)q̇ +G(q) = −K(t)s + M(q)(q̈d − q̇e)

+C(q, q̇)(q̇d − qe) +G(q) + τi,

M(q)ṡ +C(q, q̇)s + K(t)s = τi. (8)

Using Property 1, then the time-derivative of Vp(t) can be
written as

V̇p = sTM(q)ṡ +
1
2

sTṀ(q)s

= sT[−C(q, q̇)s − K(t)s + τi] +
1
2

sTṀ(q)s

= −sTK(t)s + sTτi. (9)

Integrating eq. (9) from t to (t − T ), the first-order difference
of Vp(t) can be obtained:

δVp = Vp(t) + Vp(t − T )

=

∫ t

t−T
V̇p(τ)dτ

= −
∫ t

t−T
(sTK(t)s − sTτi)dτ. (10)

Robot 

dynamic

Patient 

Impedance 

control

Iterative
adaptive law

Desired 
trajectory

qd, qd&

q, q&

K s

iτ

cτ

iτ

Figure 1 Control block diagram of the proposed “assist-as-needed” con-
troller.

Next, the first-order difference of Vc(t) can be written as

δVc = Vc(t) − Vc(t − T )

=
1
2

∫ t

t−T
XT(τ)X(τ) − X(τ − T )TX(τ − T )dτ

=
1
2

∫ t

t−T
[X(τ) − X(τ − T )]T[X(τ) + X(τ − T )]dτ

=
1
2

∫ t

t−T
[X(τ) − X(τ − T )]T[2X(τ) − X(τ) + X(τ − T )]dτ

= −1
2

∫ t

t−T
(δX(τ))TδX(τ)dτ +

∫ t

t−T
(δX(τ))TX(τ)dτ. (11)

Taking eq. (5) into eq. (11), it can be obtained that

δVc =

∫ t

t−T
[vec(ssT) − γ

1 − wi
X(τ)]TX(τ)dτ

− 1
2

∫ t

t−T
δX(τ)TδX(τ)dτ

= −1
2

∫ t

t−T
δX(τ)TδX(τ)dτ −

∫ t

t−T

γ

1 − wi
X(τ)TX(τ)dτ

+

∫ t

t−T
wivec(ssT)Tvec(K(τ))dτ

= −1
2

∫ t

t−T
δX(τ)TδX(τ)dτ −

∫ t

t−T

γ

1 − wi
X(τ)TX(τ)dτ

+

∫ t

t−T
wisTK(τ)sdτ. (12)

Combining eq. (10) and eq. (12) leads to

δV = δVc + δVp

= −1
2

∫ t

t−T
δX(τ)TδX(τ)dτ −

∫ t

t−T

γ

1 − wi
X(τ)TX(τ)dτ

+

∫ t

t−T
wisTK(τ)sdτ −

∫ t

t−T
(sTK(t)s − sTτi)dτ

= −
∫ t

t−T
[(1 − wi)sTKs +

γ

1 − wi
X(τ)TX(τ) − sTτi]dτ

− 1
2

∫ t

t−T
δX(τ)TδX(τ)dτ. (13)

Obviously, one sufficient condition to make δV ≤ 0 is that

(1 − wi)sTKs +
γ

1 − wi
X(τ)TX(τ) − sTτi ≥ (1 − wi)λK∥s∥2

+
γ

1 − wi
∥X(τ)∥2 − ∥s∥∥τi∥ ≥ 0. (14)

• If the interaction force ∥τi∥ , 0, according to the uni-
formly ultimately bounded (UUB) stability theory, it follows
that ∥s∥2 and ∥vec(K(t))∥2 go to the bounded set Ω which is
defined as follows:

Ω =

{
∥s∥2, ∥vec(K(t))∥2

∣∣∣∣∣∣4(1 − wi)2λ
2
K(∥s∥ − 1

2(1−wi)λK
∥τi∥)2

∥τi∥2
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+
4γλKwi∥vec(K(t))∥2

∥τi∥2
≤ 1

}
. (15)

• If the interaction force ∥τi∥ = 0, the function eq. (14)
holds and δV ≤ 0 always holds, which means eq. (4) can be
minimized.

