
SCIENCE CHINA
Technological Sciences Print-CrossMark

October 2020 Vol. 63 No. 10: 1898–1920
https://doi.org/10.1007/s11431-020-1666-4

c⃝ Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020 tech.scichina.com link.springer.com

. Review .Special Topic: Natural Language Processing Technology

A survey of syntactic-semantic parsing based on constituent and
dependency structures

ZHANG MeiShan*

School of New Media and Communication, Tianjin University, Tianjin 300072, China

Received March 9, 2020; accepted June 3, 2020; published online September 16, 2020

Syntactic and semantic parsing has been investigated for decades, which is one primary topic in the natural language processing
community. This article aims for a brief survey on this topic. The parsing community includes many tasks, which are difficult
to be covered fully. Here we focus on two of the most popular formalizations of parsing: constituent parsing and dependency
parsing. Constituent parsing is majorly targeted to syntactic analysis, and dependency parsing can handle both syntactic and
semantic analysis. This article briefly reviews the representative models of constituent parsing and dependency parsing, and
also dependency graph parsing with rich semantics. Besides, we also review the closely-related topics such as cross-domain,
cross-lingual and joint parsing models, parser application as well as corpus development of parsing in the article.
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1 Introduction

Sentence-level syntactic and semantic parsing is one major
topic in the natural language processing (NLP) community,
which aims to uncover the internal structural relations in sen-
tences [1–4]. On the one hand, from the view of linguistics,
the goal of parsing is to disclose how words are combined
to form sentences and the rules that govern the formation of
sentences. On the other hand, from the view of NLP applica-
tions, parsing can be beneficial for a number of tasks, such as
machine translation, question answering, information extrac-
tion, sentiment analysis and generation [5–7], and the perfor-
mance of parsing matters greatly.

Parsing has been extensively studied for decades. The goal
of syntactic parsing is to derive the syntax information in
sentences, such as the subjects, objects, modifiers and top-
ics. There have been a number of achievements for the task,
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and large-scale corpora for a range of languages have been
already available. Compared with syntactic parsing, seman-
tic parsing is much more difficult due to the complex struc-
ture of various semantics such as predicate-argument, and it
is also a long-range goal of NLP. With the recent advance in
data-driven machine learning models, semantic parsing has
received increasing interests, especially under the neural set-
ting. Several datasets based on certain formalizations have
been developed to facilitate research.

Parsing often relies on specific grammars, which are used
to refine the output structures of syntax and semantics. There
are many sophisticated grammars for accurately express-
ing the syntactic and semantic information at the sentence-
level. In this paper, we focus on two popular grammars
which are concerned mostly. Context-free grammar (CFG),
well known as constituent parsing (or phrase-structure pars-
ing [4] thus, also as constituent grammar or phrase-structure
grammar), adopts hierarchal phrase-structural trees to orga-
nize sentence-level syntactic information, which has been re-
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searched intensively since very early. Dependency grammar
is another widely-adopted grammar for syntactic and seman-
tic parsing, where words are directly connected by depen-
dency links, with labels indicating their syntactic or semantic
relations [2]. Because of the conciseness and easy annotation
of dependency structures, dependency parsing has received
more attention than constituent parsing.

Besides, there are many other great grammars. The rep-
resentative topics include combinatory categorial grammar
(CCG), head-driven phrase structure grammar (HPSG), lex-
ical functional grammar (LFG), abstract meaning represen-
tation (AMR), minimal recursion semantics (MRS), univer-
sal conceptual cognitive annotation (UCCA) and also several
logic-targeted formalizations. All these categories have been
researched for a long time and in particular several of which
are now quickly developed because of the powerfulness of
neural networks as well as pretrained contextualized word
representations. However, this article leaves these studies for
future more comprehensive surveys.

Here we make a brief survey for syntactic and seman-
tic parsing based on constituent grammar and bi-lexicalized
dependency grammar. In Sects. 2 and 3, we review the
studies of constituent parsing and dependency parsing, re-
spectively, where the dependency parsing is based tree struc-
ture and specifically targeted to syntax. We further investi-
gate semantic-oriented dependency graph parsing in Sect. 4.
Sects. 5 and 6 review cross-domain and cross-lingual parsing,
which is one hot direction. Sect. 7 reviews the joint models
which are targeted to parsing as the final goal, while Sect.
8 reviews the parser application strategies, where parsers are
evaluated on downstream applications. Sect. 9 introduces
the related treebank work, which serves the major training
corpus for various parsers as well as for parser model evalua-
tions. Finally, in Sect. 10, the conclusion and future work are
summarized.

2 Constituent parsing

Constituent parsing is one fundamental task for syntax pars-
ing, which has received great interest for decades [1, 3, 4].
Figure 1 shows an example constituent tree, where nodes
in the constituent tree are constituent spans, also known as
phrases. The goal of constituent parsing is to uncover these
phrases as well as their relations. The standard evaluation
method of constituent parsers is based on recognition of the
phrases, where precision, recall and the F1-measure scores
are adopted as the major metrics.

The mainstream approaches of constituent parsing include
the chart-based and the transition-based models. Current neu-
ral models have achieved state-of-the-art performances under

both two kinds of methods. In fact, neural constituent parsing
starts very early before the prosperity of deep learning [8]. In
this section, first we introduce the chart-based and transition-
based constituent models, and then show several other mod-
els out of the two categories. Here before the detailed intro-
duction, we show an overall picture of the performances of
various representative constituent parsers in Table 1, where
ensemble models are excluded for fair comparisons.

2.1 Chart-based parsing

2.1.1 Statistical models

Early successful constituent parsing models exploit the pro-
ductive CFG rules to guide the generation of constituent trees.
The chart parsing algorithms are exploited universally for de-
coding, and most of the effort is focused on the refinement
of CFG rules, which serve as the major sources of parameter
estimation. Refs. [9, 10] extended probabilistic context-free
grammar (PCFG) with head lexicalization, associating PCFG
rules with head words, which can effectively boost the PCFG
parsing performance. Unlexicalized models have also re-
ceived great attention, by using fine-grained structural anno-
tation [32] or automatic latent variables [12] to enrich PCFG
rules, leading to comparable or even better performance than
lexicalized models.

The above models suffer the difficulty of integrating non-
local features since future decisions are invisible during de-
coding which is critical for global inference. Condition ran-
dom field (CRF) is one way for global modeling. Ref. [13]
proposed a strong constituent parsing model by adapting the
standard n-gram CRF models for CFG, and meanwhile pre-
senting rich sophisticated features. The dependencies among
adjacent CFG rules can be modeled, which are used for global
inference.

2.1.2 Neural models

Ref. [33] is the first work to define scores over phrases by
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Table 1 A comparison of representative constituent parsing models, where
phrase-level F1 scores are reported, PTB and CTB are two benchmark
datasets for the English and Chinese parsing, respectively

Model Main features PTB CTB

Chart-based, statistical models

Ref. [9] Head-lexicalization 88.2 N/A

Ref. [10] Max-entropy 89.5 80.8

Ref. [11] Self-training 92.3 N/A

Ref. [12] PCFG 90.1 83.3
Ref. [13] CRF 89.9 N/A

Transition-based, statistical models

Ref. [14] Greedy 86.0 N/A

Ref. [15] Global learning, beam 91.3 85.6

Chart-based, neural models

Ref. [16] Recursive NN 90.4 N/A

Ref. [17] CNN 91.1 N/A

Ref. [18] LSTM, span 91.8 N/A

Ref. [19] Self-attentive 93.5 N/A

Ref. [19] +ELMo 95.1 N/A

Transition-based, neural models

Ref. [20] Neural+discrete 90.7 86.6
Ref. [21] Global learning, beam 90.7 N/A

Ref. [22] Language modelling 92.4 82.7

Ref. [23] Dynamic oracle 91.3 N/A

Ref. [24] In-order 91.8 86.1

Ref. [25] Policy gradient 92.6 86.0

Ref. [26] Policy gradient 95.4 86.0

Other methods (report neural models only)

Ref. [27] Distance to tree 91.8 86.5

Ref. [28] Local classification 92.7 87.3

Ref. [29] Sequence labeling 91.1 85.6

Ref. [30] HPSG grammar 96.3 92.2
Ref. [31] HPSG, improved attention 96.3 N/A

recursive neural networks. The CFG-based constituent trees
can be naturally modeled in this way. Neural CRF parsing is
accordingly proposed by ref. [17], which can be regarded as
a neural enhancing of ref. [13]. The work simply uses feed-
forward neural networks to encode atomic features instead of
human composition. Notice that it is different from ref. [33]
as no recursive composition is used here.

