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Recently, the emergence of pre-trained models (PTMs) has brought natural language processing (NLP) to a new era. In this
survey, we provide a comprehensive review of PTMs for NLP. We first briefly introduce language representation learning and its
research progress. Then we systematically categorize existing PTMs based on a taxonomy from four different perspectives. Next,
we describe how to adapt the knowledge of PTMs to downstream tasks. Finally, we outline some potential directions of PTMs for
future research. This survey is purposed to be a hands-on guide for understanding, using, and developing PTMs for various NLP
tasks.
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1 Introduction

With the development of deep learning, various neural net-
works have been widely used to solve natural language pro-
cessing (NLP) tasks, such as convolutional neural networks
(CNNs) [1–3], recurrent neural networks (RNNs) [4, 5],
graph-based neural networks (GNNs) [6–8] and attention
mechanisms [9, 10]. One of the advantages of these neu-
ral models is their ability to alleviate thefeature engineering
problem. Non-neural NLP methods usually heavily rely on
the discrete handcrafted features, while neural methods usu-
ally use low-dimensional and dense vectors (aka.distributed
representation) to implicitly represent the syntactic or seman-
tic features of the language. These representations are learned
in specific NLP tasks. Therefore, neural methods make it
easy for people to develop various NLP systems.

Despite the success of neural models for NLP tasks, the
performance improvement may be less significant compared

with the computer vision (CV) field. The main reason is that
current datasets for most supervised NLP tasks are rather
small (except machine translation). Deep neural networks
usually have a large number of parameters, which make them
overfit on these small training data and do not generalize well
in practice. Therefore, the early neural models for many NLP
tasks were relatively shallow and usually consisted of only
1–3 neural layers.

Recently, substantial work has shown that pre-trained
models (PTMs1)), on the large corpus can learn universal lan-
guage representations, which are beneficial for downstream
NLP tasks and can avoid training a new model from scratch.
With the development of computational power, the emer-
gence of the deep models (i.e., Transformer [10]), and the
constant enhancement of training skills, the architecture of
PTMs has been advanced from shallow to deep. Thefirst-
generation PTMs aim to learn good word embeddings. Since
these models themselves are no longer needed by down-
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1) PTMs are also known as pre-trained language models (PLMs). In this survey, we use PTMs for NLP instead of PLMs to avoid confusion with the narrow concept of statistical

(or probabilistic) language models.

http://crossmark.crossref.org/dialog/?doi=10.1007/s11431-020-1647-3&domain=pdf&date_stamp=September 15, 2020
https://doi.org/10.1007/s11431-020-1647-3
tech.scichina.com
springerlink.bibliotecabuap.elogim.com
https://doi.org/10.1007/s11431-020-1647-3
xpqiu@fudan.edu.cn


Qiu X P, et al. Sci China Tech Sci October (2020) Vol. 63 No. 10 1873

stream tasks, they are usually very shallow for computational
efficiencies, such as Skip-Gram [11] and GloVe [12]. Al-
though these pre-trained embeddings can capture semantic
meanings of words, they are context-free and fail to capture
higher-level concepts in context, such as polysemous dis-
ambiguation, syntactic structures, semantic roles, anaphora.
Thesecond-generation PTMs focus on learning contextual
word embeddings, such as CoVe [13], ELMo [14], OpenAI
GPT [15] and BERT [16]. These learned encoders are still
needed to represent words in context by downstream tasks.
Besides, various pre-training tasks are also proposed to learn
PTMs for different purposes.

The contributions of this survey can be summarized as fol-
lows.

(1) Comprehensive review. We provide a comprehensive
review of PTMs for NLP, including background knowledge,
model architecture, pre-training tasks, various extensions,
adaption approaches, and applications.

(2) New taxonomy. We propose a taxonomy of PTMs for
NLP, which categorizes existing PTMs from four different
perspectives: 1) representation type, 2) model architecture;
3) type of pre-training task; 4) extensions for specific types
of scenarios.

(3) Abundant resources. We collect abundant resources on
PTMs, including open-source implementations of PTMs, vi-
sualization tools, corpora, and paper lists.

(4) Future directions. We discuss and analyze the limi-
tations of existing PTMs. Also, we suggest possible future
research directions.

The rest of the survey is organized as follows. Sect. 2 out-
lines the background concepts and commonly used notations
of PTMs. Sect. 3 gives a brief overview of PTMs and clari-
fies the categorization of PTMs. Sect. 4 provides extensions
of PTMs. Sect. 5 discusses how to transfer the knowledge
of PTMs to downstream tasks. Sect. 6 gives the related re-
sources on PTMs. Sect. 7 presents a collection of applica-
tions across various NLP tasks. Sect. 8 discusses the current
challenges and suggests future directions. Sect. 9 summa-
rizes the paper.

2 Background

2.1 Language representation learning

As suggested by ref. [17], a good representation should
express general-purpose priors that are not task-specific but
would be likely to be useful for a learning machine to solve
AI-tasks. When it comes to language, a good representation
should capture the implicit linguistic rules and common sense
knowledge hiding in text data, such as lexical meanings, syn-
tactic structures, semantic roles, and even pragmatics.

The core idea of distributed representation is to describe
the meaning of a piece of text by low-dimensional real-valued
vectors. And each dimension of the vector has no correspond-
ing sense, while the whole represents a concrete concept. Fig-
ure 1 illustrates the generic neural architecture for NLP. There
are two kinds of word embeddings: non-contextual and con-
textual embeddings. The difference between them is whether
the embedding for a word dynamically changes according to
the context it appears in.

Non-contextual embeddings The first step of represent-
ing language is to map discrete language symbols into a dis-
tributed embedding space. Formally, for each word (or sub-
word) x in a vocabulary V, we map it to a vector ex ∈ RDe

with a lookup table E ∈ RDe×|V|, where De is a hyper-
parameter indicating the dimension of token embeddings.
These embeddings are trained on task data along with other
model parameters.

There are two main limitations to this kind of embeddings.
The first issue is that the embeddings are static. The em-
bedding for a word does is always the same regardless of
its context. Therefore, thesenon-contextual embeddings fail
to model polysemous words. The second issue is the out-
of-vocabulary problem. To tackle this problem, character-
level word representations or sub-word representations are
widely used in many NLP tasks, such as CharCNN [18], Fast-
Text [19] and Byte-Pair Encoding (BPE) [20].

Contextual embeddings To address the issue of polyse-
mous and the context-dependent nature of words, we need
distinguish the semantics of words in different contexts.
Given a text x1, x2, · · · , xT where each token xt ∈ V is a word
or sub-word, the contextual representation of xt depends on
the whole text.

[h1,h2, · · · ,hT ] = fenc(x1, x2, · · · , xT ), (1)

where fenc(·) is neural encoder, which is described in
Sect. 2.2, and ht is called contextual embedding or dynamical
embedding of token xt because of the contextual information
included in.
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Figure 1 (Color online) Generic neural architecture for NLP.
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2.2 Neural contextual encoders

Most of the neural contextual encoders can be classified into
two categories: sequence models and non-sequence models.
Figure 2 illustrates three representative architectures.

2.2.1 Sequence models

Sequence models usually capture local context of a word in
sequential order.

Convolutional models Convolutional models take the em-
beddings of words in the input sentence and capture the
meaning of a word by aggregating the local information from
its neighbors by convolution operations [2].

Recurrent models Recurrent models capture the contex-
tual representations of words with short memory, such as
LSTMs [21] and GRUs [22]. In practice, bi-directional
LSTMs or GRUs are used to collect information from both
sides of a word, but its performance is often affected by the
long-term dependency problem.

2.2.2 Non-sequence models

Non-sequence models learn the contextual representation
with a pre-defined tree or graph structure between words,
such as the syntactic structure or semantic relation. Some
popular non-sequence models include Recursive NN [6],
TreeLSTM [7, 23], and GCN [24].

Although the linguistic-aware graph structure can provide
useful inductive bias, how to build a good graph structure is
also a challenging problem. Besides, the structure depends
heavily on expert knowledge or external NLP tools, such as
the dependency parser.

Fully-connected self-attention model In practice, a more
straightforward way is to use a fully-connected graph to
model the relation of every two words and let the model
learn the structure by itself. Usually, the connection weights
are dynamically computed by the self-attention mechanism,
which implicitly indicates the connection between words. A
successful instance of fully-connected self-attention model
is the Transformer [10], which also needs other supplement
modules, such as positional embeddings, layer normalization,

residual connections and position-wise feed-forward network
(FFN) layers.

2.2.3 Analysis

Sequence models learn the contextual representation of the
word with locality bias and are hard to capture the long-range
interactions between words. Nevertheless, sequence models
are usually easy to train and get good results for various NLP
tasks.

In contrast, as an instantiated fully-connected self-
attention model, the Transformer can directly model the de-
pendency between every two words in a sequence, which is
more powerful and suitable to model long range dependency
of language. However, due to its heavy structure and less
model bias, the Transformer usually requires a large train-
ing corpus and is easy to overfit on small or modestly-sized
datasets [15, 25].

Currently, the Transformer has become the mainstream ar-
chitecture of PTMs due to its powerful capacity.

2.3 Why pre-training?

With the development of deep learning, the number of model
parameters has increased rapidly. The much larger dataset is
needed to fully train model parameters and prevent overfit-
ting. However, building large-scale labeled datasets is a great
challenge for most NLP tasks due to the extremely expen-
sive annotation costs, especially for syntax and semantically
related tasks.

In contrast, large-scale unlabeled corpora are relatively
easy to construct. To leverage the huge unlabeled text data,
we can first learn a good representation from them and then
use these representations for other tasks. Recent studies have
demonstrated significant performance gains on many NLP
tasks with the help of the representation extracted from the
PTMs on the large unannotated corpora.

The advantages of pre-training can be summarized as fol-
lows.

(1) Pre-training on the huge text corpus can learn univer-
sal language representations and help with the downstream
tasks.

(2) Pre-training provides a better model initialization,
which usually leads to a better generalization performance
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x1 x2 x3 x4 x5

h1 h2 h3 h4 h5

x1 x2 x3 x4 x5

h1 h2 h3 h4 h5

x1 x2 x3 x4 x5

Figure 2 (Color online) Neural contextual encoders. (a) Convolutional model; (b) recurrent model; (c) fully-connected self-attention model.
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and speeds up convergence on the target task.
(3) Pre-training can be regarded as a kind of regularization

to avoid overfitting on small data [26].