Remark 2. It is obvious that eq. (15) follows the form of
an ellipse in the first quadrant:

(x − h)2

a
+

(y − k)2

b
= 1, x ≥ 0, y ≥ 0, (16)

where h = 1/(2(1−wi)λK)∥τi∥, k = 0, a = ∥τi∥2/(4(1−wi)2λ
2
K)

and b = ∥τi∥2/(4γλKwi). From eq. (16), it can be concluded
that the upper limits of x and y are

√
h+a and

√
k+b, respec-

tively. Note that as wi increases, h and a increase while b de-
creases. It means that the interaction factor wi can affect the
shape of the ultimate upper limits of ∥s∥2 and ∥vec(K(t))∥2.
When the patient has a stronger interaction intention, then
wi increases. As a result, the upper bound of tracking error
∥s∥2 is increased to allow a larger tracking error and the upper
bound of ∥vec(K(t))∥2 is decreased to generate a lower stiff.
Figure 2 is given to show the change of eq. (15) caused by
different wi.

Remark 3. According to eqs. (15) and (16), the forgetting
factor γ is closely related to the ultimate bound of the stiff-
ness matrix K(t). A larger γ leads to a lower ultimate upper
bound of K(t). In this way, the robot behaves more “com-
pliant”, which is beneficial to the patient’s active rehabilita-
tion training. However, a large γ can cause the vibration of
K(t) by eq. (5), which results in a worse transient process
of K(t) and may cause the un-safety during the rehabilitation
training. Therefore, there is a selection trade-off for γ. In
practice, the forgetting factor γ should be initially set to be a
small value, and then be gradually increased meanwhile the
vibration of K(t) is avoided. By this trial-and-error process,
the forgetting factor γ can be determined.
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Figure 2 (Color online) Curve of eq. (15) with different ωi.

2.3 Interaction force estimation

The controller designed in the above section does not con-
sider the effect of the interaction force τi. If this force can
be considered in the controller, a better control performance
can be achieved. In this paper, a force estimation based on
the generalized momentum method is used to estimate the in-
teraction force [34]. First, the generalized momentum can be
defined as

p = M(q)q̇. (17)

Taking eq. (17) into eq. (1), it generates that

ṗ = CT(q, q̇)q̇ + τc −G(q) − τi = u − τi, (18)

where u is defined as u = CT(q, q̇)q̇+τc. The interaction force
τi can be modeled as follows:

τ̇i = Aτi + wτ, (19)

where wτ denotes the uncertainty and satisfies wτ ∼ N(0,Qτ).
A is the constant gain matrix. Combining eq. (18) and eq.
(19) has ṗ

τ̇i

 =
 0n −In

0n A


 p

τi

 +
 In

0n

 u +

 0

wτ

 ,
y =

[
In 0n

]  p

τi

 + v,

(20)

where v is the measurement noise and satisfies v ∼ N(0,Re).
Let x = [pT, τT

i ]T, Ae = [0n,−In; 0n, A], Be = [In, 0n]T, and
Ce = [In, 0n]. Define x̂ and ŷ as the estimated values of x and
y. Then a state observer is constructed as follows:

˙̂x = Ae x̂ + Beu + L(y − ŷ),

ŷ = Ce x̂,
(21)

where L is designed by

L = PCT
e R−1

e , (22)

where P is the solution of the following algebraic Riccati
equation:

AeP + PAT
e − PCT

e R−1
e CeP + Qe = 0, (23)

where Qe = diag([0,Qτ]) denotes the uncertainty of the state.
From the definition of x(t), the estimated value of the interac-
tion force τi is