Ref. [18] proposed state-of-the-art chart-based neural
models. On the one hand, they use deep bidirectional long-
short term memory (LSTM) neural networks to enhance sen-
tence representations, designing sophisticated strategies for
span representation. On the other hand, they also adopt
top-down incremental parsing for decoding, which dilutes
the differences between chart-based and transition-based ap-
proaches. Their results are very strong on par with the state-
of-the-art transition-based methods at the same time. The
work is further followed by ref. [34] with extensive analysis

and ref. [19] with a self-attentive encoder. In particular, ref.
[19] exploited contextualized word representation including
ELMo [35] and BERT [36], leading to almost the best pars-
ing performance in the literature.

2.2 Transition-based parsing

2.2.1 Statistical models

The transition-based models demonstrate highly promising
for constituent parsing [14, 37]. The key idea is to define
a transition system with transition states and actions, where
states denote partial parsing outputs, and actions specify next-
step state-transition operations. Transition actions indicate
the incremental tree construction process. For constituent
parsing, typical actions include the shift to building terminal
nodes, the unary to building unary nodes, and the binary to
building binary nodes. The details can be referred to as ref.
[14]. The model is also commonly referred to as the shift-
reduce model, where unary and binary are actions of reduc-
tion. By converting constituent parsing into predicting a se-
quence of transition actions, discriminant classifiers such as
max-entropy and support vector machine (SVM) can be ap-
plied for the prediction, with rich manually-crafted features.

The initial shift-reduce model classifies the sequence of ac-
tions for a single constituent tree separately, greedily search-
ing for the best output constituent tree, which may suffer the
error propagation problem since the early step errors can af-
fect later predictions. To this end, globally modeling with
beam search is proposed to alleviate the problem, which de-
codes the total sequence of actions for a full constituent tree
as a whole [15, 38]. The discriminative perceptron-style on-
line learning greatly promotes this line of work [39], which
enables legal parameter optimizations towards inexact search.
For feature engineering, the contextual lexicalized words,
POS tags, distances and their compositions are all extensively
investigated, which can be referred to ref. [15] for details.

2.2.2 Neural models

Refs. [20, 21] could be the direct extensions of ref. [15]
by using neural networks. The composition of atomic fea-
tures is achieved by feed-forward neural networks. Ref. [40]
found that the greedy style decoding can also achieve highly
competitive performance when a deep LSTM encoder is ex-
ploited. Then, several studies suggest dynamic oracles to op-
timize greedy constituent parsers [23, 41]. The main idea is
to let models make optimum decisions when facing erroneous
transition states [42]. A proportion of training instances with
erroneous transition states and their oracle actions are added
into the original training corpus.
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There have been several studies exploiting different transi-
tion strategies. Ref. [22] suggested the recurrent neural work
grammar (RNNG), which is a top-down transition-based sys-
tem. Ref. [24] designed an in-order transition system to
make a compromise between top-down and bottom-up tran-
sitions. Ref. [43] presented a novel system with an additional
GAP action for discontinuous constituency parsing, and they
also find that unlexicalized models give better performance.
Ref. [44] optimized the transition actions to facilitate the
construction of non-binarized constituent nodes, avoiding
the preprocessing of binarization for constituent trees. Ref.
[26] suggested the tetra-tagging system, which combines se-
quence tagging and transition action classification. The sys-
tem achieves state-of-the-art performance on the benchmark
PTB dataset with BERT representations.

2.3 Other frameworks

Neural networks such as deep LSTM and multi-head self-
attention are capable of encoding global features implicitly
into their final representations, which weakens the role of de-
coding as a source of feature induction. Based on the ob-
servation, several studies attempt to use simple frameworks,
aiming for a wide community for parsing.

One representative attempt is to exploit neural sequence-
to-sequence models for structural constituent parsing [45,46].
The key idea is to first linearize a phrase-structural con-
stituent tree into a sequence of symbols by certain traversing
strategies, and then directly feed the pair of input words and
output symbols into a standard sequence-to-sequence model.
These models require large-scale corpora for training, which
could be obtained by auto-parsed high-confidence constituent
trees from other state-of-the-art parsers.

Neural sequence labeling models have also been investi-
gated for constituent parsing [47]. Ref. [47] proposed the
first work of this line, which exploits the lowest common an-
cestor between adjacent words as clues to encode the word
roles. Ref. [48] extended the work by language modeling
and enhance parsing with pretraining. Further, more direct
schemes have been proposed with local modeling for con-
stituent parsing. Ref. [27] directly predicted the distance of
constituent phrases and then decode greedily in a top-down
way for a full constituent tree. Similarly, ref. [28] proposed
two models based on local span prediction, achieving highly
competitive performance on par with transition-based mod-
els. Recently, ref. [30] presented to exploit the HPSG-based
grammar for constituent parsing, and further power the model
with XLNet word representations [49], achieving the top per-
formances for both CTB and PTB datasets. Ref. [31] revised
the multi-head self-attention mechanism in ref. [30], leading
to a similar performance with a smaller number of layers.

2.4 Semi-supervised models

The semi-supervised architecture aims to enhance a super-
vised model by statistical information extracted from raw
text. Ref. [11] presented the first work which achieves im-
proved performance for constituent parsing by self-training,
and ref. [50] studied self-training empirically to show the
conditions of usefulness. Ref. [51] exploited unsupervised
word clusters learned from raw text to enhance constituent
parsing. While recent studies shift to the neural network set-
ting, the borderline between semi-supervised and supervised
is becoming vague, as pretraining from raw text is one critical
for the successfulness of neural models.

2.5 Model ensemble

The model ensemble is one effective way to boost the perfor-
mance of constituent parsing. Initial work focuses on the out-
put reranking [52, 53]. We can take either the k-best outputs
of a constituent parser or one-best outputs from heteroge-
neous parsers as the inputs, and then build a new constituent
tree by using a feature-rich reranking model. Benefiting from
sophisticated manually-crafted non-local features, the frame-
work can improve the parser performance significantly. How-
ever, related studies under the neural setting have received
much less concern, which can be potentially due to that the
majority of state-of-the-art neural models exploit the same
sentence encoders, indicating that features are resemble in
different kinds of models, and meanwhile homogeneous en-
semble (e.g., different random seeds) by simply voting can
achieve unsurpassable performances.

3 Dependency parsing

Dependency parsing is developed for syntax and semantic
analysis by using bilexicalized dependency grammar, where
all syntactic and semantic phenomena are represented by
bilexicalized dependencies [2]. Figure 2 shows an example
tree of dependency parsing. For the evaluation of various
dependency parsers, dependency accuracy is used as the ma-
jor metric, in terms of the unlabeled attachment score (UAS)
and the labeled attachment score (LAS). In the early stage,
dependency parsing is constrained to trees, projective or non-
projective [54]. Recently, several studies have devoted to de-
pendency parsing over graphs [55]. On the one hand, initial
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Figure 2 (Color online) An example of dependency tree.
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dependency trees are mostly syntactic oriented, while re-
cently there are growing interests focusing on semantic re-
lations between words [54, 55]. This section mainly focuses
on dependency tree parsing, while dependency graph parsing
will be discussed in the next section.