2.4 A brief history of PTMs for NLP

Pre-training has always been an effective strategy to learn
the parameters of deep neural networks, which are then
fine-tuned on downstream tasks. As early as 2006, the
breakthrough of deep learning came with greedy layer-
wise unsupervised pre-training followed by supervised fine-
tuning [27]. In CV, it has been in practice to pre-train models
on the huge ImageNet corpus, and then fine-tune further on
smaller data for different tasks. This is much better than a
random initialization because the model learns general image
features, which can then be used in various vision tasks.

In NLP, PTMs on large corpus have also been proven to be
beneficial for the downstream NLP tasks, from the shallow
word embedding to deep neural models.

2.4.1 First-generation PTMs: Pre-trained word embeddings

Representing words as dense vectors has a long history [28].
The “modern” word embedding is introduced in pioneer work
of neural network language model (NNLM) [29]. Ref. [30]
showed that the pre-trained word embedding on the unla-
belled data could significantly improve many NLP tasks.
To address the computational complexity, they learned word
embeddings with pairwise ranking task instead of language
modeling. Their work is the first attempt to obtain generic
word embeddings useful for other tasks from unlabeled data.
Ref. [11] showed that there is no need for deep neu-
ral networks to build good word embeddings. They pro-
pose two shallow architectures: Continuous Bag-of-Words
(CBOW) and Skip-Gram (SG) models. Despite their sim-
plicity, they can still learn high-quality word embeddings to
capture the latent syntactic and semantic similarities among
words. Word2vec is one of the most popular implementations
of these models and makes the pre-trained word embeddings
accessible for different tasks in NLP. Besides, GloVe [12]
is also a widely-used model for obtaining pre-trained word
embeddings, which are computed by global word-word co-
occurrence statistics from a large corpus.

Although pre-trained word embeddings have been shown
effective in NLP tasks, they are context-independent and
mostly trained by shallow models. When used on a down-
stream task, the rest of the whole model still needs to be
learned from scratch.

During the same time period, many researchers also try to
learn embeddings of paragraph, sentence or document, such
as paragraph vector [31], Skip-thought vectors [32], Con-

text2Vec [33]. Different from their modern successors, these
sentence embedding models try to encode input sentences
into a fixed-dimensional vector representation, rather than the
contextual representation for each token.

2.4.2 Second-generation PTMs: Pre-trained contextual en-
coders

Since most NLP tasks are beyond word-level, it is natural
to pre-train the neural encoders on sentence-level or higher.
The output vectors of neural encoders are also called contex-
tual word embeddings since they represent the word seman-
tics depending on its context.

Ref. [34] proposed the first successful instance of PTM for
NLP. They initialized LSTMs with a language model (LM)
or a sequence autoencoder, and found the pre-training can
improve the training and generalization of LSTMs in many
text classification tasks. Ref. [5] pre-trained a shared LSTM
encoder with LM and fine-tuned it under the multi-task learn-
ing (MTL) framework. They found the pre-training and fine-
tuning can further improve the performance of MTL for sev-
eral text classification tasks. Ref. [35] found the Seq2Seq
models can be significantly improved by unsupervised pre-
training. The weights of both encoder and decoder are ini-
tialized with pre-trained weights of two language models and
then fine-tuned with labeled data. Besides pre-training the
contextual encoder with LM, ref. [13] pre-trained a deep
LSTM encoder from an attentional sequence-to-sequence
model with machine translation (MT). The context vectors
(CoVe) output by the pre-trained encoder can improve the
performance of a wide variety of common NLP tasks.

Since these precursor PTMs, the modern PTMs are usually
trained with larger scale corpora, more powerful or deeper ar-
chitectures (e.g., Transformer), and new pre-training tasks.

Ref. [14] pre-trained 2-layer LSTM encoder with a bidi-
rectional language model (BiLM), consisting of a forward
LM and a backward LM. The contextual representations out-
put by the pre-trained BiLM, ELMo (Embeddings from Lan-
guage Models), are shown to bring large improvements on a
broad range of NLP tasks. Ref. [36] captured word meaning
with contextual string embeddings pre-trained with character-
level LM. However, these two PTMs are usually used as a
feature extractor to produce the contextual word embeddings,
which are fed into the main model for downstream tasks.
Their parameters are fixed, and the rest parameters of the
main model are still trained from scratch. ULMFiT (Uni-
versal Language Model Fine-tuning) [37] attempted to fine-
tune pre-trained LM for text classification (TC) and achieved
state-of-the-art results on six widely-used TC datasets. ULM-
FiT consists of 3 phases: (1) pre-training LM on general-
domain data; (2) fine-tuning LM on target data; (3) fine-
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tuning on the target task. ULMFiT also investigates some
effective fine-tuning strategies, including discriminative fine-
tuning, slanted triangular learning rates, and gradual unfreez-
ing.

More recently, the very deep PTMs have shown their
powerful ability in learning universal language representa-
tions: e.g., OpenAI GPT (Generative Pre-training) [15] and
BERT (Bidirectional Encoder Representation from Trans-
former) [16]. Besides LM, an increasing number of self-
supervised tasks (see Sect. 3.1) is proposed to make the PTMs
capturing more knowledge form large scale text corpora.

Since ULMFiT and BERT, fine-tuning has become the
mainstream approach to adapt PTMs for the downstream
tasks.

3 Overview of PTMs

The major differences between PTMs are the usages of con-
textual encoders, pre-training tasks, and purposes. We have
briefly introduced the architectures of contextual encoders in
Sect. 2.2. In this section, we focus on the description of pre-
training tasks and give a taxonomy of PTMs.

3.1 Pre-training tasks

The pre-training tasks are crucial for learning the universal
representation of language. Usually, these pre-training tasks
should be challenging and have substantial training data. In
this section, we summarize the pre-training tasks into three
categories: supervised learning, unsupervised learning, and
self-supervised learning.

(1) Supervised learning (SL) is to learn a function that
maps an input to an output based on training data consisting
of input-output pairs.

(2) Unsupervised learning (UL) is to find some intrinsic
knowledge from unlabeled data, such as clusters, densities,
latent representations.

(3) Self-Supervised learning (SSL) is a blend of supervised
learning and unsupervised learning2). The learning paradigm
of SSL is entirely the same as supervised learning, but the
labels of training data are generated automatically. The key
idea of SSL is to predict any part of the input from other
parts in some form. For example, the masked language model
(MLM) is a self-supervised task that attempts to predict the
masked words in a sentence given the rest words.

In CV, many PTMs are trained on large supervised train-
ing sets like ImageNet. However, in NLP, the datasets of
most supervised tasks are not large enough to train a good

PTM. The only exception is machine translation (MT). A
large-scale MT dataset, WMT 2017, consists of more than
7 million sentence pairs. Besides, MT is one of the most
challenging tasks in NLP, and an encoder pre-trained on MT
can benefit a variety of downstream NLP tasks. As a success-
ful PTM, CoVe [13] is an encoder pre-trained on MT task
and improves a wide variety of common NLP tasks: senti-
ment analysis (SST, IMDb), question classification (TREC),
entailment (SNLI), and question answering (SQuAD).

In this section, we introduce some widely-used pre-
training tasks in existing PTMs. We can regard these tasks
as self-supervised learning. Table 1 also summarizes their
loss functions.

3.1.1 Language modeling (LM)

The most common unsupervised task in NLP is probabilistic
language modeling (LM), which is a classic probabilistic den-
sity estimation problem. Although LM is a general concept,
in practice, LM often refers in particular to auto-regressive
LM or unidirectional LM.

Given a text sequence x1:T = [x1, x2, · · · , xT ], its joint
probability p(x1:T ) can be decomposed as

p(x1:T ) =
T∏

t=1

p(xt |x0:t−1), (2)

where x0 is special token indicating the begin of sequence.
The conditional probability p(xt |x0:t−1) can be modeled by

a probability distribution over the vocabulary given linguistic
context x0:t−1. The context x0:t−1 is modeled by neural en-
coder fenc(·), and the conditional probability is

p(xt |x0:t−1) = gLM

(
fenc(x0:t−1)

)
, (3)

where gLM(·) is prediction layer.
Given a huge corpus, we can train the entire network with

maximum likelihood estimation (MLE).
A drawback of unidirectional LM is that the representa-

tion of each token encodes only the leftward context tokens
and itself. However, better contextual representations of text
should encode contextual information from both directions.
An improved solution is bidirectional LM (BiLM), which
consists of two unidirectional LMs: a forward left-to-right
LM and a backward right-to-left LM. For BiLM, ref. [38]
proposed a two-tower model that the forward tower oper-
ates the left-to-right LM and the backward tower operates the
right-to-left LM.

2) Indeed, it is hard to clearly distinguish the unsupervised learning and self-supervised learning. For clarification, we refer “unsupervised learning” to
the learning without human-annotated supervised labels. The purpose of “self-supervised learning” is to learn the general knowledge from data rather than
standard unsupervised objectives, such as density estimation.
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Table 1 Loss functions of pre-training tasksa)

Task Loss function Description

LM LLM = −
T∑

t=1

log p(xt |x<t) x<t = x1, x2, · · · , xt−1

MLM LMLM = −
∑

x̂∈m(x)

log p
(
x̂|x\m(x)

)
m(x) and x\m(x) denote the masked words from x and the rest words respectively

Seq2Seq MLM LS2SMLM = −
j∑

t=i

log p
(
xt |x\xi: j , xi:t−1

)
xi: j denotes an masked n-gram span from i to j in x

PLM LPLM = −
T∑

t=1

log p(zt |z<t) z = perm(x) is a permutation of x with random order

DAE LDAE = −
T∑

t=1

log p(xt |x̂, x<t) x̂ is randomly perturbed text from x

DIM LDIM = s(x̂i: j, xi: j) − log
∑

x̃i: j∈N
s(x̂i: j, x̃i: j)

xi: j denotes an n-gram span from i to j in x, x̂i: j denotes a sentence masked at

position i to j, and x̃i: j denotes a randomly-sampled negative n-gram from corpus

NSP/SOP LNSP/SOP = − log p(t|x, y) t = 1 if x and y are continuous segments from corpus

RTD LRTD = −
T∑

t=1

log p(yt |x̂) yt = 1(x̂t = xt), x̂ is corrupted from x

a) x = [x1, x2, · · · , xT ] denotes a sequence.

3.1.2 Masked language modeling (MLM)

Masked language modeling (MLM) is first proposed by ref.
[39], who referred to this as a Cloze task. Ref. [16]
adapted this task as a novel pre-training task to overcome
the drawback of the standard unidirectional LM. Loosely
speaking, MLM first masks out some tokens from the in-
put sentences and then trains the model to predict the
masked tokens by the rest of the tokens. However, this
pre-training method will create a mismatch between the pre-
training phase and the fine-tuning phase because the mask
token does not appear during the fine-tuning phase. Em-
pirically, to deal with this issue, ref. [16] used a special
[MASK] token 80% of the time, a random token 10% of
the time and the original token 10% of the time to perform
masking.