τ̂i =

 0 0 1 0

0 0 0 1

 x̂. (24)



Cao R, et al. Sci China Tech Sci April (2021) Vol. 64 No. 4 841

Since the linear augmented system defined by eq. (20) is ob-
servable and the observer defined by eq. (21) is a continuous-
time Kalman filter, by the same analysis technique in ref.
[35], the estimation error of the interaction force τ̃i = τi − τ̂i

is bounded.
Using the above force estimation, a controller with the

compensation of the interaction force is given as follows:

τu = −K(t)s + M(q)(q̈d − q̇e) +C(q, q̇)(q̇d − qe) +G(q) − τ̂i.

(25)

Taking eq. (25) into eq. (1) leads to

M(q)q̈ +C(q, q̇)q̇ +G(q) = −K(t)s + M(q)(q̈d − q̇e)

+C(q, q̇)(q̇d − qe) +G(q) − τ̂i + τi,

M(q)ṡ +C(q, q̇)s + K(t)s = τ̃i. (26)

Theorem 2. By adopting the iterative updating law de-
fined by eq. (5) and the controller defined by eq. (25), the
first-order difference of the overall cost function satisfies that
σV(t) ≤ 0 until ∥s∥ and ∥vec(K(t))∥ finally go to the bounded
set defined in the following proof. This indicates that the cost
function can be reduced by eqs. (4) and (25).
Proof. Set the Lyapunov candidate to be V = Vc + Vp as
the one defined by eq. (4). The calculation of δVc is the same
as the one defined by eq. (12).

The time-derivative of Vp(t) is

V̇p = sTM(q)ṡ +
1
2

sTṀ(q)s

= sT[−C(q, q̇)s − K(t)s + τ̃i] +
1
2

sTṀ(q)s

= −sTK(t)s + sTτ̃i. (27)

Integrating eq. (27) from (t−T ) to t, the first-order difference
of Vp(t) is

δVp =

∫ t

t−T
V̇p(τ)dτ = −

∫ t

t−T
[sTK(t)s − sTτ̃i]dτ. (28)

According to eq. (28) and eq. (12), δV is given as

δV = −
∫ t

t−T

[
(1 − wi)sTKs +

γ

1 − wi
X(τ)TX(τ) − sTτ̃i

]
dτ

− 1
2

∫ t

t−T
δX(τ)TδX(τ)dτ. (29)

Following the similar procedure from eq. (13) to eq. (15), it
can be obtained that

Ω̄ =

{
∥s∥2, ∥vec(K(t))∥2

∣∣∣∣∣∣4(1 − wi)2λ
2
K(∥s∥ − 1

2(1−wi)λK
∥τ̃i∥)2

∥τ̃i∥2

+
4γλKwi∥vec(K(t))∥2

∥τ̃i∥2
≤ 1

}
, (30)

where Ω̄ is the set which ∥s∥2 and ∥vec(K(t))∥2 ultimately go
into. If the estimation error of the interaction force is ∥̃τi∥ = 0,
the function eq. (29) is always nonnegative, which implies
the minimization of eq. (4).

From the above analysis, the set Ω̄ is affected by the inter-
action factor wi and the estimation error τ̃i. The adjustment
of wi can affect whether the whole system is compliant to the
patient. Eq. (30) also follows the form of the eclipse eq. (16)
where h = 1/(2(1−wi)λK)∥̃τi∥, k = 0, a = ∥̃τi∥2/(4(1−wi)2λ

2
K)

and b = ∥̃τi∥2/(4γλKwi). Consider the fact that the estimation
error ∥̃τi∥ is usually smaller than ∥τi∥ in practice. This leads
to the smaller

√
h + a and

√
k + b. Therefore, the ultimate

tracking error and the stiff parameters are smaller which is
beneficial for the patient’s rehabilitation training.