The majority of dependency parsing models can be divided
into two types, graph-based and transition-based [56], both
of which have been extensively investigated under the tradi-
tional statistical setting [57–60] and the neural setting [56].
There also exist other interesting approaches for dependency
parsing outside the two categories [61]. Table 2 shows an
overall picture of the performances of several representative
dependency parsers, and all ensemble models are excluded
in this table. The graph-based and transition-based mod-
els are almost comparable (graph-based models are slightly
higher) across both traditional statistical and neural settings,
and other types of models achieve good performance with the
support of sophisticated neural networks. Currently, neural
models achieve state-of-the-art performances for dependency
parsing [86].

3.1 Graph-based parsing

3.1.1 Statistical models

Graph-based methods exploit the maximum spanning tree
(MST) algorithm for decoding, which decomposes a full de-
pendency tree into small factors, such as dependency edges,
and scores the full tree by summing the scores of all the in-
cluded factors. The score of each factor can be calculated
independently by the features extracted from it. The models
by using dependency edges as the basic scoring factor are re-
ferred to as first-order models, where the order indicates the
maximum number of edges in a factor. Ref. [57] proposed
a feature-rich first-order MST parser based on discriminative
max-margin training.

Later, higher-order MST parsers have been studied. With
larger factors, the parsing models can exploit more sophisti-
cated features, and thus can potentially bring improved per-
formance. Second order MST parsing models have studied
extensively [58, 62, 87, 88], where the newly added features
include the relations from parent-sibling and parent-child-
grandchild factors. Notice that higher-order MST decoding
can have higher time complexity (i.e., from O(n3) to O(n4)),
which may lead to intolerable parsing speed. The problem
could be largely alleviated by ref. [88] with feature hashing.
Ref. [66] proposed an efficient third-order dependency pars-
ing model, which adds grand-sibling and tri-sibling features
into the model. Ref. [89] exploited low-rank tensor to alle-
viate the burden of feature engineering. Fourth-order depen-
dency parsing has been investigated by ref. [67]. As a whole,

second-order and third-order parsers could be good choices
considering both performance and efficiency.

3.1.2 Neural models

Ref. [71] presented a graph-based neural model by embed-
ding all discrete atomic features in the traditional statistical
MST models and then composing these embeddings with a
similar feed-forward network of ref. [78]. Convolution neu-
ral network is then applied for neural feature composition in

Table 2 A comparison of representative dependency parsing models, where
UAS are reported, PTB and CTB5.1 (CTB in the table for short) are two
benchmark datasets for the English and Chinese parsing, respectively

Model Main features PTB CTB

Graph-based, statistical models

Ref. [57] 1-order 90.9 83.0

Ref. [62] 2-order 91.5 85.2

Ref. [63] Word clusters 93.2 N/A

Ref. [64] Auto subtrees 93.2 86.7

Ref. [65] Feature hashing 92.9 N/A

Ref. [66] 3-order 93.0 86.0

Ref. [67] 4-order 93.4 87.4

Transition-based, statistical models

Ref. [68] Arc-standard 89.7 82.7

Ref. [68] Arc-eager 89.9 80.3

Ref. [69] Global learning, beam 91.4 84.3

Ref. [70] Rich non-local features 92.9 86.0
Ref. [42] Dynamic oracle 91.0 84.7

Graph-based, neural models

Ref. [71] Feed-forward 93.3 N/A

Ref. [72] CNN 93.4 87.7

Ref. [73] 2-layer LSTM 94.1 87.6

Ref. [74] 2-layer LSTM 93.1 86.6

Ref. [75] 3-layer LSTM, biaffine 95.7 88.9

Ref. [76] Self-attentive 95.9 92.2

Ref. [76] +ELMO 96.6 90.3

Ref. [76] +BERT 96.7 92.2
Ref. [77] GNN 96.0 N/A

Transition-based, neural models

Ref. [78] Feed-forward 91.8 83.9

Ref. [79] Stack-LSTM 93.1 87.2

Ref. [80] Global learning, beam 93.3 N/A

Ref. [81] Global learning, beam 94.6 N/A

Ref. [74] 2-layer LSTM 93.9 87.6

Ref. [82] Char, stack-LSTM 93.6 87.6

Ref. [83] 3-layer LSTM 95.9 90.6

Other Methods (report neural models only)

Ref. [84] Easy-first 93.0 87.1

Ref. [61] Sequence-to-sequence 92.1 86.2

Ref. [85] Sequence labeling 93.7 N/A

Ref. [30] HPSG grammar 97.2 91.2
Ref. [31] HPSG, improved attention 97.3 N/A
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ref. [72]. Following, deep bidirectional LSTMs are exploited
to substitute the simple neural feed-forward network [73,74].
As sentence-level global information can be encoded through
these neural structures, the performance gap between first-
and higher-order decoding is largely reduced.

Ref. [75] proposed a deep biaffine parser which achieves
the impressive performances, boosting the UAS and LAS
numbers into a new degree. The parser exploits a three-layer
bidirectional LSTM as the encoder, and a biaffine operation
as the decoder to score all possible dependency edges. This
work adopts several tricks to reach their final performance,
e.g., the node-level dropouts, and the same dropout mask at
every recurrent timestep. Ref. [76] further enhanced the bi-
affine parser with self-attentive encoder and contextualized
word representations such as ELMo and BERT [35,36]. Ref.
[77] exploited graph neural networks to better the input sen-
tence encoder.

3.2 Transition-based parsing

Transition-based models have achieved great success on de-
pendency parsing. To some extent, the transition-based
framework is then received great attention to other NLP tasks
involving structural learning because of the successfulness
of dependency parsing. For example, the transition-based
constituent parsing is initially inspired by transition-based
dependency parsing. On the one hand, the transition-based
models can obtain nearly equivalent performance compared
with graph-based methods. On the other hand, these models
are highly efficient, which can achieve linear time complex-
ity. Transition-based models convert dependency parsing into
an incremental state-transition process, where states denote
partial outputs and they are advanced step by step by prede-
fined transition actions.

3.2.1 Statistical models

The initial work for feature-rich transition-based dependency
parsing is suggested by refs. [59,60], and then the framework
is extensively investigated [68, 90]. There are two typical
transition configurations, arc-standard and arc-eager, respec-
tively, which are comparable in parsing performances. Typ-
ically, the transition actions include shift operation (aiming
for starting next word processing), arc-left (aiming for build-
ing a left directional dependency), and arc-right (aiming for
right directional dependencies). Besides, several researchers
propose other transition configurations [90–93], which can
handle various complex cases, such as non-projective depen-
dencies.

Early transition-based methods usually exploit discrimina-
tive classifiers for action prediction when a certain transition
state is given, which processes the parsing in a local manner.

The scheme may suffer the error propagation problem, where
early errors can influence future predictions. To alleviate the
problem, global learning with beam-search is one effective
way. Ref. [69] firstly applies the strategy. Rich global fea-
tures that have been exploited in high-order graph-based de-
pendency parsers can be also integrated into the model [70].
The strategy can be also enhanced with dynamic program-
ming further [94, 95].

Another alternative strategy is the dynamic oracle, which
is firstly proposed by ref. [42] for transition-based models by
using arc-eager. The method defines dynamic gold-standard
oracle based on a sample of erroneous states, and then add
these instances to enhance model training. Thus, we can min-
imize global performance losses when errors occur. Although
the strategy gives slightly worse performance than ref. [70], it
enables dependency parsing in a greedy way, greatly increas-
ing the parsing efficiency. The strategy has been investigated
by several studies with different configurations, such as arc-
standard and non-projective parsing [96, 97].

3.2.2 Neural models

Ref. [78] is one millstone work for neural dependency pars-
ing, which substitutes traditional manually-crafted discrete
features with neural features. The work uses simple feed-
forward neural networks to compose the embeddings of all
atomic features automatically, and thus is free of feature en-
gineering. Finally, the proposed model obtained much better
performance than the corresponding statistical baseline. Pre-
trained word embeddings and the neural composition func-
tion are the keys to success.

