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Additive manufacturing (AM) has been increasingly used in production. Because of its rapid growth, the efficiency and
robustness of AM-based product development processes should be improved. Artificial intelligence (AI) is a powerful tool that
has outperformed humans in numerous complex tasks. AI-enabled intelligent agents can reduce the workforce required to scale
up AM production and achieve higher resource utilization efficiency. This study provides an introduction of AI techniques. Then,
the current development of AI-enabled AM product development is investigated. Existing intelligent agents are used for
problems in product design, process design and production stages. Based on the review, current research gaps and future research
directions are identified. To guide future development of more efficient and comprehensive intelligent agents, a smart AM
framework based on cloud-edge computing is proposed. Global consideration can be realized in the cloud environment, and a
fast response can be achieved at the edge nodes.
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1 Introduction

The development of additive manufacturing (AM) technol-
ogies, also known as 3D printing, has increased in recent
years [1,2]. Because 3D printing can produce geometrically
complex parts without accessories (e.g., fixtures and molds)
[3,4], it has been applied to a wide range of applications
including aerospace, medicine, footwear, etc. [5]. AM can
realize mass customization and personalization without cost
penalties. The customization process requires knowledge
and experience to implement suitable adjustments. Currently,
the success of AM highly relies on the users’ knowledge and
experience to make the right decisions in the product de-
velopment process [6,7]. As a complex process, product
development involves multiple stages, including design,

process planning, production planning, and process mon-
itoring. These stages are highly interrelated, and the decision
makers should have sufficient knowledge of the rules of each
stage. Unsuitable decisions may dramatically influence the
results of AM. With the rapid growth of the AM market, the
accessibility of this knowledge should be increased to help
people achieve more flexible, adaptive and intelligent AM
operations.
Artificial intelligence (AI), in contrast to natural in-

telligence, is intelligence demonstrated by machines and
software rather than living systems [8]. The purpose of AI is
to develop intelligent agents that can perceive its environ-
ment and take actions that maximize its chance to success-
fully achieve predefined goals [9]. Empowered by the
explosive growth of accessible data, AI, especially deep
learning techniques, has experienced another large increase
in recent years. The capability of AI has been similar to or
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surpassed human performance in several areas, including
image recognition [10] and game playing [11,12].
Because of the potential of AI, research interests in ap-

plying it to AM processes have increased to improve the
product development process. AI has been referred to as a
machine learning technique at some places [8,13], however,
it is broader than that. It is a group of techniques that enables
machines to interact with the environment and adaptively
solve problems. These techniques enable the creation of in-
telligent agents to perceive the environment, infer based on a
knowledge model, search answers from solution repositories,
learn from historical data, communicate, take action, etc.
AM-based product development is a complex process that

combines design, parameter selection, planning, manu-
facturing, control, and other aspects. There are numerous
issues that have been dealt with using different AI techni-
ques. In 2017, an initial survey was conducted on AI appli-
cations in AM, however, it focused on the manufacturing
preparation process [14]. Other aspects have not been in-
vestigated. Numerous new trends have emerged, such as
deep learning-based process monitoring and control. Con-
sidering the rapid development of AI-related areas, the re-
search progress in recent years should be summarized to
guide future development.
In this study, a survey was conducted to investigate the

current status of AI-enabled AM. A global view of the pro-
duct development process was considered, and the current
knowledge gaps and system limitations were identified.
Based on the survey, we provide a vision for future devel-
opment to achieve a smarter AM production environment.
The remainder of this paper is as follows. Section 2 in-
troduces the basic methods and techniques related to AI.

Section 3 reviews the current research activities on in-
telligent agent development for AM. A framework for future
smart AM environment is proposed in Section 4. Section 5
provides the conclusions drawn from this research.

2 Overview of AI

The fundamental goal of AI research is to develop intelligent
agents that can perform rational actions in a dynamic en-
vironment [15]. The basic structure of an intelligent agent is
shown in Figure 1. The inputs come from its environment,
and the outputs affect the environment. An intelligent agent
could be software or hardware. For software, the human-
machine interface (HMI) is used to provide inputs and de-
liver outputs in the form of commands, files, suggestions or
other information. For hardware, sensors are used as input
devices, including image sensors (e.g. charge coupled device
(CCD)), global positioning system (GPS), sound sensors
(e.g., microphone), etc. The layer between the inputs and
outputs contains the core functions that form problems and
generate solutions. These functions can be based on various
structured and unstructured information and knowledge
(e.g., the physical model, expert knowledge and historical
data).