Remark 4. According to the Brunnstrom rehabilitation as-
sessment theory, the rehabilitation process of the post-stroke
patients can be divided into six phases: (1) flaccidity; (2)
synergies (some spasticity); (3) marked spasticity; (4) out of
synergy (less spasticity); (5) selective control of movement;
and (6) isolated/coordinated movement. During different re-
habilitation phases, different treatments should be adopted.
Usually, the physical therapy (PT) treatment is adopted dur-
ing the first two phases (“flaccidity” and “synergies”) and
the occupational therapy (OT) treatment is adopted in the
last two phases (“selective control of movement” and “iso-
lated/coordinated movement”). For the phases of “marked
spasticity” and “out of synergy”, some special treatments are
applied to avoid the muscle spasticity.

According to the “assist-as-needed” feature of the pro-
posed controller, it can be applied in both the PT treatment
and the OT treatment. During the PT treatment, the patient’s
muscle lacks of the motion ability. By selecting a small in-
teraction factor wi, the ultimate upper bound of the tracking
error becomes smaller and the patient passively follows the
robot’s motion. During the OT treatment, the patient has par-
tially recovered his/her motion ability. The robot should be-
have compliantly to stimulate the patient’s own motion by
setting the interaction factor wi close to one.

3 Simulation results

The rehabilitation robot model is assumed to be a two-link
revolute joint robot that can represent the finger rehabilitation
robot shown in Figure 3. The details of the robot’s model are
listed as follows [36]:M11(q) M12(q)

M21(q) M22(q)

 q̈i+

C11(q, q̇) C12(q, q̇)

C21(q, q̇) C22(q, q̇)

 q̇i+

g1(q)

g2(q)

 = τu+τi.

All elements of M(q), C(q, q̇) and g are listed as follows:
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Figure 3 (Color online) The finger rehabilitation robot prototype.

M11(q) = m1l2c1 + m2[l21 + l2c2 + 2l1lc2 cos(q2)] + I1 + I2,

M12(q) = M21(q) = m2[l2c2 + l1lc2 cos(q2)] + I2,

M22(q) = m2l2c2 + I2,

C11(q, q̇) = −m2l1lc2 sin(q2)q̇2,

C12(q, q̇) = −m2l1lc2 sin(q2)(q̇1 + q̇2),

C21(q, q̇) = m2l1lc2 sin(q2)q̇1,

C22(q, q̇) = 0,

g1(q) = (m1lc1 + m2l1)g sin(q1) + m2lc2g sin(q1 + q2),

g2(q) = m2lc2g sin(q1 + q2).

The physical parameters of the robot are chosen as follows:
m1 = 1.0 kg, m2 = 0.5 kg, l1 = 1.0 m, l2 = 0.6 m, lc1 = 0.5 m,
lc2 = 0.3 m, J1 = 0.2083 kg/m2, J2 = 0.0540 kg/m2,
and g = 9.8 m/s2. The initial states of the robot are cho-
sen as q(0) = [3, 2]T rad and q̇(0) = [1, 0]T rad/s. The
goal states of the robot are chosen as qd(t) ≡ [1, 0]T rad,
q̇d(t) ≡ [0, 0]T rad/s.

In this simulation section, four groups of simulations are
conducted to show the effectiveness of the proposed algo-
rithm. The total iteration number is 4. The robot’s torque
controller used in Sects. 3.1, 3.2, and 3.4 takes the form de-
fined by eq. (3). In Sect. 3.3, the robot’s torque controller is
based on the force estimation, which is defined by eq. (25).
The initial stiffness matrix is chosen as K(0) = [0, 0; 0, 0].
The new stiffness matrix is updated by the proposed itera-
tive updating law defined by eq. (7). The forgetting factor in
eq. (7) is set to be γ = 0.01. All simulation examples are
conducted by using the “ode4” method of Matlab 9.7 on the
platform of CPU Intel Core i5-8300H, Windows 10.