There exist several directions to improve the performance
of neural transition-based dependency parsing. First, we can
exploit better neural network structures. Stack-LSTM is pre-
sented by ref. [79] and then followed by several studies
[82, 98, 99], which can represent transition states by utiliz-
ing partial structural information. In parallel, deep bidirec-
tional LSTM is also investigated [74,83]. Ref. [83] exploited
a similar encoder as ref. [75], achieving slightly better per-
formances than ref. [75]. In fact, with powerful neural en-
coders, especially pretrained contextualized word represen-
tations, the performance difference between graph-based and
transition-based is very marginal [86].

Several researchers suggest global learning with beam-
search strategy in ref. [70] under the neural setting. Ref.
[80] made the pioneer attempts for this goal, which is fur-
ther perfected with a theoretical guaranty by ref. [81]. These
models have achieved state-of-the-art performance before the
biaffine parser [75]. One major drawback is that the strategy
suffers from the efficiency problem due to the beam search.
The dynamic oracle strategy is applied as well making the
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greedy transition-based neural dependency parsers [100]. Re-
cently, both global learning and dynamic oracle are difficult
to give much-improved capacity when pretrained contextual-
ized word representations are exploited.

3.3 Other frameworks

Several interesting models outside the graph-based and
transition-based framework are also concerned. For exam-
ple, the grammar-based framework can be applied to depen-
dency parsing as well. First, a dependency tree is converted
to an equivalent phrase-structural constituent tree, and then a
grammar-based constituent parsing model can be applied for
dependency parsing. The method is proposed firstly by ref.
[87], and also highly emphasized in ref. [2]. Several studies
have exploited this method as one component for model en-
sembling [101]. Recently, refs. [30, 31] adopted the HPSG
grammar for the same goal, achieving very competitive per-
formances.

Ref. [102] presented an easy-first dependency pars-
ing model, which processes the input sentences in a non-
directional way. The output dependency tree is constructed
recursively, where the highest-confidence dependency arc is
selected at each time. The neural version of the work is ex-
ploited by ref. [84] by using hierarchical LSTMs. Sequence-
to-sequence learning can be also applied to neural depen-
dency parsing, where the transition-based linearization can
be served as one natural solution. Ref. [61] presented a
strong sequence-to-sequence model by head prediction for
each word. Ref. [85] suggested a sequence labeling model
for dependency parsing.

3.4 Semi-supervised models

Here we briefly offer a survey for semi-supervised depen-
dency parsing under the traditional statistical setting, which
utilizes statistical information extracted from a raw text to
enhance a baseline model. This scheme has received little at-
tention under the neural setting because of pretraining. As a
whole, the semi-supervised dependency parsing models can
be categorized into three types according to the extracted in-
formation from the raw text, namely word-level, partial-tree
level, and sentence-level methods.

For word-level information, one representative work is ref.
[63], which augments the atomic features of a baseline model
with word clusters. Ref. [103] exploited selectional pref-
erence information from web texts to improve dependency
parsing. Actually, word embeddings can be also regarded
as a kind of semi-supervised word-level information, which
has been suggested by ref. [104] for NLP, but not experi-
mented on dependency parsing. Ref. [105] further extended

the idea into feature embeddings, embedding all features in-
cluding words.

For the partial-tree level integration, ref. [106] exploited
high-frequency auto-parsed bilexical dependencies to en-
hance the baseline supervised model. Further, ref. [64] ex-
tended the work by using higher-order subtrees. Ref. [107]
could be regarded as a general framework for the partial tree
level integration, by utilizing dependency language models
learned from auto-parsed dependency trees.

Self-training, co-training as well as tri-training are
straightforward methods for sentence-level semi-supervised
learning [108], where high-confidence auto-parsed depen-
dency trees from several baseline models, are used to aug-
ment the training dataset. Ref. [109] proposed an ambiguity-
aware learning method to effectively model the confidence of
auto-parsed dependency trees, leading to significant perfor-
mance improvements.

3.5 Model ensemble

By effectively combining heterogeneous models, the depen-
dency parsing performance can be further boosted. Ref.
[56] first analyzed the differences between graph-based and
transition-based models, and then combine the two kinds of
models to utilize their complementary information, resulting
in better performances. Ref. [101] performed parsing en-
semble by including grammar-based models further, which
are highly diverse with the graph-based and transition-based
models. Under the neural setting, simple voting can achieve
very strong performances.

The above studies are all targeted at different parsing mod-
els based on the same treebank. There are several stud-
ies aimed at the parser ensemble based on heterogeneous
treebanks, whose annotation guidelines are highly different.
Ref. [110] exploited stacked learning combine with quasi-
synchronous grammars for effective integration. Ref. [111]
studied a similar ensemble by using deep multitask learning,
where treebanks of different languages are also concerned.
Ref. [112] presented and study the task of supervised tree-
bank conversion, which can be served as one method for in-
tegration.

4 Semantic dependency graph

The dependency parsing models mentioned in the previous
section are all aimed for dependency tree parsing, which ma-
jorly reflects syntactic and shallow-semantic information in
sentences. As there are growing demands of deep semantic
parsing, which is difficult to be expressed by dependency tree
only, dependency graph parsing has received increasing in-
terests [55, 113, 114], which allows multiple (including zero)
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heads for one word in sentences. Note that the semantic graph
is still formalized by a set of bilexicalized dependencies, with
nodes corresponding to surface lexical words, and edges in-
dicating the semantic relations between nodes.

There are different formalizations of the semantic depen-
dency graph. We can combine syntactic tree-based depen-
dency parsing and semantic role labeling (SRL) to result in
a dependency graph, which is referred to as joint depen-
dency syntax and SRL [54, 115]. Recently, the conception
of semantic dependency parsing (SDP) has been introduced
[55,113,114], which provides different views of semantic re-
lations, such as DELPH-IN MRS (DM), predicate-argument
structures (PDS) and Prague semantic dependencies (PSD).
Following, we will review the studies of the two types of se-
mantic dependency graph parsing.

4.1 Joint dependency syntax and SRL

Figure 3 shows an example dependency graph of joint syntac-
tic and semantic dependencies. Here we do not intend to in-
troduce the pipeline models, which train syntactic and seman-
tic models separately, and then output the dependency graph
by either two steps or jointly [116,117]. Although these mod-
els can perform dependency graph parsing, they receive less
attention as this topic. We focus on the models of joint learn-
ing and decoding for full dependency graph parsing. Table 3
shows the performance of several studies on this line.

Ref. [118] extended the transition-based dependency pars-
ing with a particular swap operation, enable the model to pro-
cess non-planarity multiple graphs jointly, and thus depen-
dency graph parsing can be performed jointly. Ref. [119] also
exploited the transition-based framework to derive syntactic
and semantic dependencies concurrently based on a similar
transition system as ref. [118], but adopt a different model
estimation by using an incremental sigmoid belief network
with latent variables. Ref. [121] presented a graph-based
model with a dual decomposition algorithm for decoding, as-
signing syntactic and semantic dependencies concurrently.

All the aforementioned studies are based on the traditional
statistical setting. Under the neural setting, there is little
work focus on the task, with one exception. Ref. [120] pre-
sented a transition-based stack-LSTM model for joint syn-
tactic and semantic dependencies, where their transition sys-
tem is largely followed [119]. Since then, neural depen-
dency graph dependency parsing models are centered on
other datasets.

4.2 Semantic dependency parsing

SDP could be regarded as an extension from syntactic depen-
dency parsing by characterizing more semantic relations over

the bilexical dependencies [114, 122], which can be greatly
benefited from the advances of dependency parsing. While
recently, refs. [55, 113] presented SDP from a different view,
which converts the already available linguistic-informed se-
mantic annotations into dependencies, including three dif-
ferent formalisms: DM, PAS and PAD, and currently it has
been widely accepted for deep semantic parsing. Figure 4
shows an example of SDP. For SDP, graph- and transition-
based models are also the mainstream methods, and most of
these models are adapted from dependency tree parsing. Ta-
ble 4 shows the performance of several representative SDP
models.