2.1 Types of intelligent agents

There are mainly three types of intelligent agents based on
their methods of generating action: a reflex agent, goal-based
agent and utility-based agent [15].
A reflex agent takes input signals and directly generates

Figure 1 (Color online) The basic structure of intelligent agents.
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reactions accordingly. It could be based on simple IF-THEN
rules or more complex models (e.g., physical models, sta-
tistical models and knowledge models). The problems to be
solved are often straightforward and do not involve extra
optimization or complex trade-offs.
A goal-based agent predicts the future status of the en-

vironment and tries to achieve predefined goals. In this si-
tuation, there are usually multiple solutions. Criteria are used
to measure their performances. The goal could be max-
imizing or minimizing the criteria. Various advanced meth-
ods have been proposed for this type of searching and
planning problem, including genetic algorithms [16], particle
swarm optimization [17], and simulated annealing algo-
rithms [18], to find the optimal solutions. Most problems in
practice are complex, thus this method requires large com-
putational power and a long processing time.
A utility-based agent is used when there are multiple goals

that may conflict [19]. Trade-offs are required to achieve the
best utility. Using a goal state and non-goal state in the goal-
based agents is not enough to measure the level of satisfac-
tion of the users on each criterion. Therefore, the utility
theory is applied to model the user preference [20]. When
multiple agents are involved, the theory of game [21] could
be applied to model the players’ performance. These pro-
blems are typically knowledge-intensive and frequently in-
teract with the users.

2.2 Typical AI models

All these agents rely on various models to project input
signals to output actions. For AI, the models based on
knowledge and learning have received increasing attention.
A knowledge-based model solves problems by imitating

human expertise [22]. It consists of a knowledge model and
an inference system. Certain knowledge can be represented
by rule-based models [23], case-based models, and ontology
[24]. Uncertain knowledge can be represented by Bayesian
networks [25] and fuzzy logic [26].
A learning model discovers patterns from historical data

and creates models for problem solving. This type of model
has been disruptive in many areas recently, including illness
diagnosis and self-driving. There are various types of
learning models, such as supervised and unsupervised, dis-
criminative and generative, deep learning and non-deep
learning, etc. [8]. The learning model has been widely ap-
plied to the manufacturing environment for image recogni-
tion [27,28], equipment monitoring, diagnosis [29–31], etc.

3 AI-enabled AM

3.1 ICT-driven AM development

The development of AM has been driven by advanced in-
formation and communication technologies (ICT). It can be
summarized into four stages, as shown in Figure 2. The first
AM machine was developed by Hull in the 1980s [32] and is
controlled by local computers. In the mid-1990s, researchers
attempted to connect AM machines to a network to achieve
remote monitoring and control [33,34]. Users could send 3D
models to printers remotely and receive the status of the
printing processes. In the early 2000s, researchers started to
treat AM as a service and accept online orders from dis-
tributed customers [35–37]. These methods have developed a
bridge between distributed service demanders and providers.
The requirements of the service demanders could be matched
to the capabilities of the solutions from the service providers.

Figure 2 (Color online) Development of AM.
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Recently, researchers started to integrate advanced ICTs,
such as the cyber-physical system (CPS) [7,38] and deep
learning [39], to automatically process complex information
and help users make rational decisions in product develop-
ment processes.
The demand to develop intelligent agents has increased,

driven by the increase of connectedness and application areas
[5], as shown in Figure 2.
At the market level, cloud-based AM platforms have been

proposed [7,40] and companies (e.g. Shapeways and 3D
Hubs) have started to sell 3D printing services online. Cus-
tomers can directly use AM resources via the Internet.
However, the customers should have enough knowledge to
make the correct decisions and print the expected parts. To
fulfill the growing needs for AM knowledge, AI tools are
required to make them accessible via the Internet and help
customers make rational decisions.
At the system level, the CPS has shown great potential

recently [41]. Researchers have also developed CPS for 3D
printers [7,38,42,43]. A digital twin of the physical 3D
printer has to process a lot of data and optimize the printing
process in real-time. In this situation, AI technologies be-
come critical to generate solutions automatically when fa-
cing different printer statuses based on digitalized expert
knowledge or patterns from historical data.
At the technology level, the booming ICTs, including

cloud computing, edge computing, 5G, and Internet of things
(IoT), enable large amounts of real-time data to be efficiently
gathered and processed. Human experts cannot deal with the
large amounts of data efficiently. Thus, learning-based
agents have become a popular research area in recent years.
These technologies have provided advanced solutions for
various aspects of intelligent agents development for AM,
including data acquisition, machine-to-machine commu-
nication, and efficient computation.