Sequence-to-sequence MLM (Seq2Seq MLM) MLM is
usually solved as classification problem. We feed the masked
sequences to a neural encoder whose output vectors are fur-
ther fed into a softmax classifier to predict the masked token.
Alternatively, we can use encoder-decoder (aka. sequence-to-
sequence) architecture for MLM, in which the encoder is fed
a masked sequence, and the decoder sequentially produces
the masked tokens in auto-regression fashion. We refer to
this kind of MLM as sequence-to-sequence MLM (Seq2Seq
MLM), which is used in MASS [40] and T5 [41]. Seq2Seq
MLM can benefit the Seq2Seq-style downstream tasks,
such as question answering, summarization, and machine
translation.

Enhanced masked language modeling (E-MLM) Con-
currently, there are multiple research proposing different en-
hanced versions of MLM to further improve on BERT. In-
stead of static masking, RoBERTa [42] improves BERT by
dynamic masking.

UniLM [43, 44] extends the task of mask prediction on
three types of language modeling tasks: unidirectional, bidi-
rectional, and sequence-to-sequence prediction. XLM [45]
performs MLM on a concatenation of parallel bilingual sen-
tence pairs, called Translation Language Modeling (TLM).
SpanBERT [46] replaces MLM with Random Contiguous
Words Masking and Span Boundary Objective (SBO) to inte-
grate structure information into pre-training, which requires
the system to predict masked spans based on span bound-
aries. Besides, StructBERT [47] introduces the Span Order
Recovery task to further incorporate language structures.

Another way to enrich MLM is to incorporate external
knowledge (see Sect. 4.1).

3.1.3 Permuted language modeling (PLM)

Despite the wide use of the MLM task in pre-training, ref.
[48] claimed that some special tokens used in the pre-training
of MLM, like [MASK], are absent when the model is applied
on downstream tasks, leading to a gap between pre-training
and fine-tuning. To overcome this issue, Permuted Language
Modeling (PLM) [48] is a pre-training objective to replace
MLM. In short, PLM is a language modeling task on a ran-
dom permutation of input sequences. A permutation is ran-
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domly sampled from all possible permutations. Then some of
the tokens in the permuted sequence are chosen as the target,
and the model is trained to predict these targets, depending on
the rest of the tokens and the natural positions of targets. Note
that this permutation does not affect the natural positions of
sequences and only defines the order of token predictions. In
practice, only the last few tokens in the permuted sequences
are predicted, due to the slow convergence. And a special
two-stream self-attention is introduced for target-aware rep-
resentations.

3.1.4 Denoising autoencoder (DAE)

Denoising autoencoder (DAE) takes a partially corrupted in-
put and aims to recover the original undistorted input. Spe-
cific to language, a sequence-to-sequence model, such as the
standard Transformer, is used to reconstruct the original text.
There are several ways to corrupt text [49].

(1) Token masking. Randomly sampling tokens from the
input and replacing them with [MASK] elements.

(2) Token deletion. Randomly deleting tokens from the in-
put. Different from token masking, the model needs to decide
the positions of missing inputs.

(3) Text infilling. Like SpanBERT, a number of text spans
are sampled and replaced with a single [MASK] token. Each
span length is drawn from a Poisson distribution (λ = 3). The
model needs to predict how many tokens are missing from a
span.

(4) Sentence permutation. Dividing a document into sen-
tences based on full stops and shuffling these sentences in
random order.

(5) Document rotation. Selecting a token uniformly at ran-
dom and rotating the document so that it begins with that to-
ken. The model needs to identify the real start position of the
document.

3.1.5 Contrastive learning (CTL)

Contrastive learning [50] assumes some observed pairs of
text that are more semantically similar than randomly sam-
pled text. A score function s(x, y) for text pair (x, y) is learned
to minimize the objective function:

LCTL = Ex,y+,y−

[
− log

exp
(
s(x, y+)

)
exp
(
s(x, y+)

)
+ exp

(
s(x, y−)

) ] , (4)

where (x, y+) are a similar pair and y− is presumably dissim-
ilar to x. y+ and y− are typically called positive and negative
sample. The score function s(x, y) is often computed by a
learnable neural encoder in two ways: s(x, y) = f T

enc(x) fenc(y)

or s(x, y) = fenc(x ⊕ y).

The idea behind CTL is “learning by comparison”. Com-
pared with LM, CTL usually has less computational com-
plexity and therefore is desirable alternative training criteria
for PTMs.

Ref. [30] proposed pairwise ranking task to distinguish
real and fake phrases. The model needs to predict a higher
score for a legal phrase than an incorrect phrase obtained by
replacing its central word with a random word. Ref. [51]
trained word embeddings efficiently with Noise-Contrastive
Estimation (NCE) [52], which trains a binary classifier to dis-
tinguish real and fake samples. The idea of NCE is also used
in the well-known word2vec embedding [11].

We briefly describe some recently proposed CTL tasks in
the following paragraphs.

Deep InfoMax (DIM) Deep InfoMax (DIM) [53] is orig-
inally proposed for images, which improves the quality of
the representation by maximizing the mutual information be-
tween an image representation and local regions of the image.

Ref. [54] applied DIM to language representation learn-
ing. The global representation of a sequence x is defined to
be the hidden state of the first token (assumed to be a spe-
cial start of sentence symbol) output by contextual encoder
fenc(x). The objective of DIM is to assign a higher score
for fenc(xi: j)T fenc(x̂i: j) than fenc(x̃i: j)T fenc(x̂i: j), where xi: j de-
notes an n-gram3) span from i to j in x, x̂i: j denotes a sentence
masked at position i to j, and x̃i: j denotes a randomly-sampled
negative n-gram from corpus.

Replaced token detection (RTD) Replaced token detec-
tion (RTD) is the same as NCE but predicts whether a token
is replaced given its surrounding context.

CBOW with negative sampling (CBOW-NS) [11] can be
viewed as a simple version of RTD, in which the negative
samples are randomly sampled from vocabulary with simple
proposal distribution.

ELECTRA [55] improves RTD by utilizing a generator to
replacing some tokens of a sequence. A generator G and a
discriminator D are trained following a two-stage procedure:
(1) train only the generator with MLM task for n1 steps; (2)
initialize the weights of the discriminator with the weights of
the generator. Then train the discriminator with a discrimi-
native task for n2 steps, keeping G frozen. Here the discrim-
inative task indicates justifying whether the input token has
been replaced by G or not. The generator is thrown after
pre-training, and only the discriminator will be fine-tuned on
downstream tasks.

RTD is also an alternative solution for the mismatch prob-
lem. The [MASK] token is used during pre-training but is
absent at fine-tuning time.

3) n is drawn from a Gaussian distribution N(5, 1) clipped at 1 (minimum length) and 10 (maximum length).
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Similarly, WKLM [56] replaces words on the entity-level
instead of token-level. Concretely, WKLM replaces entity
mentions with names of other entities of the same type and
train the models to distinguish whether the entity has been
replaced.

Next sentence prediction (NSP) Punctuations are the nat-
ural separators of text data. So, it is reasonable to construct
pre-training methods by utilizing them. Next sentence pre-
diction (NSP) [16] is just a great example of this. As its name
suggests, NSP trains the model to distinguish whether two in-
put sentences are continuous segments from the training cor-
pus. Specifically, when choosing the sentences pair for each
pre-training example, 50% of the time, the second sentence is
the actual next sentence of the first one, and 50% of the time,
it is a random sentence from the corpus. By doing so, it is
capable to teach the model to understand the relationship be-
tween two input sentences and thus benefit downstream tasks
that are sensitive to this information, such as question answer-
ing and natural language inference.

However, the necessity of the NSP task has been ques-
tioned by subsequent work [42, 46, 48, 57]. Ref. [48] found
the impact of the NSP task unreliable, while ref. [46] found
that single-sentence training without the NSP loss is superior
to sentence-pair training with the NSP loss. Moreover, ref.
[42] conducted a further analysis for the NSP task, which
shows that when training with blocks of text from a single
document, removing the NSP loss matches or slightly im-
proves performance on downstream tasks.

Sentence order prediction (SOP) To better model inter-
sentence coherence, ALBERT [57] replaces the NSP loss
with a sentence order prediction (SOP) loss. As conjectured
in ref. [57], NSP conflates topic prediction and coherence
prediction in a single task. Thus, the model is allowed to
make predictions merely rely on the easier task, topic pre-
diction. Different from NSP, SOP uses two consecutive seg-
ments from the same document as positive examples, and the
same two consecutive segments but with their order swapped
as negative examples. As a result, ALBERT consistently out-
performs BERT on various downstream tasks.

StructBERT [47] and BERTje [58] also take SOP as their
self-supervised learning task.

3.1.6 Others

Apart from the above tasks, there are many other auxiliary
pre-training tasks designated to incorporate factual knowl-
edge (see Sect. 4.1), improve cross-lingual tasks (see Sect.
4.2), multi-modal applications (see Sect. 4.3), or other spe-
cific tasks (see Sect. 4.4).

3.2 Taxonomy of PTMs

To clarify the relations of existing PTMs for NLP, we build
the taxonomy of PTMs, which categorizes existing PTMs
from four different perspectives.

(1) Representation type. According to the representation
used for downstream tasks, we can divide PTMs into non-
contextual and contextual models.

(2) Architectures. The backbone network used by PTMs,
including LSTM, Transformer encoder, Transformer de-
coder, and the full Transformer architecture. “Transformer”
means the standard encoder-decoder architecture. “Trans-
former encoder” and “Transformer decoder” mean the en-
coder and decoder part of the standard Transformer architec-
ture, respectively. Their difference is that the decoder part
uses masked self-attention with a triangular matrix to prevent
tokens from attending their future (right) positions.

(3) Pre-training task types. The type of pre-training tasks
used by PTMs. We have discussed them in Sect. 3.1.

(4) Extensions. PTMs designed for various scenar-
ios, including knowledge-enriched PTMs, multilingual
or language-specific PTMs, multi-model PTMs, domain-
specific PTMs and compressed PTMs. We will particularly
introduce these extensions in Sect. 4.

Figure 3 [5, 11–16, 34, 40–43, 45, 47–49, 55–94] shows
the taxonomy as well as some corresponding representative
PTMs. Besides, Table 2 distinguishes some representative
PTMs in more detail.

3.3 Model analysis

Due to the great success of PTMs, it is important to under-
stand what kinds of knowledge are captured by them, and
how to induce knowledge from them. There is a wide range
of literature analyzing linguistic knowledge and world knowl-
edge stored in pre-trained non-contextual and contextual em-
beddings.