4.2.1 Graph-based

There are a range of graph-based SDP models for the shared
tasks of SDP in SemEval [124, 129]. Generally, it is hard
to develop a graph-based decoding algorithm targeted to
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Figure 3 (Color online) An example of joint syntactic and semantic depen-
dencies.

Table 3 A comparison of typical joint dependency syntax and SRL models
on the CONLL08 English dataset

Model Main features Syn Sem All

Ref. [117] Joint inference 86.6 77.1 81.8

Ref. [118] Transition-based 87.5 76.1 81.8

Ref. [119] Sigmoid belief network 87.5 76.1 81.8

Ref. [120] Neural, stack-LSTM 89.1 80.5 84.5

A      similar  technique       is      impossible  to        apply      to   cotton

top

ARG1

ARG1 ARG1

ARG2

ARG2

ARG2 ARG1

ARG2

ARG1 ARG2

Figure 4 (Color online) An example of semantic dependency graph.

Table 4 A comparison of typical dependency parsing models on the
SemEval-2015 shared dataset, where WSJ and Brown indicate the in-domain
and out-of-domain test sections

Model Main features WSJ Brown

Ref. [123] Tree approximations 85.4 80.8

Ref. [124] 2-order graph 85.2 81.2

Ref. [125] Multi-task learning 87.2 83.6

Ref. [126] Transition, LSTM 86.9 82.8

Ref. [127] LSTM, biaffine 89.5 86.3

Ref. [128] 2-order graph, LSTM 89.8 86.9
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arbitrary dependency graphs. Thus, most models have im-
posed particular constraints. Ref. [130] presented a cubic-
time exact inference algorithm for non-crossing dependency
graphs. Refs. [131,132] investigated the maximum subgraph
algorithm for 1-endpoint-crossing, pagenumber-2 graphs.
Ref. [133] attempted to solve the dependency graph parsing
by subgraph decomposition and merging. Ref. [134] pro-
posed an interesting book embedding strategy for SDP.

All the above models exploit manually-crafted discrete
features. Under the neural setting, ref. [125] presented a
multi-task learning framework to different views of SDP. Ref.
[127] extended the biaffine dependency parsing for SDP. Re-
cently, ref. [128] proposed a second-order SDP model based
on ref. [127]. As a whole, neural models can obtain better
performances for SDP.

4.2.2 Transition-based

The transition-based SDP models can also achieve competi-
tive performance, and meanwhile, these models are more ef-
ficient and free of constraints, thus they have received great
attention [135, 136]. Actually, transition-based dependency
graph parsing can be dated back to ref. [137], and the model
is enhanced with dynamic oracle by ref. [138]. Ref. [122]
defined a K-permutation transition system to handle depen-
dency graph generation. Ref. [139] presented two novel
transition systems for deep semantic dependency parsing.
Ref. [140] presented a transition-based system by including
a cache to capture dependency graphs.

Recently, ref. [126] proposed a strong transition-based
SDP model by using neural networks. They exploit deep
bidirectional LSTM as sentential encoder together with stack-
LSTM for better representation of transition states. Ref.
[141] presented a transition-based model for general seman-
tic graph parsing, which is also suitable for SDP.

4.2.3 Other methods

Dependency graph parsing by using tree approximations and
post-processing is also able to obtain competitive perfor-
mance. These kinds of models first convert dependency
graphs into trees, and then tree-based parsing can be applied
[142, 143]. Ref. [123] ensemble several tree approximation
strategies and achieved the top performance in SemEval 2015
[55]. Ref. [144] conducted a comprehensive investigation
of semantic dependency graph parsing using tree approxima-
tions.

5 Cross-domain parsing

Cross-domain adaption is one hot topic in the NLP commu-
nity, especially for the syntactic and semantic parsing tasks,

where the data annotation is extremely laborious and expen-
sive. Currently supervised parsing has achieved incredibly
high performances thanks to the recent advances of neural
networks. However, the performance could drop significantly
when the well-trained parsers are applied to texts in differ-
ent domains as the training corpus. It is impractical to an-
notate training datasets for all domains. Thus, cross-domain
adaption is very important to make parser applicable. The
studies of cross-domain parsing are focused on two settings
majorly: unsupervised domain adaption, where no target do-
main training dataset is available, and semi-supervised do-
main adaption, where a small-scale of training instances are
available for a target domain. Figure 5 shows the architecture
of cross-domain parsing, where the differences between the
two settings are illustrated.

5.1 Unsupervised domain adaption

Self-training is one useful strategy for cross-domain parser
adaption, although it has achieved very limited gains under
the in-domain semi-supervised setting. Initial work mostly
focuses on constituent parsing. Ref. [145] exploited a rerank-
ing strategy to obtain a set of high-confidence auto-parsed
outputs, and then add them to the training corpus. Ref. [146]
showed that without reranking self-training alone can also
give significant improvements. Ref. [147] firstly applied
self-training successfully on dependency parsing, which ex-
ploits an extra classifier to determine whether a parsed tree
is reliable. Ref. [148] exploited only high-confidence partial
dependencies for next-round training. Ref. [149] proposed
a novel confidence estimation method, leading to improved
performance on the out-of-domain dataset.

Besides self-training, there are several other methods for
unsupervised domain adaption. Ref. [150] applied co-
training to constituent parsing, which is similar to self-
training but difference in that the example selection is per-
formed by two parsers. Ref. [151] used a similar co-training
method for dependency parsing. Further, ref. [108] exploited
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Figure 5 (Color online) The architecture of cross-domain parsing.
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tri-training for domain adaption of dependency parsing, ex-
tending two parsers into parsers. Interestingly, ref. [152]
selected training instances from the source-domain dataset
instead, where the instances most relevant to the target do-
main are chosen. Ref. [153] exploited deep belief neural
networks to enhance the dependency parsing performance on
out-of-domain test data, which can effectively extract useful
information from target-domain raw texts.

Multi-source domain adaption is also a promising direc-
tion, which assumes that training corpora of several source
domains are available. The setting is highly matched with
the real practical scenario. Ref. [154] presented the first
work of this setting for dependency parsing. They linearly
combine the parsing models of different domains with the
weights learned from a regression model, considering the per-
formance of each individual parser on the target domain.

5.2 Semi-supervised domain adaption

With a small number of target domain training dataset, ref.
[155] showed that self-training can effectively improve the
performance of constituent parsing. Recently, most work fo-
cuses on effectively training on the mixed source and target
training instances by separating the domain-dependent and
domain-invariant features [156]. By treating these features
differently, the final model can accurately transfer the useful
knowledge from the source domain into the target. Ref. [157]
extended the idea with a hierarchical Bayesian model and
evaluate it on dependency parsing, achieving better perfor-
mance on the target domain than training with only the target-
domain data. Under the neural setting, adversarial learning is
one effective method for the same purpose [158]. Ref. [159]
firstly applied the method on dependency parsing.

Active learning can be one promising approach for semi-
supervised domain adaption. Considering that full-sentence
syntax/semantic annotation is extremely expensive, partial
annotation might be preferable. For constituent parsing,
ref. [160] suggested partial annotation of constituent brack-
ets to enhance domain adaption. For dependency parsing,
ref. [161] exploited partial annotation combined with active
learning for cross-domain dependency parsing in Japanese.
Recently, ref. [162] investigated the strategy comprehen-
sively for Chinese dependency parsing under the neural set-
ting.

6 Cross-lingual parsing

Cross-lingual parsing, which aims to parse the sentence struc-
tures of low-resource languages with the help of resource-
rich languages such as English. There have been a number of
studies for this task, and the majority of work focuses on de-
pendency parsing due to the relatively structural conciseness

as well as well-developed universal dependencies. In par-
ticular, with the recent development of cross-lingual or uni-
versal word representations based on neural pretraining tech-
niques, the task has been concerned with increasing interests.
The task includes two main settings, the unsupervised set-
ting assuming that no training corpus is available for target
languages, and the semi-supervised/supervised setting where
there exists a certain scale of corpora for the target languages.
The architecture of cross-lingual parsing is shown in Figure
6, where the detailed difference between unsupervised and
semi-supervised/supervised settings are illustrated as well.