3.1 Effectiveness of the interaction factor

To verify the proposition that the interaction factor wi can af-
fect the ultimate bounded set of the tracking error and the
stiffness parameters, two types of interaction factors are cho-
sen in Figure 4. The interaction force τi in this simulation is
assumed to be τi = [10, 0]TN. In Figure 4, dotted lines denote
the results with wi = 0.4, solid lines denote the results with

wi = 0.6, and different lines denote different iterative times.
Figure 4(a) shows the filtered tracking errors s under the con-
troller defined by eq. (3). Figure 4(b) shows the profiles of
the robot’s joint angle q under the controller defined by eq.
(3). Figure 4(c) shows the mean values of every element of
the stiffness matrix K under the controller defined by eq. (3).
With the interaction factor being wi = 0.4, the tracking er-
rors of four iteration are [1.513, 0]T, [1.072, 0]T, [0.896, 0]T
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Figure 4 (Color online) Simulation results under the controller defined by
eq. (3) with two different interaction factors. (a) Tracking errors; (b) joint
angles; (c) stiffness parameters.
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and [0.798, 0]Trad, and the final average stiffness matrix after
four iterations is K(t) = [13.048, 0.155; 0.155, 0.956]. With
the interaction factor being wi = 0.6, the tracking errors
of four iteration are [1.723, 0]T, [1.231, 0]T, [1.034, 0]T and
[0.924, 0]Trad, and the final average stiffness matrix after four
iterations is [11.237, 0.137; 0.137, 0.922]. From the above re-
sults, it is obvious that a larger wi can lead to the larger allow-
able tracking errors and the smaller stiffness parameters.

3.2 Test with the time-varying interaction force

To show the controller defined by eq. (3) can achieve the
assist-as-needed control, the interaction force is further as-
sumed to be time-varying and can increase as long as the it-
eration. In this simulation, the interaction force satisfies the
following form:

τi(t) =


0.5(⌊t/T ⌋ + 1)t + 0.5,

when 0 ≤ mod(t/T ) < 5,

−0.5(⌊t/T ⌋ + 1)(t − 5) + 2.5(⌊t/T ⌋ + 1) + 0.5,

when 5 ≤ mod(t/T ) < 10,

where T = 10 s, t ∈ (0, 4T ) is the simulation time and mod(·)
denotes the remainder operator. The mean values of interac-
tion forces during four iterations are [2.988, 0]T, [4.231, 0]T

[5.475, 0]T and [6.719, 0]TN. The interaction force is increas-
ing because of the increase of the motion intention of the pa-
tient. The simulation results are shown in Figure 5. With the
controller defined by eq. (3), the tracking errors of four itera-
tions are [0.759, 0.111]T, [0.460, 0.048]T, [0.865, 0.151]T and
[1.167, 0.247]Trad, and the final average stiffness matrix af-
ter four iterations is [4.333, 0.096, 0.096, 0.226]. It is obvious
that the stiffness parameters decrease when the mean value of
the interaction force exceeds τ∗, which means the system can
behave more compliant if the patient has the strong motion
intention.

3.3 Effectiveness of the force estimation

To test the effectiveness of the interaction force estimation,
two groups of simulation studies are made in Figure 6. The
interaction force in this simulation is τi = [10, 0]TN. In Fig-
ure 6, dotted lines denote the results under the controller de-
fined by eq. (25), solid lines denote the results under the
controller defined by eq. (3), and different lines denote dif-
ferent iteration times. Figure 6(a) shows the tracking er-
rors s under the controller defined by eq. (3). Figure 6(b)
shows the robot’s joint profile q. Figure 6(c) shows the
mean values of four elements of the stiffness matrix K un-
der the controller defined by eq. (3). With the controller
defined by eq. (3), the tracking errors of four iterations are