3.3.1 Non-contextual embeddings

Static word embeddings are first probed for kinds of knowl-
edge. Ref. [95] found that word representations learned by
neural network language models are able to capture linguistic
regularities in language, and the relationship between words
can be characterized by a relation-specific vector offset. Fur-
ther analogy experiments [11] demonstrated that word vec-
tors produced by skip-gram model can capture both syntac-
tic and semantic word relationships, such as vec(“China”)
− vec(“Beijing”) ≈ vec(“Japan”) − vec(“Tokyo”). Be-
sides, they find compositionality property of word vectors,
for example, vec(“Germany”) + vec(“capital”) is close to
vec(“Berlin”). Inspired by these work, ref. [96] found that
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PTMs

Contextual?

Non-Contextual

CBOW, Skip-Gram [11]

GloVe [12]

Contextual ELMo [14], GPT [15], BERT [16]

Architectures

LSTM LM-LSTM [34], Shared LSTM [5], ELMo [14], CoVe [13]

Transformer Enc. BERT [16], SpanBERT [46], XLNet [48], RoBERTa [42]

Transformer Dec. GPT [15], GPT-2 [60]

Transformer
MASS [40], BART [49]

XNLG [64], mBART [65]

Task Types

Supervised MT CoVe [13]

Unsupervised/

Self-Supervised

LM ELMo [14], GPT [15], GPT-2 [60], UniLM [43]

MLM

BERT [16], SpanBERT [46], RoBERTa [42], XLM-R [66]

TLM XLM [45]

Seq2SeqMLM MASS [40], T5 [41]

PLM XLNet [48]

DAE BART [49]

CTL

RTD CBOW-NS [11], ELECTRA [55]

NSP BERT [16], UniLM [43]

SOP ALBERT [57], StructBERT [47]

Extensions

Knowledge-Enriched
ERNIE(THU) [61], KnowBERT [62], K-BERT [63]

SentiLR [67], KEPLER [59], WKLM [56]

Multilingual

XLU mBERT [16], Unicoder [67], XLM [45], XLM-R [62], MultiFit [68]

XLG MASS [40], mBART [65], XNLG [64]

Language-Specific
ERNIE(Baidu) [70], BERT-wwm-Chinese [71], NEZHA [72], ZEN [73]

BERTje [58], CamemBERT [74], FlauBERT [75], RobBERT [76]

Multi-Modal

Image
ViLBERT [77], LXMERT [78],

VisualBERT [79], B2T2 [80], VL-BERT [81]

Video VideoBERT [82], CBT [83]

Speech SpeechBERT [84]

Domain-Specific SentiLR [65], BioBERT [85], SciBERT [86], PatentBERT [87]

Model Compression

Model Pruning CompressingBERT [88]

Quantization Q-BERT [89], Q8BERT [90]

Parameter Sharing ALBERT [57]

Distillation DistilBERT [91], TinyBERT [92], MiniLM [93]

Module Replacing BERT-of-Theseus [94]

Figure 3 (Color online) Taxonomy of PTMs with representative examples.

distributional word representations are good at predicting tax-
onomic properties (e.g., dog is an animal) but fail to learn at-

tributive properties (e.g., swan is white). Similarly, ref. [97]
showed that word2vec embeddings implicitly encode referen-
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Table 2 List of representative PTMs

PTMs Architecturea) Input Pre-training task Corpus Params GLUEb) FT?e)

ELMo [14] LSTM Text BiLM WikiText-103 No

GPT [15] Transformer Dec. Text LM BookCorpus 117M 72.8 Yes

GPT-2 [60] Transformer Dec. Text LM WebText 117M–1542M No

BERT [16] Transformer Enc. Text MLM & NSP WikiEn+BookCorpus 110M–340M 81.9c) Yes

InfoWord [54] Transformer Enc. Text DIM+MLM WikiEn+BookCorpus =BERT 81.1c) Yes

RoBERTa [42] Transformer Enc. Text MLM BookCorpus+CC- 355M 88.5 Yes

News+OpenWebText+ STORIES

XLNet [48] Two-Stream Text PLM WikiEn+ BookCorpus+Giga5 ≈BERT 90.5d) Yes

Transformer Enc. +ClueWeb+Common Crawl

ELECTRA [55] Transformer Enc. Text RTD+MLM same to XLNet 335M 88.6 Yes

UniLM [43] Transformer Enc. Text MLMf)+ NSP WikiEn+BookCorpus 340M 80.8 Yes

MASS [40] Transformer Text Seq2Seq MLM *Task-dependent Yes

BART [49] Transformer Text DAE same to RoBERTa 110% of BERT 88.4c) Yes

T5 [41] Transformer Text Seq2Seq MLM Colossal Clean Crawled Corpus (C4) 220M–11B 89.7c) Yes

ERNIE(THU) [61] Transformer Enc. Text+Entities MLM+NSP+dEA WikiEn +Wikidata 114M 79.6 Yes

KnowBERT [62] Transformer Enc. Text MLM+NSP+EL WikiEn +WordNet/Wiki 253M–523M Yes

K-BERT [63] Transformer Enc. Text+Triples MLM+NSP WikiZh +WebtextZh + CN-DBpedia =BERT Yes

+ HowNet +MedicalKG

KEPLER [59] Transformer Enc. Text MLM+KE WikiEn +Wikidata/WordNet Yes

WKLM [56] Transformer Enc. Text MLM+ERD WikiEn +Wikidata =BERT Yes

a) “Transformer Enc.” and “Transformer Dec.” mean the encoder and decoder part of the standard Transformer architecture respectively. Their difference
is that the decoder part uses masked self-attention with triangular matrix to prevent tokens from attending their future (right) positions. “Transformer” means
the standard encoder-decoder architecture.

b) The averaged score on 9 tasks of GLUE benchmark (see Sect. 7.1).
c) Without WNLI task.
d) Indicates ensemble result.
e) Means whether is model usually used in fine-tuning fashion.
f) The MLM of UniLM is built on three versions of LMs: Unidirectional LM, Bidirectional LM, and Sequence-to-Sequence LM.

tial attributes of entities. The distributed word vectors, along
with a simple supervised model, can learn to predict numeric
and binary attributes of entities with a reasonable degree of
accuracy.

3.3.2 Contextual embeddings

A large number of studies have probed and induced different
types of knowledge in contextual embeddings. In general,
there are two types of knowledge: linguistic knowledge and
world knowledge.

Linguistic knowledge A wide range of probing tasks are
designed to investigate the linguistic knowledge in PTMs.
Refs. [98, 99] found that BERT performs well on many syn-
tactic tasks such as part-of-speech tagging and constituent la-
beling. However, BERT is not good enough at semantic and
fine-grained syntactic tasks, compared with simple syntactic
tasks.

Besides, ref. [100] analyzed the roles of BERT’s layers in
different tasks and found that BERT solves tasks in a simi-
lar order to that in NLP pipelines. Furthermore, knowledge
of subject-verb agreement [101] and semantic roles [102] are

also confirmed to exist in BERT. Besides, refs. [103–105]
proposed several methods to extract dependency trees and
constituency trees from BERT, which proved the BERT’s
ability to encode syntax structure. Ref. [106] explored the
geometry of internal representations in BERT and find some
evidence: (1) linguistic features seem to be represented in
separate semantic and syntactic subspaces; (2) attention ma-
trices contain grammatical representations; (3) BERT distin-
guishes word senses at a very fine level.

World knowledge Besides linguistic knowledge, PTMs
may also store world knowledge presented in the training
data. A straightforward method of probing world knowl-
edge is to query BERT with “fill-in-the-blank” cloze state-
ments, for example, “Dante was born in [MASK]”. Ref.
[107] constructed LAMA (Language Model Analysis) task
by manually creating single-token cloze statements (queries)
from several knowledge sources. Their experiments show
that BERT contains world knowledge competitive with tra-
ditional information extraction methods. Since the simplic-
ity of query generation procedure in LAMA, ref. [108] ar-
gued that LAMA just measures a lower bound for what lan-
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guage models know and propose more advanced methods to
generate more efficient queries. Despite the surprising find-
ings of LAMA, it has also been questioned by subsequent
work [109, 110]. Similarly, several studies induce relational
knowledge [111] and commonsense knowledge [112] from
BERT for downstream tasks.

4 Extensions of PTMs

4.1 Knowledge-enriched PTMs

PTMs usually learn universal language representation from
general-purpose large-scale text corpora but lack domain-
specific knowledge. Incorporating domain knowledge from
external knowledge bases into PTM has been shown to be ef-
fective. The external knowledge ranges from linguistic [62,
67, 113, 114], semantic [115], commonsense [116], fac-
tual [56, 59, 61–63], to domain-specific knowledge [63, 117].

On the one hand, external knowledge can be injected dur-
ing pre-training. Early studies [118–121] focused on learning
knowledge graph embeddings and word embedding jointly.
Since BERT, some auxiliary pre-training tasks are designed
to incorporate external knowledge into deep PTMs. LIB-
ERT [113] (linguistically-informed BERT) incorporates lin-
guistic knowledge via an additional linguistic constraint task.
Ref. [67] integrated sentiment polarity of each word to ex-
tend the MLM to Label-Aware MLM (LA-MLM). As a re-
sult, their proposed model, SentiLR, achieves state-of-the-
art performance on several sentence- and aspect-level senti-
ment classification tasks. Ref. [115] proposed SenseBERT,
which is pre-trained to predict not only the masked tokens but
also their supersenses in WordNet. ERNIE(THU) [61] inte-
grates entity embeddings pre-trained on a knowledge graph
with corresponding entity mentions in the text to enhance the
text representation. Similarly, KnowBERT [62] trains BERT
jointly with an entity linking model to incorporate entity rep-
resentation in an end-to-end fashion. Ref. [59] proposed KE-
PLER, which jointly optimizes knowledge embedding and
language modeling objectives. These work inject structure
information of knowledge graph via entity embedding. In
contrast, K-BERT [63] explicitly injects related triples ex-
tracted from KG into the sentence to obtain an extended tree-
form input for BERT. Moreover, ref. [56] adopted entity re-
placement identification to encourage the model to be more
aware of factual knowledge. However, most of these meth-
ods update the parameters of PTMs when injecting knowl-
edge, which may suffer from catastrophic forgetting when
injecting multiple kinds of knowledge. To address this, K-
Adapter [114] injects multiple kinds of knowledge by train-
ing different adapters independently for different pre-training

tasks, which allows continual knowledge infusion.
On the other hand, one can incorporate external knowledge

into pre-trained models without retraining them from scratch.
As an example, K-BERT [63] allows injecting factual knowl-
edge during fine-tuning on downstream tasks. Ref. [116]
employed commonsense knowledge bases, ConceptNet and
ATOMIC, to enhance GPT-2 for story generation. Ref. [122]
proposed a knowledge-text fusion model to acquire related
linguistic and factual knowledge for machine reading com-
prehension.