6.1 Unsupervised setting

For unsupervised cross-lingual parsing, the mainstream
methods can be classified into two categories, model transfer-
ring and annotation projection, where the first category trains
a model on the source-language training corpus, and then di-
rectly uses it to parse the target-language texts, and the sec-
ond category projects the source-language parse annotations
into the target-language by using a parallel corpus, resulting
in a pseudo training corpus for the target language, and then
trains a target-language parsing model on the pseudo corpus.

6.1.1 Model transferring

The model transferring approach is straightforward for cross-
lingual parsing. The most effort is concerned with language-
independent features, which play consistent functions across
languages. This line of work is initially presented by ref.
[163] which suggests delexiciallized models for cross-lingual
dependency parsing, and is further developed by ref. [164]
for multi-source transferring, where multiple source lan-
guages are used to enhance a target language. Several re-
searchers resort to various non-lexical features to enhance the
delexicalized cross-lingual models [165, 166].

Recently, ref. [167] exploited cross-lingual word clusters,
which is one king of cross-lingual word representations. Un-
der the neural setting, the exploration of cross-lingual word
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Figure 6 (Color online) The architecture of cross-lingual parsing.



1908 Zhang M S Sci China Tech Sci October (2020) Vol. 63 No. 10

representations is greatly facilitated. Ref. [168] proposed
to use cross-lingual word embeddings for lexicalized cross-
lingual dependency parsing. This method is then received
much attention and can be further enhanced by various ways
such as better neural structures [169] and multi-source adap-
tion [170, 171].

Cross-lingual pretrained contextualized word representa-
tions give the state-of-the-art performances of this category.
Ref. [172] provided a method to learn contextual ELMO
representations effectively and then apply the representations
on the task, achieving much better performances than cross-
lingual word embeddings. Refs. [173, 174] applied cross-
lingual mBERT to zero-shot cross-lingual dependency pars-
ing. Ref. [175] introduced the XLM concurrently to mBERT,
which is also a kind of strong multilingual contextualized
word representations for cross-lingual parsing [176]. All
these recent studies lead to state-of-the-art performances in
the literature of this category.

6.1.2 Annotation projection

The annotation projection approach requires slightly more ef-
fort compared with model transferring, which aims to build
a pseudo training corpus through bitext projection. With
the pseudo training corpus, the final model can capture rich
target-language characteristics. The method relies on a set of
parallel sentences between the source and target languages.
A source parser trained on the source treebank is used to
parse the source-side sentences of the parallel corpus, and
then the automatic source annotations are projected onto the
target language sentences according to word alignments, re-
sulting in the final pseudo training corpus. There are a range
of strategies to achieve the goal. For example, we can use
different kinds of parallel corpora, such as EuroParl and the
book Bible, and can also exploit various sophisticated meth-
ods to improve the projection quality.

For constituent parsing, ref. [177] exploited the method
for unsupervised constituent parsing, and find that it can sig-
nificantly outperform the purely-unsupervised models. Ref.
[178] suggested an EM algorithm to incremental boost the
quality of the projected constituent trees with relaxing con-
straints. The number of studies on constituent parsing is rela-
tively small, which may be possible due to that the projection
of constituent structures is very complex.

For dependency parsing, ref. [179] presented the first
work of this category, and then the approach has been ex-
tensively studied under different settings, such as confidence-
aware learning [180], neural network enhancing [181, 182],
and multi-source adaption [183,184]. Interestingly, ref. [185]
proposed a joint model for cross-lingual constituent and de-
pendency parsing with annotation projection. The approach

achieves great success for cross-lingual dependency parsing.

6.1.3 Other methods

There are also several other methods for unsupervised cross-
lingual parsing. Treebank translation is one representative
strategy, which is essentially highly similar to annotation pro-
jection. The approach also aims to construct a pseudo train-
ing corpus. Different from annotation projection, it directly
translates the source training corpus into the target language.
Besides bitext projection, it requires translation to produce
target language sentences. Ref. [186] firstly proposed this
method and their method is further perfected by their later
studies [187]. Ref. [188] studied the approach under the neu-
ral setting with partial translation, and combine their model
with model transferring.

The methods exploited in cross-domain parsing may be
also suitable (e.g., self-training) for this setting because of
the cross-lingual word representations. However, these kinds
of methods have been seldom studied. Ref. [189] combined
the advantages of model transferring, annotation projection,
treebank translation as well as self-training to obtain a very
strong model for cross-lingual dependency parsing.

Sentence reordering is one interesting method presented
recently, which aims to reorder the input source language
syntactic trees to make it highly similar to the target lan-
guage. The idea is first studied by ref. [190]. Ref. [191]
exploited the method with two strong reordering strategies,
obtaining very competitive performance compared with even
supervised parsing models.

6.2 Semi-supervised/supervised setting

As the availability of treebanks for a range of languages, how
to effectively exploit both source and target language tree-
banks is one interesting problem. Since very early, several
studies show that two languages are better than one language
alone for parsing. Ref. [192] showed that joint training the
English and the Korean parser can bring better performance.
Ref. [193] also demonstrated the same observation.

Under the neural setting, this line of work can be con-
ducted more conveniently due to the cross-lingual word rep-
resentations. Ref. [194] proposed to use one single universal
model to parse all languages. However, their final perfor-
mance is still below the corresponding individual baselines.
Ref. [195] trained 34 models for 46 different languages. By
aggregating multiple treebanks from one language or closely
related languages, we can achieve competitive performances
and meanwhile reduce the number of required models greatly.
Most recently, ref. [196] proposed a sophisticated strategy to
train one universal model for 75 languages by leveraging a
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multilingual BERT self-attention, which achieves better per-
formances than the corresponding individual models.

7 Joint models

In this section we discuss joint models of parsing, focusing
only on the final goal being the parsing task. The studies
of jointly modeling syntax-semantic parsing as well as a tar-
geted downstream task will be introduced in the next section.
The development of joint models is mainly motivated by the
error prorogation problem of the preconditioned tasks. POS
tagging is one of the major preconditioned tasks, as POS tags
are one kind of valuable feature source for parsing. Before
POS tagging, several languages such as Chinese require word
segmentation as a prerequisite step. Parsing is generally per-
formed based on words, while sentences of these languages
do not have explicit word boundaries. In summary, here we
briefly investigate two kinds of joint models: joint POS tag-
ging and parsing, joint segmentation & tagging and parsing,
and we show their relationship in Figure 7.

Noticeably, there are several studies for joint syntactic and
semantic parsing. The dependency-based joint models have
been already described in Sect. 4.1. Thus, one can refer to
there for details. For joint constituent parsing and semantic
role labeling, there are very few studies. The representative
work is ref. [197], which is the first work of this kind by us-
ing sophisticated manually-crafted features. The work shows
that their joint model is able to give better performances for
both Chinese constituent parsing and SRL.

7.1 Joint POS tagging and parsing

For joint POS tagging and constituent parsing, the chart-
based PCFG parsing naturally performs the two tasks con-
currently [9, 10, 12], where POS tags can be directly induced
from the bottom lexical rules. Based on the transition-based
framework, joint POS tagging and constituent parsing can
be easily achieved by the shift operation with one additional
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Figure 7 (Color online) The architecture of joint models targeted for pars-
ing, where word segmentation is only available to the Chinese language.

parameter to indicate the POS tag of the processing word.
Ref. [198] investigated the joint task and present a number of
non-local features.

Ref. [199] proposed the first joint model of POS tag-
ging and dependency parsing based on graph factoring, where
the basic scoring units are augmented with POS tags. Ref.
[200] enhanced the model with better learning strategies. Ref.
[201] is the first transition-based model for joint POS tagging
and dependency parsing. Ref. [202] extended the transition-
based model for non-projective dependency parsing. The two
kinds of models achieve comparable performances for both
tasks.