[1.513, 0]T, [1.072, 0]T, [0.896, 0]T and [0.798, 0]Trad, and
the ultimate average stiffness matrix after four iterations is
[13.048, 0.155; 0.155, 0.956]. With the controller defined by
eq. (25), the tracking errors of four iteration are [0.094, 0]T,
[0.032, 0]T, [0.013, 0]T and [0.002, 0]Trad, and the ultimate
average stiffness matrix after four iterations is [2.923, 0.3034;
0.304, 1.076]. From the above results, it is obvious that
the force estimation can bring a better control performance
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Figure 5 (Color online) Simulation results under the controller defined by
eq. (3) with the time-varying interaction force. (a) Tracking errors; (b) joint
angles; (c) stiffness parameters.
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Figure 6 (Color online) Simulation results under the controller defined by
eq. (25) and the controller defined by eq. (3). (a) Tracking errors; (b) joint
angles; (c) stiffness parameters.

because of the lower allowable tracking errors and the lower
stiffness parameters.

3.4 Comparison with the minimal assist-as-needed con-
troller

Compared with the minimal assist-as-needed controller pro-
posed in ref. [28], the algorithm designed in this paper can

achieve a better performance. For guaranteeing the fairness
of this comparison, the state observer used in ref. [28] is re-
placed by the true state value as the one used in this paper.
Then the minimal assist-as-needed controller is listed as fol-
lows:

τu = M(q)(q̈d + q̇e) +C(q, q̇)(q̇d + qe) + g(q) − Kk s,

Kk = (1 + xk−1)Kk−1,

xk−1 =
rk−1 − r∗

r∗

(
∥rk−1 − r∗∥
∥rk−2 − r∗∥

)sign(r∗−r̂k−1)

,

(31)

where r∗ denotes the allowable motion error, and rk−1 denotes
the mean value of the motion errors in the (k − 1)th experi-
ment. By replacing τk−1 and τ∗ with rk−1 and r∗, respectively,
the interaction factor wi in eq. (7) can also be constructed by
the motion error. In this simulation, r∗ is chosen as r∗ = 0.8.
Two initial stiffness matrices are both set to be the unit ma-
trix.

In Figure 7, the dotted line represents the results under
the controller defined by eq. (31), and the solid line rep-
resents the results under the controller defined by eq. (3).
With the controller defined by eq. (3), the tracking errors
of four iterations are [1.513, 0]T, [1.666, 0]T, [1.348, 0]T and
[1.131, 0]Trad, and the final average stiffness matrix after four
iterations is [9.141, 0.117; 0.117, 0.406]. With the controller
defined by eq. (31), the tracking errors of four iterations are
[6.832,−0.640]T, [0.966, 0]T, [0.966, 0]T and [0.800, 0]Trad,
and the final average stiffness matrix after four iterations is
[12.501, 0; 0, 12.501]. It is clear that when the patient applies
the same interaction force, the system under the controller
defined by eq. (3) behaves more compliantly, and it is more
helpful to the active participation of the patient.

4 Conclusions

This paper studies a novel assist-as-needed controller for the
interaction control between the rehabilitation robot and the
patient. This controller includes an adjustable stiffness ma-
trix whose iterative updating law is designed to reduce the
cost function composed of the tracking error and the stiffness
parameters. The cost function includes an interaction factor
reflecting the patient’s motion intention. When the patient ap-
plies sufficiently large interaction force, this interaction fac-
tor becomes larger, and then the allowable tracking error of
the robot system becomes larger and the stiffness parameter
becomes smaller. Furthermore, a compensation of interaction
force based on the force estimation is given to further improve
the control performance. Finally, the Lyapunov analysis and
simulation results are given to demonstrate the effectiveness
of the proposed algorithm. Future work is to focus on the de-
termination of wi by using some motion intention recognition
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Figure 7 (Color online) Simulation results under the controller eq. (31)
and eq. (3). (a) Tracking errors; (b) joint angles; (c) stiffness parameters.

algorithms (based on the patient’s physiological and kine-
matic cues) and to conduct the corresponding physical ver-
ification experiments.
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