Besides, refs. [123, 124] extended language model to-
knowledge graph language model (KGLM) andlatent rela-
tion language model (LRLM) respectively, both of which
allow prediction conditioned on knowledge graph. These
novel KG-conditioned language models show potential for
pre-training.

4.2 Multilingual and language-specific PTMs

4.2.1 Multilingual PTMs

Learning multilingual text representations shared across lan-
guages plays an important role in many cross-lingual NLP
tasks.

Cross-lingual language understanding (XLU) Most of
the early work focus on learning multilingual word embed-
ding [125–127], which represents text from multiple lan-
guages in a single semantic space. However, these methods
usually need (weak) alignment between languages.

Multilingual BERT4) (mBERT) is pre-trained by MLM
with the shared vocabulary and weights on Wikipedia text
from the top 104 languages. Each training sample is a mono-
lingual document, and there are no cross-lingual objectives
specifically designed nor any cross-lingual data. Even so,
mBERT performs cross-lingual generalization surprisingly
well [128]. Ref. [129] showed that the lexical overlap be-
tween languages plays a negligible role in cross-lingual suc-
cess.

XLM [45] improves mBERT by incorporating a cross-
lingual task, translation language modeling (TLM), which
performs MLM on a concatenation of parallel bilingual sen-
tence pairs. Unicoder [68] further propose three new cross-
lingual pre-training tasks, including cross-lingual word re-
covery, cross-lingual paraphrase classification and cross-
lingual masked language model (XMLM).

XLM-RoBERTa (XLM-R) [66] is a scaled multilingual
encoder pre-trained on a significantly increased amount of
training data, 2.5TB clean CommonCrawl data in 100 dif-
ferent languages. The pre-training task of XLM-RoBERTa

4) https://github.com/google-research/bert/blob/master/multilingual.md
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is monolingual MLM only. XLM-R achieves state-of-the-
arts results on multiple cross-lingual benchmarks, including
XNLI, MLQA, and NER.

Cross-lingual language generation (XLG) Multilingual
generation is a kind of tasks to generate text with different
languages from the input language, such as machine transla-
tion and cross-lingual abstractive summarization.

Different from the PTMs for multilingual classification,
the PTMs for multilingual generation usually needs to pre-
train both the encoder and decoder jointly, rather than only
focusing on the encoder.

MASS [40] pre-trains a Seq2Seq model with monolingual
Seq2Seq MLM on multiple languages and achieves signifi-
cant improvement for unsupervised NMT. XNLG [64] per-
forms two-stage pre-training for cross-lingual natural lan-
guage generation. The first stage pre-trains the encoder with
monolingual MLM and Cross-Lingual MLM (XMLM) tasks.
The second stage pre-trains the decoder by using monolin-
gual DAE and Cross-Lingual Auto-Encoding (XAE) tasks
while keeping the encoder fixed. Experiments show the ben-
efit of XNLG on cross-lingual question generation and cross-
lingual abstractive summarization. mBART [65], a multi-
lingual extension of BART [49], pre-trains the encoder and
decoder jointly with Seq2Seq denoising auto-encoder (DAE)
task on large-scale monolingual corpora across 25 languages.
Experiments demonstrate that mBART produces significant
performance gains across a wide variety of machine transla-
tion (MT) tasks.

4.2.2 Language-specific PTMs

Although multilingual PTMs perform well on many lan-
guages, recent work showed that PTMs trained on a sin-
gle language significantly outperform the multilingual re-
sults [74, 75, 130].

For Chinese, which does not have explicit word bound-
aries, modeling larger granularity [71–73] and multi-
granularity [70, 131] word representations have shown great
success. Ref. [132] used transfer learning techniques to adapt
a multilingual PTM to a monolingual PTM for Russian lan-
guage. In addition, some monolingual PTMs have been re-
leased for different languages, such as CamemBERT [74]
and FlauBERT [75] for French, FinBERT [130] for Finnish,
BERTje [58] and RobBERT [76] for Dutch, AraBERT [133]
for Arabic language.

4.3 Multi-modal PTMs

Observing the success of PTMs across many NLP tasks,
some research has focused on obtaining a cross-modal ver-
sion of PTMs. A great majority of these models are de-

signed for a general visual and linguistic feature encoding.
And these models are pre-trained on some huge corpus of
cross-modal data, such as videos with spoken words or im-
ages with captions, incorporating extended pre-training tasks
to fully utilize the multi-modal feature. Typically, tasks
like visual-based MLM, masked visual-feature modeling and
visual-linguistic matching, are widely used in multi-modal
pre-training, such as VideoBERT [82], VisualBERT [79],
ViLBERT [77].

4.3.1 Video-text PTMs

VideoBERT [82] and CBT [83] are joint video and text mod-
els. To obtain sequences of visual and linguistic tokens used
for pre-training, the videos are pre-processed by CNN-based
encoders and off-the-shelf speech recognition techniques, re-
spectively. And a single Transformer encoder is trained on
the processed data to learn the vision-language representa-
tions for downstream tasks like video caption. Furthermore,
UniViLM [134] proposes to bring in generation tasks to fur-
ther pre-train the decoder using in downstream tasks.

4.3.2 Image-text PTMs

Besides methods for video-language pre-training, several
work introduce PTMs on image-text pairs, aiming to fit
downstream tasks like visual question answering(VQA)
and visual commonsense reasoning(VCR). Several pro-
posed models adopt two separate encoders for image and
text representation independently, such as ViLBERT [77]
and LXMERT [78]. While other methods like Visual-
BERT [79], B2T2 [80], VL-BERT [81], Unicoder-VL [135]
and UNITER [136] propose single-stream unified Trans-
former. Though these model architectures are different, simi-
lar pre-training tasks, such as MLM and image-text matching,
are introduced in these approaches. And to better exploit vi-
sual elements, images are converted into sequences of regions
by applying RoI or bounding box retrieval techniques before
encoded by pre-trained Transformers.

4.3.3 Audio-text PTMs

Moreover, several methods have explored the chance of
PTMs on audio-text pairs, such as SpeechBERT [84]. This
work tries to build an end-to-end Speech Question Answering
(SQA) model by encoding audio and text with a single Trans-
former encoder, which is pre-trained with MLM on speech
and text corpus and fine-tuned on question answering.
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4.4 Domain-specific and task-specific PTMs

Most publicly available PTMs are trained on general do-
main corpora such as Wikipedia, which limits their applica-
tions to specific domains or tasks. Recently, some studies
have proposed PTMs trained on specialty corpora, such as
BioBERT [85] for biomedical text, SciBERT [86] for scien-
tific text, ClinicalBERT [137, 138] for clinical text.

In addition to pre-training a domain-specific PTM, some
work attempts to adapt available pre-trained models to target
applications, such as biomedical entity normalization [139],
patent classification [87], progress notes classification and
keyword extraction [140].

Some task-oriented pre-training tasks were also proposed,
such as sentimentLabel-Aware MLM in SentiLR [67] for sen-
timent analysis, Gap Sentence Generation (GSG) [141] for
text summarization, and Noisy Words Detection for disflu-
ency detection [142].

4.5 Model compression

Since PTMs usually consist of at least hundreds of millions
of parameters, they are difficult to be deployed on the on-line
service in real-life applications and on resource-restricted de-
vices. Model compression [143] is a potential approach to
reduce the model size and increase computation efficiency.

There are five ways to compress PTMs [144]: (1) model
pruning, which removes less important parameters; (2)
weight quantization [145], which uses fewer bits to represent
the parameters; (3) parameter sharing across similar model
units; (4) knowledge distillation [146], which trains a smaller
student model that learns from intermediate outputs from the
original model; (5) module replacing, which replaces the
modules of original PTMs with more compact substitutes.

Table 3 gives a comparison of some representative com-
pressed PTMs.

4.5.1 Model pruning

Model pruning refers to removing part of neural network
(e.g., weights, neurons, layers, channels, attention heads),
thereby achieving the effects of reducing the model size and
speeding up inference time.

Ref. [88] explored the timing of pruning (e.g., pruning dur-
ing pre-training, after downstream fine-tuning) and the prun-
ing regimes. Refs. [152, 153] tried to prune the entire self-
attention heads in the transformer block.

4.5.2 Quantization

Quantization refers to the compression of higher precision
parameters to lower precision. Work from refs. [89,90] solely

focus on this area. Note that quantization often requires com-
patible hardware.

4.5.3 Parameter sharing

Another well-known approach to reduce the number of pa-
rameters is parameter sharing, which is widely used in CNNs,
RNNs, and Transformer [154]. ALBERT [57] usescross-
layer parameter sharing andfactorized embedding parame-
terization to reduce the parameters of PTMs. Although the
number of parameters is greatly reduced, the training and in-
ference time of ALBERT are even longer than the standard
BERT.

Generally, parameter sharing does not improve the compu-
tational efficiency at inference phase.

4.5.4 Knowledge distillation

Knowledge distillation (KD) [146] is a compression tech-
nique in which a small model calledstudent model is trained
to reproduce the behaviors of a large model calledteacher
model. Here the teacher model can be an ensemble of many
models and usually well pre-trained. Different to model com-
pression, distillation techniques learn a small student model
from a fixed teacher model through some optimization ob-
jectives, while compression techniques aiming at searching a
sparser architecture.

Generally, distillation mechanisms can be divided into
three types: (1) distillation from soft target probabilities, (2)
distillation from other knowledge, and (3) distillation to other
structures.

(1) Distillation from soft target probabilities. Ref. [143]
showed that making the student approximate the teacher
model can transfer knowledge from teacher to student. A
common method is approximating the logits of the teacher
model. DistilBERT [91] trained the student model with a dis-
tillation loss over the soft target probabilities of the teacher
as

LKD-CE =
∑

i

ti ∗ log(si), (5)

where ti and si are the probabilities estimated by the teacher
model and the student, respectively.

Distillation from soft target probabilities can also be used
in task-specific models, such as information retrieval [155],
and sequence labeling [156].