Under the neural setting, ref. [203] investigated the model
of ref. [202] with neural features. Ref. [204] suggested a
joint POS tagging and dependency parsing model by stack
propagation. Ref. [205] further investigated the neural joint
task with LSTMs by using graph-based and transition-based
frameworks, respectively. In fact, the importance of joint
modeling has been largely weakened as parsing without POS
tags can also obtain strong performance which is close to the
same model with POS tags [75].

7.2 Joint segmentation, tagging and parsing

The task of joint segmentation, tagging and parsing is ma-
jorly targeted to Chinese parsing. The series of this work
starts very early [206] by character-level parsing. Later, ref.
[207] demonstrated that Chinese dependency parsing based
on characters is better, which can naturally perform the three
tasks. Recently, ref. [208] proposed a transition-based joint
model for word segmentation, POS tagging and dependency
parsing. Ref. [209] suggested a similar transition-based joint
model by using indivisible subwords as well as their inter-
nal structures. Refs. [210, 211] conducted character-level
constituent and dependency parsing by extending word-level
annotations into characters, achieving state-of-the-art perfor-
mances for both tasks under the discrete setting. All the four
models exploit transition-based framework. Ref. [212] pro-
posed the first work by using graph-based inference, with ef-
ficient hill-climb decoding.

Ref. [213] is the first work of adopting neural networks
for character-level constituent parsing, achieving comparable
with the state-of-the-art discrete model by a simple convolu-
tional neural network. Ref. [214] presented a neural model
for character-level dependency parsing. Ref. [215] proposed
a strong joint model for word segmentation and dependency
parsing only, state-of-the-art biaffine parser and pretrained
BERT are exploited in this work. Under the neural network,
the joint framework might be highly challenging, as the base-
lines are strong and meanwhile neural networks can learn
global high-level features implicitly.
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8 Parser application

When a well-trained syntactic/semantic parser is available,
how to use it effectively to benefit for downstream applica-
tions is one important topic in the parsing community, which
is also related to the verification of the usefulness of syn-
tactic and semantic parsing. In fact, the topic has been ex-
tensively studied, and the parsing outputs have been demon-
strated effective for a number of tasks such as semantic role
labeling [216, 217], relation extraction [218, 219], sentiment
analysis [7,220] and machine translation [5,221]. The explo-
ration methods have major changes from the statistical dis-
crete models to the neural models. Here we briefly summa-
rize the mainstream approaches of parser exploration in terms
of the two settings.

8.1 Feature-based statistical methods

Under the traditional statistical setting, the exploration of
parser resorts to manually-crafted discrete features, which
are mostly designed sophisticatedly according to the tar-
geted tasks. We briefly summarize the widely-adopted fea-
tures here. For constituent trees, such features include non-
terminal categories, CFG rules, phrase-level word ngrams,
syntax paths to the root or some other word, the matching
with a completed phrase. For dependency trees, dependency-
based ngrams, dependency labels, dependency paths are
widely-used features. All these kinds of features are fur-
ther adapted to various tasks aiming to get most of the pars-
ing information effectively [6, 7, 216, 222, 223]. Besides,
the tree-kernel based approach can also be good alternatives
[218, 224–227]. Several approaches suggest using multiple
heterogeneous parsers for better performances, including the
integration of constituent and dependency parsers as well as
parsers trained on heterogeneous treebanks [228].

8.2 Representation learning with neural networks

One simple method to use parsing features based on neural
networks is to embed all the atomic features, and then ex-
ploit sophisticated neural networks to compose them auto-
matically. The most representative method of this kind is
the path-based LSTMs, which exploit LSTM over sequential-
level constituent or dependency paths [229, 230]. The recent
tendency of using the end-to-end framework for the major-
ity of NLP tasks leads to universal representations based on
parser outputs. We build a universal encoder with structural
outputs of a parser, and then adapt them to different tasks
by decoders, as shown by Figure 8. There are several ways
to build the encoder. Here we divide the methods into four
types: recursive neural network; linearization-based; impli-
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Figure 8 (Color online) Parser enhanced universal encoder for downstream
tasks.

cated structural-aware word representations and graph neural
networks (GNN).

The recursive neural network is one natural method to
model tree-structural outputs, which composes a tree input
from bottom-to-up or top-to-down incrementally. We can
use various composition operations leading to more sophis-
ticated tree-level neural networks such as tree convolutions
suggested by ref. [231] and Tree-LSTM proposed by ref.
[220]. All these related studies give improved performances
for a range of tasks [232, 233].

The key idea of the linearization-based methods is to con-
vert structural inputs into a sequence of symbols, and then
adopt standard sequential encoders to model the new se-
quence directly [234, 235]. Usually, the conversion can be
referred to as the linearization process of transition-based
parsers, or we can incrementally traverse a tree or graph in
different ways. The method has received fewer concerns
which might be due to its extreme simplicity, although it is
effective and meanwhile much efficient [221].

The implicit structural-aware word representations, firstly
presented by ref. [236] for relation extraction, are similar
to the idea of contextualized word representations, which
exploit the hidden outputs of a well-pretrained parser as
inputs for the downstream tasks [221, 237]. This method
can also efficiently represent structural information such as
syntax and semantics. Besides, the method can be easily
adapted to the multi-task-learning strategy for parser appli-
cation [217], while parser requires to be jointly trained in
multi-task-learning.

Recently, there are grown interests on the topic of graph
neural networks, which can be naturally applied to encode
structural syntactic and semantic graphs. Indeed, there have
been several studies already by using either graph convolu-
tional networks or graph attention networks [238–240], and
all these works demonstrate the effectiveness of GNN for
structure encoding.

9 Corpus and shared tasks

Finally, we review the work of corpus development in syn-
tactic and semantic parsing, which is critical to the perfor-
mance of supervised parsing. There are several classical tree-
banks such as the Penn Treebanks of English and Chinese
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languages, which greatly promote the development of the
parsing community. In fact, there are treebanks for a range
of languages, and here we focus majorly on the Chinese and
English treebanks. In addition, there are a number of shared
tasks, which also offer valuable corpora for syntactic and se-
mantic parsing.

9.1 Penn treebank

The English Penn Treebank (PTB) by ref. [241] could be
the most famous resource for syntactic parsing, which an-
notates bracketed syntactic phrase structures for over 40000
sentences covering about 4.5 million words. In addition,
ref. [242] annotated the Penn Treebank for the Chinese lan-
guage, for short as CTB, and now there are over 130000 sen-
tences with phrase-structure annotations covering over 2 mil-
lion words. Both the two datasets have annotated POS tags
as well, which are important to automatic syntactic parsing.
For Chinese, gold-standard word segmentation has been an-
notated in CTB as well.

The two datasets are also converted into dependency tree-
banks for dependency parsing, which could be achieved
by rule-based head lexicalization over the constituent trees
[60, 69, 243–245]. Recently, Stanford dependencies have
been exploited the most popularly especially for the English
language, where the conversion rules are relatively more fine-
grained [246] and meanwhile can reflect more syntactic and
semantic phenomena.

There are several small-scale treebanks with the same an-
notation guideline as PTB, which can be useful resources
for domain adaption studies of constituent and dependency
parsing, regarding that PTB are focused on the news genre
data. For example, the Brown Treebank is exploited most
frequently for cross-domain parsing as the literature genre.
Ref. [247] offered a treebank of the biomedical domain. The
two treebanks are targeted to researches on constituent pars-
ing. Recently, ref. [248] annotated a treebank for twitter texts
based on dependency grammar.

9.2 Universal dependencies

The present of Universal Dependencies (UD) has received
great attention for facilitating multilingual researches, which
aims to develop cross-linguistically consistent treebank an-
notation for multiple languages. UD can capture similari-
ties as well as idiosyncrasies among typologically different
languages such as English-alike languages, morphologically-
rich languages and pro-drop languages. The development of
UD is initially based on Stanford typed dependencies [249]
and the universal Google dependency scheme [250, 251].
Now it goes through several versions [252, 253], with sig-

nificant changes on the guidelines, also supporting language-
specific extensions when necessary. Currently the UD tree-
bank version 2.5 includes 157 treebanks over 90 languages.
Besides multilingual dependency parsing, there is an increas-
ing tendency to exploit them for evaluating monolingual de-
pendency parsing based on the datasets as well [77, 86].

9.3 Chinese treebank

For the Chinese languages, treebank development has been
concerned by several studies besides the CTB. The Sinica
Treebank has offered phrase-structural syntactic trees over
about 360000 words in traditional Chinese [254]. Ref. [255]
released a constituent treebank covering about one million
words for simplified Chinese. Ref. [256] also annotated
constituent trees over a scale of 0.9 million words for Chi-
nese. The guidelines of all these phrase-structural treebanks
are quite different.

There are several treebank resources directly based on the
dependency structure, as it is believed that dependency gram-
mar is simpler and easier to be developed. Refs. [257, 258]
constructed a Chinese dependency treebank consuming over
1.1 million words. Ref. [259] created a multi-view Chinese
dependency treebank containing 14463 sentences, which is
further augmented with predicate-argument information by
ref. [260] for a semantic-oriented dependency treebank.
Most recently, ref. [162] released a large scale Chinse de-
pendency treebank covering about 3 million words as well as
different domains, including news, web blogs, literature texts.

9.4 Shared tasks

Nearly all the shared tasks are focused on dependency pars-
ing, and most of which devote to multilingual parsing with
the support of several treebanks in different languages. These
shared tasks, on the one hand, can evaluate the current state-
of-the-art parsing models, and on the other hand offer valu-
able datasets for parsing, facilitating the future research work.

The ConLL06 organizes the first shared task for depen-
dency parsing involving 13 languages [261], and domain
adaption is considered later in ConLL07 [262]. At ConLL08
and ConLL09, semantic dependencies extracted from SRL
are integrated, leading to joint syntactic-semantic parsing
[54, 115]. Recently, the shared task on ConLL 2017 starts to
adopt universal dependencies for dependency parsing [263],
and at ConLL 2018, 82 UD treebanks in 57 languages are in-
cluded for evaluation [264]. Besides ConLL, SANCL 2012
organizes a shared task on parsing English web text [265],
which offers a benchmark dataset for cross-domain depen-
dency parsing in English. In addition, the NLPCC 2019
shared task on cross-domain dependency parsing also offers
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a valuable dataset in Chinese [266].
The above shared tasks focus on syntactic dependency

parsing. For semantic dependency parsing, ref. [267] pre-
sented the first shared task to Chinese texts in SemEval,
where dependency trees are used in the evaluation. Ref. [114]
started to use dependency graphs for formal semantic repre-
sentation. For the English language, ref. [113] organized
a shared task for broad coverage semantic parsing by us-
ing three distinct dependency-based semantic formalizations.
Dependency graphs are exploited to represent various seman-
tics. Ref. [55] extended the shared task of ref. [113] with
more languages including Chinese and Czech. Ref. [268]
covered more topics of semantic graph parsing for deep se-
mantics, including not only dependency-based graphs, but
also several other formalizations such as UCCA and AMR.

10 Conclusion and future directions

In this article, we made a thorough review of the past work of
syntactic and semantic parsing focusing on constituent pars-
ing and dependency parsing. Traditional statistical models,
as well as currently-dominant neural network methods, were
both summarized. First, for the parsing models, neural net-
work methods with pretrained contextualized word represen-
tations have achieved the top performances for almost all
datasets. There is a grown tendency to use simple encoder-
decoder frameworks for parsing, so that well-investigated
training strategies can be applied. Second, broad-coverage
semantic parsing is receiving increasing attention, which
might be the next stage hop topic. The task performances
are now gradually acceptable thanks to the neural network
models as well as the development of linguistic resources.

The cross-domain and cross-lingual settings are important
scenarios for parsing, which are difficult to be resolved yet
play the key role to the real applications. For the cross-
domain setting, there is still a large demand for resources.
While for cross-lingual parsing, there exist a number of meth-
ods. A comprehensive and fair comparison of these methods
as well as their integrations might be valuable. In addition,
the difference between cross-domain and cross-language is
becoming smaller because of the universal word representa-
tions. One can regard cross-lingual parsing as a special case
of cross-domain technically.

The importance of joint models is decreasing. By using
neural networks, global features across different tasks can be
directly captured by sophisticated neural structures such as
deep LSTM and self-attention, and on the other hand, we can
build one share encoder across tasks to reduce the influence
of error propagation. For parser application, which might be
regarded as the reverse direction of joint models, neural net-

work encoders can lead to highly effective and elegant univer-
sal representations with syntactic and semantic information.
Also, all current state-of-the-art methods still require a com-
prehensive and fair comparison.

Finally, treebank development is the major source of the
advances of syntactic and semantic parsing, which might be
the most difficult and highly valuable job. In particular, the
semantic knowledge of one sentence can have several dif-
ferent views. Comprehensive annotations require extremely-
high costs. How to effectively perform treebank annotation is
one task deserved investigation.

For future directions, there is still a lot of work left to
be followed. Most importantly, parsing with more complex
grammars would receive increasing attention, although this
survey is no covered. For syntactic parsing, the performances
of CCG, HPSG and LFG parsing are still unsatisfactory, es-
pecially for non-English languages. For semantic parsing, the
dependency-based grammar is not enough for rich semantics,
even being relaxed with graph constraints. Non-lexicalized
nodes are necessary to express several complicated seman-
tics. Thus, AMR, UCCA and MRS could be promising for
practical deep semantic parsing. Based on the CFG and de-
pendency grammars, the cross-domain and cross-lingual set-
tings are deserved to be concerned, which can be further uni-
fied. Lightly-supervised or zero-shot models might be prac-
tical solutions. For the joint models as well as parser ap-
plications, multi-task-learning and pretraining might become
more popular architectures for adaption.
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97 Gómez-Rodrı́guez C, Sartorio F, Satta G. A polynomial-time dynamic
oracle for non-projective dependency parsing. In: Proceedings of the
2014 Conference on Empirical Methods in Natural Language Pro-
cessing. Doha, 2014. 917–927

98 Ballesteros M, Dyer C, Smith N A. Improved transition-based pars-
ing by modeling characters instead of words with LSTMs. In: Pro-
ceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing. Lisbon, 2015. 349–359

99 de Lhoneux M, Ballesteros M, Nivre J. Recursive subtree composi-
tion in LSTM-based dependency parsing. In: Proceedings of the 2019

Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies. Min-
neapolis, 2019. 1566–1576
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253 Nivre J, Agić Ž, Ahrenberg L, et al. Universal dependencies 2.1. 2017
254 Chen K J, Luo C C, Chang M C, et al. Sinica treebank: De-

sign criteria, representational issues and implementation, chapter 13,
2003

255 Qiang Z. Annotation scheme for Chinese treebank. J Chin Infor Proc,
2004, 18: 1–8

256 Zhan W. The application of treebank to assist chinese grammar in-
struction: A preliminary investigation. J Tech Chin Language Teach,
2012, 3: 16–29

257 Liu T, Ma J, Li S. Building a dependency treebank for improving chi-
nese parser. J Chin Language Comput, 2006, 16: 207–224

258 Che W, Li Z, Liu T. Chinese Dependency Treebank 1.0 ldc2012t05.
Philadelphia: Linguistic Data Consortium, 2012

https://doi.org/10.1162/tacl_a_00053
https://doi.org/10.1162/tacl_a_00053


1920 Zhang M S Sci China Tech Sci October (2020) Vol. 63 No. 10

259 Qiu L, Zhang Y, Jin P, et al. Multi-view Chinese treebanking. In:
Proceedings of the 25th International Conference on Computational
Linguistics. Dublin, 2014. 257–268

260 Qiu L, Zhang Y, Zhang M. Dependency tree representations of
predicate-argument structures. In: Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence. Phoenix, 2016

261 Buchholz S, Marsi E. Conll-x shared task on multilingual dependency
parsing. In: Proceedings of the Tenth Conference on Computational
Natural Language Learning. New York, 2006. 149–164
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