(2) Distillation from other knowledge. Distillation from
soft target probabilities regards the teacher model as a black
box and only focus on its outputs. Moreover, decomposing
the teacher model and distilling more knowledge can bring
improvement to the student model.
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Table 3 Comparison of compressed PTMsa)

Method Type #Layer Loss functionc) Speed Up Params Source PTM GLUEb)

BERTBASE [16]
Baseline

12 LMLM + LNSP 110M 79.6

BERTLARGE [16] 24 LMLM + LNSP 340M 81.9

Q-BERT [89]
Quantization

12 HAWQ + GWQ - BERTBASE ≈ 99% BERTg)

Q8BERT [90] 12 DQ + QAT - BERTBASE ≈ 99% BERT

ALBERT [57] Param. Sharing 12 LMLM + LSOP ×5.6 ∼ 0.3 12 ∼ 235M 89.4 (ensemble)

DistilBERT [91]

Distillation

6 LKD-CE+CosKD+ LMLM ×1.63 66M BERTBASE 77.0 (dev)

TinyBERTd),e) [92] 4 MSEembed+MSEattn+MSEhidn+LKD-CE ×9.4 14.5M BERTBASE 76.5

BERT-PKD [147] 3–6 LKD-CE+PTKD+ LTask ×3.73 ∼ 1.64 45.7 ∼ 67 M BERTBASE 76.0 ∼ 80.6h)

PD [148] 6 LKD-CE+LTask+ LMLM ×2.0 67.5M BERTBASE 81.2h)

MobileBERTd) [149] 24 FMT+AT+PKT+ LKD-CE+LMLM ×4.0 25.3M BERTLARGE 79.7

MiniLM [93] 6 AT+AR ×1.99 66M BERTBASE 81.0f)

DualTraind),e) [150] 12 Dual Projection+LMLM - 1.8 ∼ 19.2M BERTBASE 75.8 ∼ 81.9i)

BERT-of-Theseus [94] Module Replacing 6 LTask ×1.94 66M BERTBASE 78.6

a) The desing of this table is borrowed from [94, 151].
b) The averaged score on 8 tasks (without WNLI) of GLUE benchmark (see Sect. 7.1). Here MNLI-m and MNLI-mm are regarded as two different tasks.

“dev” indicates the result is on dev set. “ensemble” indicates the result is from the ensemble model.
c) “LMLM ”, “LNSP”, and “LSOP” indicate pre-training objective (see Sect. 3.1 and Table 1).“LTask” means task-specific loss.
“HAWQ”, “GWQ”, “DQ”, and “QAT” indicate Hessian AWare Quantization, Group-wise Quantization, Quantization-Aware Training, and Dynamically

Quantized, respectively. “KD” means knowledge distillation. “FMT”, “AT”, and ‘PKT” mean Feature Map Transfer, Attention Transfer, and Progressive
Knowledge Transfer, respectively. “AR” means Self-Attention value relation.

d) The dimensionality of the hidden or embedding layers is reduced.
e) Use a smaller vocabulary.
f) Generally, the F1 score is usually used as the main metric of the QQP task. But MiniLM reports the accuracy, which is incomparable to other work.
g) Result on MNLI and SST-2 only.
h) Result on the other tasks except for STS-B and CoLA.
i) Result on MRPC, MNLI, and SST-2 only.

TinyBERT [92] performs layer-to-layer distillation with
embedding outputs, hidden states, and self-attention distribu-
tions. MobileBERT [149] also perform layer-to-layer distil-
lation with soft target probabilities, hidden states, and self-
attention distributions. MiniLM [93] distill self-attention
distributions and self-attention value relation from teacher
model.

Besides, other models distill knowledge through many ap-
proaches. Ref. [147] introduced a “patient” teacher-student
mechanism, ref. [157] exploited KD to improve a pre-trained
multi-task deep neural network.

(3) Distillation to other structures. Generally, the structure
of the student model is the same as the teacher model, except
for a smaller layer size and a smaller hidden size. However,
not only decreasing parameters but also simplifying model
structures from Transformer to RNN [158] or CNN [159] can
reduce the computational complexity.

4.5.5 Module replacing

Module replacing is an interesting and simple way to re-
duce the model size, which replaces the large modules
of original PTMs with more compact substitutes. Ref.
[94] proposed Theseus Compression motivated by a famous

thought experiment called “Ship of Theseus”, which pro-
gressively substitutes modules from the source model with
modules of fewer parameters. Different from KD, Theseus
Compression only requires one task-specific loss function.
The compressed model, BERT-of-Theseus, is 1.94× faster
while retaining more than 98% performance of the source
model.

4.5.6 Others

In addition to reducing model sizes, there are other ways
to improve the computational efficiency of PTMs in practi-
cal scenarios with limited resources. Ref. [160] proposed a
practical speed-tunable BERT, namely FastBERT, which can
dynamically reduce computational steps with sample-wise
adaptive mechanism.

5 Adapting PTMs to downstream tasks

Although PTMs capture the general language knowledge
from a large corpus, how effectively adapting their knowl-
edge to the downstream task is still a key problem.
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5.1 Transfer learning

Transfer learning [161] is to adapt the knowledge from a
source task (or domain) to a target task (or domain). Figure 4
gives an illustration of transfer learning.

There are many types of transfer learning in NLP, such as
domain adaptation, cross-lingual learning, multi-task learn-
ing. Adapting PTMs to downstream tasks issequential trans-
fer learning task, in which tasks are learned sequentially and
the target task has labeled data.

5.2 How to transfer?

To transfer the knowledge of a PTM to the downstream NLP
tasks, we need to consider the following issues.

5.2.1 Choosing appropriate pre-training task, model archi-
tecture and corpus

Different PTMs usually have different effects on the same
downstream task, since these PTMs are trained with various
pre-training tasks, model architecture, and corpora.

(1) Currently, the language model is the most popular pre-
training task and can more efficiently solve a wide range of
NLP problems [60]. However, different pre-training tasks
have their own bias and give different effects for different
tasks. For example, the NSP task [16] makes PTM under-
stand the relationship between two sentences. Thus, the PTM
can benefit downstream tasks such as question answering
(QA) and natural language inference (NLI).

(2) The architecture of PTM is also important for the
downstream task. For example, although BERT helps with
most natural language understanding tasks, it is hard to gen-
erate language.

(3) The data distribution of the downstream task should be
approximate to PTMs. Currently, there are a large number of
off-the-shelf PTMs, which can just as conveniently be used
for various domain-specific or language-specific downstream
tasks.

Therefore, given a target task, it is always a good solu-
tion to choose the PTMs trained with appropriate pre-training
task, architecture, and corpus.

Source dataset Target dataset

Source model Target model

Knowledge
transfer

Figure 4 (Color online) Transfer learning.

5.2.2 Choosing appropriate layers

Given a pre-trained deep model, different layers should cap-
ture different kinds of information, such as POS tagging,
parsing, long-term dependencies, semantic roles, corefer-
ence. For RNN-based models, refs. [33, 162] showed that
representations learned from different layers in a multi-layer
LSTM encoder benefit different tasks (e.g., predicting POS
tags and understanding word sense). For transformer-based
PTMs, ref. [100] found BERT represents the steps of the tra-
ditional NLP pipeline: basic syntactic information appears
earlier in the network, while high-level semantic information
appears at higher layers.

Let H(l)(1 ≤ l ≤ L) denotes the l-th layer representation
of the pre-trained model with L layers, and g(·) denote the
task-specific model for the target task.

There are three ways to select the representation.
(1) Embedding only. One approach is to choose only the

pre-trained static embeddings, while the rest of the model still
needs to be trained from scratch for a new target task.

They fail to capture higher-level information that might be
even more useful. Word embeddings are only useful in cap-
turing semantic meanings of words, but we also need to un-
derstand higher-level concepts like word sense.

(2) Top layer. The most simple and effective way is to feed
the representation at the top layer into the task-specific model
g(H(L)).

(3) All layers. A more flexible way is to automatic choose
the best layer in a soft version, like ELMo [14]:

rt = γ

L∑
l=1

αlh(l)
t , (6)

where αl is the softmax-normalized weight for layer l and γ
is a scalar to scale the vectors output by pre-trained model.
The mixup representation is fed into the task-specific model
g(rt).

5.2.3 To tune or not to tune?

Currently, there are two common ways of model transfer: fea-
ture extraction (where the pre-trained parameters are frozen),
and fine-tuning (where the pre-trained parameters are un-
frozen and fine-tuned).

In feature extraction way, the pre-trained models are re-
garded as off-the-shelf feature extractors. Moreover, it is im-
portant to expose the internal layers as they typically encode
the most transferable representations [163].

Although both these two ways can significantly benefit
most of NLP tasks, feature extraction way requires more
complex task-specific architecture. Therefore, the fine-tuning
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way is usually more general and convenient for many differ-
ent downstream tasks than feature extraction way.

Table 4 gives some common combinations of adapting
PTMs.

5.3 Fine-tuning strategies

With the increase of the depth of PTMs, the representation
captured by them makes the downstream task easier. There-
fore, the task-specific layer of the whole model is simple.
Since ULMFit and BERT, fine-tuning has become the main
adaption method of PTMs. However, the process of fine-
tuning is often brittle: even with the same hyper-parameter
values, distinct random seeds can lead to substantially differ-
ent results [166].

Besides standard fine-tuning, there are also some useful
fine-tuning strategies.

Two-stage fine-tuning An alternative solution is two-stage
transfer, which introduces an intermediate stage between pre-
training and fine-tuning. In the first stage, the PTM is trans-
ferred into a model fine-tuned by an intermediate task or
corpus. In the second stage, the transferred model is fine-
tuned to the target task. Ref. [167] showed that the “further
pre-training” on the related-domain corpus can further im-
prove the ability of BERT and achieved state-of-the-art per-
formance on eight widely-studied text classification datasets.
Refs. [168, 169] introduced the intermediate supervised task
related to the target task, which brings a large improvement
for BERT, GPT, and ELMo. Ref. [170] also used a two-
stage transfer for the story ending prediction. The proposed
TransBERT (transferable BERT) can transfer not only gen-
eral language knowledge from large-scale unlabeled data but
also specific kinds of knowledge from various semantically
related supervised tasks.

Multi-task fine-tuning Ref. [171] fine-tuned BERT under
the multi-task learning framework, which demonstrates that
multi-task learning and pre-training are complementary tech-
nologies.

Fine-tuning with extra adaptation modules The main
drawback of fine-tuning is its parameter inefficiency: every

Table 4 Some common combinations of adapting PTMs

Where FT/FE?a) PTMs

Embedding Only FT/FE Word2vec [11], GloVe [12]

Top Layer FT BERT [16], RoBERTa [42]

Top Layer FE BERTb) [164, 165]

All Layers FE ELMo [14]

a) FT and FE mean fine-tuning and feature extraction respectively.
b) BERT used as feature extractor.

downstream task has its own fine-tuned parameters. There-
fore, a better solution is to inject some fine-tunable adaptation
modules into PTMs while the original parameters are fixed.

Ref. [172] equipped a single share BERT model with small
additional task-specific adaptation modules, projected atten-
tion layers (PALs). The shared BERT with the PALs matches
separately fine-tuned models on the GLUE benchmark with
roughly 7 times fewer parameters. Similarly, ref. [173] mod-
ified the architecture of pre-trained BERT by adding adapter
modules. Adapter modules yield a compact and extensible
model; they add only a few trainable parameters per task, and
new tasks can be added without revisiting previous ones. The
parameters of the original network remain fixed, yielding a
high degree of parameter sharing.

Others Motivated by the success of widely-used ensem-
ble models, ref. [174] improved the fine-tuning of BERT
with two effective mechanisms: self-ensemble and self-
distillation, which can improve the performance of BERT
on downstream tasks without leveraging external resource or
significantly decreasing the training efficiency. They inte-
grated ensemble and distillation within a single training pro-
cess. The teacher model is an ensemble model by parameter-
averaging several student models in previous time steps.

Instead of fine-tuning all the layers simultaneously, grad-
ual unfreezing [37] is also an effective method that gradually
unfreezes layers of PTMs starting from the top layer. Ref.
[175] proposed a simpler unfreezing method, sequential un-
freezing, which first fine-tunes only the randomly-initialized
task-specific layers, and then unfreezes the hidden layers of
PTM, and finally unfreezes the embedding layer.

Ref. [176] compressed ELMo embeddings using varia-
tional information bottleneck while keeping only the infor-
mation that helps the target task.

Generally, the above work shows that the utility of PTMs
can be further stimulated by better fine-tuning strategies.

6 Resources of PTMs

There are many related resources for PTMs available online.
Table 5 provides some popular repositories, including third-
party implementations, paper lists, visualization tools, and
other related resources of PTMs.

Besides, there are some other good survey papers on PTMs
for NLP [151, 182, 183].

7 Applications

In this section, we summarize some applications of PTMs in
several classic NLP tasks.
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Table 5 Resources of PTMs

Resource Description URL

Open-Source Implementationsa)

word2vec CBOW, Skip-Gram https://github.com/tmikolov/word2vec

GloVe Pre-trained word vectors https://nlp.stanford.edu/projects/glove

FastText Pre-trained word vectors https://github.com/facebookresearch/fastText

Transformers Framework: PyTorch&TF, PTMs: BERT, GPT-2, RoBERTa, XLNet, etc. https://github.com/huggingface/transformers

Fairseq Framework: PyTorch, PTMs:English LM, German LM, RoBERTa, etc. https://github.com/pytorch/fairseq

Flair Framework: PyTorch, PTMs:BERT, ELMo, GPT, RoBERTa, XLNet, etc. https://github.com/flairNLP/flair

AllenNLP [177] Framework: PyTorch, PTMs: ELMo, BERT, GPT-2, etc. https://github.com/allenai/allennlp

fastNLP Framework: PyTorch, PTMs: RoBERTa, GPT, etc. https://github.com/fastnlp/fastNLP

UniLMs Framework: PyTorch, PTMs: UniLM v1&v2, MiniLM, LayoutLM, etc. https://github.com/microsoft/unilm

Chinese-BERT [71] Framework: PyTorch&TF, PTMs: BERT, RoBERTa, etc. (for Chinese) https://github.com/ymcui/Chinese-BERT-wwm

BERT [16] Framework: TF, PTMs: BERT, BERT-wwm https://github.com/google-research/bert

RoBERTa [42] Framework: PyTorch https://github.com/pytorch/fairseq/tree/master/examples/

roberta

XLNet [48] Framework: TF https://github.com/zihangdai/xlnet/

ALBERT [57] Framework: TF https://github.com/google-research/ALBERT

T5 [41] Framework: TF https://github.com/google-research/text-to-text-transfer-

transformer

ERNIE(Baidu) [70, 131] Framework: PaddlePaddle https://github.com/PaddlePaddle/ERNIE

CTRL [178] Conditional transformer language model for controllable generation. https://github.com/salesforce/ctrl

BertViz [179] Visualization Tool https://github.com/jessevig/bertviz

exBERT [180] Visualization Tool https://github.com/bhoov/exbert

TextBrewer [181] PyTorch-based toolkit for distillation of NLP models. https://github.com/airaria/TextBrewer

DeepPavlov Conversational AI Library. PTMs for the Russian, Polish, Bulgarian, https://github.com/deepmipt/DeepPavlov

Czech, and informal English.

Corpora

OpenWebText Open clone of OpenAI’s unreleased WebText dataset. https://github.com/jcpeterson/openwebtext

Common Crawl A very large collection of text. http://commoncrawl.org/

WikiEn English Wikipedia dumps. https://dumps.wikimedia.org/enwiki/

Other Resources

Paper List https://github.com/thunlp/PLMpapers

Paper List https://github.com/tomohideshibata/BERT-related-papers

Paper List https://github.com/cedrickchee/awesome-bert-nlp

Bert Lang Street A collection of BERT models with reported performances on different https://bertlang.unibocconi.it/

datasets, tasks and languages.

a) Most papers for PTMs release their links of official version. Here we list some popular third-party and official implementations.

7.1 General evaluation benchmark

There is an essential issue for the NLP community that how
can we evaluate PTMs in a comparable metric. Thus, large-
scale-benchmark is necessary.

The general language understanding evaluation (GLUE)
benchmark [184] is a collection of nine natural language
understanding tasks, including single-sentence classification
tasks (CoLA and SST-2), pairwise text classification tasks

(MNLI, RTE, WNLI, QQP, and MRPC), text similarity task
(STS-B), and relevant ranking task (QNLI). GLUE bench-
mark is well-designed for evaluating the robustness as well
as generalization of models. GLUE does not provide the la-
bels for the test set but set up an evaluation server.

However, motivated by the fact that the progress in recent
years has eroded headroom on the GLUE benchmark dramat-
ically, a new benchmark called SuperGLUE [185] was pre-
sented. Compared with GLUE, SuperGLUE has more chal-
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lenging tasks and more diverse task formats (e.g., coreference
resolution and question answering).

State-of-the-art PTMs are listed in the corresponding
leaderboard5),6).

7.2 Question answering

Question answering (QA), or a narrower concept machine
reading comprehension (MRC), is an important application in
the NLP community. From easy to hard, there are three types
of QA tasks: single-round extractive QA (SQuAD) [186],
multi-round generative QA (CoQA) [187], and multi-hop QA
(HotpotQA) [188].

BERT creatively transforms the extractive QA task to
the spans prediction task that predicts the starting span as
well as the ending span of the answer [16]. After that,
PTM as an encoder for predicting spans has become a
competitive baseline. For extractive QA, ref. [189] pro-
posed a retrospective reader architecture and initialize the
encoder with PTM (e.g., ALBERT). For multi-round gener-
ative QA, ref. [190] proposed a “PTM+Adversarial Train-
ing+Rationale Tagging+Knowledge Distillation” model. For
multi-hop QA, ref. [191] proposed an interpretable “Select,
Answer, and Explain” (SAE) system that PTM acts as the
encoder in the selection module.

Generally, encoder parameters in the proposed QA model
are initialized through a PTM, and other parameters are ran-
domly initialized. State-of-the-art models are listed in the
corresponding leaderboard7),8),9).

7.3 Sentiment analysis

BERT outperforms previous state-of-the-art models by sim-
ply fine-tuning on SST-2, which is a widely used dataset for
sentiment analysis (SA) [16]. Ref. [192] utilized BERT with
transfer learning techniques and achieve new state-of-the-art
in Japanese SA.

Despite their success in simple sentiment classification,
directly applying BERT to aspect-based sentiment analysis
(ABSA), which is a fine-grained SA task, shows less sig-
nificant improvement [193]. To better leverage the power-
ful representation of BERT, ref. [193] constructed an auxil-
iary sentence by transforming ABSA from a single sentence
classification task to a sentence pair classification task. Ref.
[194] proposed post-training to adapt BERT from its source
domain and tasks to the ABSA domain and tasks. Further-
more, ref. [195] extended the work of ref. [194] by analyz-

ing the behavior of cross-domain post-training with ABSA
performance. Ref. [196] showed that the performance of
post-trained BERT could be further improved via adversar-
ial training. Ref. [197] added an additional pooling module,
which can be implemented as either LSTM or attention mech-
anism, to leverage BERT intermediate layers for ABSA. In
addition, ref. [198] jointly learned aspect detection and senti-
ment classification towards end-to-end ABSA. SentiLR [67]
acquires part-of-speech tag and prior sentiment polarity from
SentiWordNet and adoptsLabel-Aware MLM to utilize the in-
troduced linguistic knowledge to capture the relationship be-
tween sentence-level sentiment labels and word-level senti-
ment shifts. SentiLR achieves state-of-the-art performance
on several sentence- and aspect-level sentiment classification
tasks.

For sentiment transfer, ref. [199] proposed “Mask and In-
fill” based on BERT. In the mask step, the model disentangles
sentiment from content by masking sentiment tokens. In the
infill step, it uses BERT along with a target sentiment embed-
ding to infill the masked positions.

7.4 Named entity recognition

Named entity recognition (NER) in information extraction
and plays an important role in many NLP downstream tasks.
In deep learning, most of NER methods are in the sequence-
labeling framework. The entity information in a sentence will
be transformed into the sequence of labels, and one label cor-
responds to one word. The model is used to predict the la-
bel of each word. Since ELMo and BERT have shown their
power in NLP, there is much work about pre-trained models
for NER.

Ref. [36] used a pre-trained character-level language
model to produce word-level embedding for NER. TagLM
[200] and ELMo [14] use a pre-trained language model’s
last layer output and weighted-sum of each layer output as
a part of word embedding. Ref. [201] used layer-wise prun-
ing and dense connection to speed up ELMo’s inference on
NER. Ref. [16] used the first BPE’s BERT representation to
predict each word’s label without CRF. Ref. [128] realized
zero-shot NER through multilingual BERT. Ref. [156] lever-
aged knowledge distillation to run a small BERT for NER on
a single CPU. Besides, BERT is also used on domain-specific
NER, such as biomedicine [85, 202], etc.

5) https://gluebenchmark.com/
6) https://super.gluebenchmark.com/
7) https://rajpurkar.github.io/SQuAD-explorer/
8) https://stanfordnlp.github.io/coqa/
9) https://hotpotqa.github.io/
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7.5 Machine translation

Machine translation (MT) is an important task in the NLP
community, which has attracted many researchers. Almost
all of neural machine translation (NMT) models share the
encoder-decoder framework, which first encodes input tokens
to hidden representations by the encoder and then decodes
output tokens in the target language from the decoder. Ref.
[35] found the encoder-decoder models can be significantly
improved by initializing both encoder and decoder with pre-
trained weights of two language models. Ref. [203] used
ELMo to set the word embedding layer in the NMT model.
This work shows performance improvements on English-
Turkish and English-German NMT model by using a pre-
trained language model for source word embedding initial-
ization.

Given the superb performance of BERT on other NLP
tasks, it is natural to investigate how to incorporate BERT into
NMT models. Ref. [45] tried to initialize the entire encoder
and decoder by a multilingual pre-trained BERT model and
showed a significant improvement could be achieved on un-
supervised MT and English-Romanian supervised MT. Sim-
ilarly, ref. [204] devised a series of different experiments for
examining the best strategy to utilize BERT on the encoder
part of NMT models. They achieved some improvement by
using BERT as an initialization of the encoder. Also, they
found that these models can get better performance on the
out-of-domain dataset. Ref. [205] proposed a two stages
BERT fine-tuning method for NMT. At the first stage, the
encoder is initialized by a pre-trained BERT model, and they
only train the decoder on the training set. At the second stage,
the whole NMT model is jointly fine-tuned on the training
set. By experiment, they show this approach can surpass
the one stage fine-tuning method, which directly fine-tunes
the whole model. Apart from that, ref. [165] suggested us-
ing pre-trained BERT as an extra memory to facilitate NMT
models. Concretely, they first encode the input tokens by a
pre-trained BERT and use the output of the last layer as extra
memory. Then, the NMT model can access the memory via
an extra attention module in each layer of both encoder and
decoder. And they show a noticeable improvement in super-
vised, semi-supervised, and unsupervised MT.

Instead of only pre-training the encoder, MASS (Masked
Sequence-to-Sequence Pre-Training) [40] utilizes Seq2Seq
MLM to pre-train the encoder and decoder jointly. In the
experiment, this approach can surpass the BERT-style pre-
training proposed by ref. [45] both on unsupervised MT and
English-Romanian supervised MT. Different from MASS,
mBART [65], a multilingual extension of BART [49], pre-
trains the encoder and decoder jointly with Seq2Seq denois-
ing auto-encoder (DAE) task on large-scale monolingual cor-

pora across 25 languages. Experiments demonstrated that
mBART could significantly improve both supervised and un-
supervised machine translation at both the sentence level and
document level.

7.6 Summarization

Summarization, aiming at producing a shorter text which pre-
serves the most meaning of a longer text, has attracted the
attention of the NLP community in recent years. The task
has been improved significantly since the widespread use of
PTM. Ref. [164] introduced transferable knowledge (e.g.,
BERT) for summarization and surpassed previous models.
Ref. [206] tries to pre-trained a document-level model that
predicts sentences instead of words, and then apply it on
downstream tasks such as summarization. More elaborately,
ref. [141] designed a gap sentence generation (GSG) task for
pre-training, whose objective involves generating summary-
like text from the input. Furthermore, ref. [207] pro-
posed BERTSUM. BERTSUM included a novel document-
level encoder, and a general framework for both extractive
summarization and abstractive summarization. In the en-
coder frame, BERTSUM extends BERT by inserting multi-
ple [CLS] tokens to learn the sentence representations. For
extractive summarization, BERTSUM stacks several inter-
sentence Transformer layers. For abstractive summarization,
BERTSUM proposes a two-staged fine-tuning approach us-
ing a new fine-tuning schedule. Ref. [208] proposed a novel
summary-level framework MATCHSUM and conceptualized
extractive summarization as a semantic text matching prob-
lem. They proposed a Siamese-BERT architecture to com-
pute the similarity between the source document and the
candidate summary and achieved a state-of-the-art result on
CNN/DailyMail (44.41 in ROUGE-1) by only using the base
version of BERT.

7.7 Adversarial attacks and defenses

The deep neural models are vulnerable to adversarial exam-
ples that can mislead a model to produce a specific wrong
prediction with imperceptible perturbations from the origi-
nal input. In CV, adversarial attacks and defenses have been
widely studied. However, it is still challenging for text due
to the discrete nature of languages. Generating of adversarial
samples for text needs to possess such qualities: (1) imper-
ceptible to human judges yet misleading to neural models; (2)
fluent in grammar and semantically consistent with original
inputs. Ref. [209] successfully attacked the fine-tuned BERT
on text classification and textual entailment with adversarial
examples. Ref. [210] defined universal adversarial triggers
that can induce a model to produce a specific-purpose predic-
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tion when concatenated to any input. Some triggers can even
cause the GPT-2 model to generate racist text. Ref. [211]
showed BERT is not robust on misspellings.

PTMs also have great potential to generate adversarial
samples. Ref. [212] proposed BERT-Attack, a BERT-
based high-quality and effective attacker. They turned BERT
against another fine-tuned BERT on downstream tasks and
successfully misguided the target model to predict incor-
rectly, outperforming state-of-the-art attack strategies in both
success rate and perturb percentage, while the generated ad-
versarial samples are fluent and semantically preserved.

Besides, adversarial defenses for PTMs are also promis-
ing, which improve the robustness of PTMs and make them
immune against adversarial attack.

Adversarial training aims to improve the generalization by
minimizes the maximal risk for label-preserving perturba-
tions in embedding space. Recent work [213, 214] showed
that adversarial pre-training or fine-tuning can improve both
generalization and robustness of PTMs for NLP.

8 Future directions

Though PTMs have proven their power for various NLP
tasks, challenges still exist due to the complexity of language.
In this section, we suggest five future directions of PTMs.

(1) Upper bound of PTMs Currently, PTMs have not yet
reached its upper bound. Most of the current PTMs can be
further improved by more training steps and larger corpora.

The state of the art in NLP can be further advanced by in-
creasing the depth of models, such as Megatron-LM [215]
(8.3 billion parameters, 72 Transformer layers with a hidden
size of 3072 and 32 attention heads) and Turing-NLG10) (17
billion parameters, 78 Transformer layers with a hidden size
of 4256 and 28 attention heads).

The general-purpose PTMs are always our pursuits for
learning the intrinsic universal knowledge of languages (even
world knowledge). However, such PTMs usually need deeper
architecture, larger corpus, and challenging pre-training
tasks, which further result in higher training costs. How-
ever, training huge models is also a challenging problem,
which needs more sophisticated and efficient training tech-
niques such as distributed training, mixed precision, gradient
accumulation, etc. Therefore, a more practical direction is to
design more efficient model architecture, self-supervised pre-
training tasks, optimizers, and training skills using existing
hardware and software. ELECTRA [55] is a good solution
towards this direction.

(2) Architecture of PTMs The transformer has been
proven to be an effective architecture for pre-training. How-

ever, the main limitation of the Transformer is its computa-
tion complexity, which is quadratic to the input length. Lim-
ited by the memory of GPUs, most of current PTMs can-
not deal with the sequence longer than 512 tokens. Break-
ing this limit needs to improve the architecture of the Trans-
former, such as Transformer-XL [216]. Therefore, searching
for more efficient model architecture for PTMs is important
to capture longer-range contextual information.

The design of deep architecture is challenging, and we may
seek help from some automatic methods, such as neural ar-
chitecture search (NAS) [217].

(3) Task-oriented pre-training and model compression
In practice, different downstream tasks require the differ-
ent abilities of PTMs. The discrepancy between PTMs and
downstream tasks usually lies in two aspects: model archi-
tecture and data distribution. A larger discrepancy may result
in that the benefit of PTMs may be insignificant. For exam-
ple, text generation usually needs a specific task to pre-train
both the encoder and decoder, while text matching needs pre-
training tasks designed for sentence pairs.

Besides, although larger PTMs can usually lead to better
performance, a practical problem is how to leverage these
huge PTMs on special scenarios, such as low-capacity de-
vices and low-latency applications. Therefore, we can care-
fully design the specific model architecture and pre-training
tasks for downstream tasks or extract partial task-specific
knowledge from existing PTMs.

Instead of training task-oriented PTMs from scratch, we
can teach them with existing general-purpose PTMs by us-
ing techniques such as model compression (see Sect. 4.5).
Although model compression is widely studied for CNNs in
CV [218], compression for PTMs for NLP is just beginning.
The fully-connected structure of the Transformer also makes
model compression more challenging.

(4) Knowledge transfer beyond fine-tuning Currently,
fine-tuning is the dominant method to transfer PTMs’ knowl-
edge to downstream tasks, but one deficiency is its param-
eter inefficiency: every downstream task has its own fine-
tuned parameters. An improved solution is to fix the orig-
inal parameters of PTMs and by adding small fine-tunable
adaption modules for specific task [172, 173]. Thus, we
can use a shared PTM to serve multiple downstream tasks.
Indeed, mining knowledge from PTMs can be more flexi-
ble, such as feature extraction, knowledge distillation [181],
data augmentation [219,220], using PTMs as external knowl-
edge [107]. More efficient methods are expected.

(5) Interpretability and reliability of PTMs Although
PTMs reach impressive performance, their deep non-linear

10) https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/
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architecture makes the procedure of decision-making highly
non-transparent.

Recently, explainable artificial intelligence (XAI) [221]
has become a hotspot in the general AI community. Unlike
CNNs for images, interpreting PTMs is harder due to the
complexities of both the Transformer-like architecture and
language. Extensive efforts (see Sect. 3.3) have been made
to analyze the linguistic and world knowledge included in
PTMs, which help us understand these PMTs with some de-
gree of transparency. However, much work on model analysis
depends on the attention mechanism, and the effectiveness of
attention for interpretability is still controversial [222, 223].

Besides, PTMs are also vulnerable to adversarial attacks
(see Sect. 7.7). The reliability of PTMs is also becoming an
issue of great concern with the extensive use of PTMs in pro-
duction systems. The studies of adversarial attacks against
PTMs help us understand their capabilities by fully exposing
their vulnerabilities. Adversarial defenses for PTMs are also
promising, which improve the robustness of PTMs and make
them immune against adversarial attack.

Overall, as key components in many NLP applications,
the interpretability and reliability of PTMs remain to be ex-
plored further in many respects, which helps us understand
how PTMs work and provides a guide for better usage and
further improvement.

9 Conclusion

In this survey, we conduct a comprehensive overview of
PTMs for NLP, including background knowledge, model ar-
chitecture, pre-training tasks, various extensions, adaption
approaches, related resources, and applications. Based on
current PTMs, we propose a new taxonomy of PTMs from
four different perspectives. We also suggest several possible
future research directions for PTMs.
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