3.2 AM-based product development

There are four major stages in the development of 3D printed
parts: product design, process design, production and service
(Figure 3), not necessarily in the same order. Product design
and process design are often conducted concurrently as the
design features and process parameters are interrelated [25].
The information gathered at different stages can be used at
other stages to optimize the products.
Various intelligent agents have been proposed to solve

problems in these stages. In general, there are four types of
problems. Knowledge-intensive problems rely on expert
knowledge to quickly assess potential solutions and find
suitable ones. For example, the design rules, such as a
minimum feature size and heterogeneous properties, should
be considered by designers in the design stage. Otherwise,
the design model may not be printable. Attention-intensive

problems require continuous attention on running equipment
or other objects, and adjustments are made adaptively.
Printing process monitoring is a typical example of an at-
tention-intensive problem that requires continuous attention
during the printing process to identify problems as early as
possible. Computation-intensive problems include searching
and planning problems that require a large amount of com-
putational power to find optimal answers. For example, the
design space for 3D printing products is large. A large
amount of computational power is required to explore pos-
sible solutions and predict its properties to identify the op-
timal design model. Preference-intensive problems require
modelling the users’ preferences to help them make rational
decisions. This type of problem usually occurs in the process
design stage to match the preferences of the properties of the
printed part to the process parameters. In this situation, there
may be multiple properties that conflict. Therefore, the trade-
offs become the central problem.

3.3 Intelligent agents for product design

There are three types of product design methods: opportu-
nistic, restrictive, and dual methods [44]. Opportunistic
methods are used to explore the geometric possibilities
provided by AM. Topology optimization and elementary
shapes are the most commonly applied methods. Restrictive
methods are used to identify the boundaries of design spaces,
in terms of the geometry and properties. These boundaries
should be represented as rules to automatically check man-
ufacturability. Dual methods combine both types of methods
to generate more practical design proposals. Various in-
telligent agents have been proposed to solve these problems.
The details are listed in Table 1.
Initially, a majority of the research focused on a single

aspect, opportunistic or restrictive. For opportunistic meth-
ods, the optimal design solutions searched for specific tasks.
These types of searching problems are computation-in-
tensive and various goal-based agents have been proposed.
Physical models are applied to simulate the properties of the
printed parts. For restrictive methods, the purpose is to check
if a design can be printed with the desired quality and
properties. This is a knowledge-intensive problem, where the

Figure 3 (Color online) AM product development process.
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relationships between the design features, process features,
and properties of the printed parts should be understood.
These rules need to be encoded as various knowledge-based
models to form reflex agents. The manufacturability can then
be determined for a given design model. More recently, re-
searchers have merged both types of methods as dual
methods to generate more manufacturable design models. In
these scenarios, multiple models are involved, including
knowledge-based and physical models, to consider manu-
facturability in the searching process.
In the product design stage, the integration of opportunistic

and restrictive methods provides a promising solution to
fulfil the complex design and manufacturing requirements
and generate more reliable design proposals. However, cur-
rent methods only consider simple design rules, such as thin
features and size limitations [57,58]. In practice, the design
rules are more complex [59]. How to engage these complex
knowledge models in opportunistic methods is still not un-
derstood.

3.4 Intelligent agents for process design

In the process design stage, optimal process-related settings
and parameters are chosen to achieve the desired properties.
Process planning and support structure optimization are in-
volved. In process planning, optimal printing strategies are
chosen for specific tasks. These include material-related
settings (e.g., material types and ingredients), machine-re-
lated settings (e.g., power energy and layer height) and de-
sign-related settings (e.g., build orientation and trajectory).
As many AM processes require support structures to avoid

failures, the least amount of support materials should be used
to achieve the required quality. The design of the support
structures also influences the printed properties [60].
Therefore, support structure optimization has become an
important topic in recent years [61,62]. Various intelligent
agents have been proposed to solve this problem. The details
are listed in Table 2.
There are multiple parameters (e.g., layer thickness,

printing speed, and base temperature) for the printing pro-
cess, and they often have a different impact on various as-
pects of the printed parts. Therefore, multi-criteria decision
making (MCDM) methods are widely adopted to help users
make rational decisions for parameter selection. As the user
preferences influence the decisions, modeling these pre-
ferences becomes crucial. Knowledge also plays a significant
role in mapping the parameters with printed results. There-
fore, these utility-based agents usually have a knowledge-
based model for inference.
Path planning of AM processes is also complex. Two as-

pects are involved: horizontal trajectory optimization and
adaptive layer slicing. The first aspect influences the effi-
ciency of the printing process while the second is a trade-off
between the printing efficiency and part quality, in terms of
dimensional accuracy and surface roughness. As a planning
problem, various goal-based agents have been proposed to
determine optimal solutions within shorter computational
times.
Build direction optimization is another important topic

owing to the heterogeneous properties of the printed parts.
These agents are also goal-based to search for the optimal
direction for a given design and achieve the best quality.

Table 1 Intelligent agents for product design

Aspects Proposed agents Problem type Agent type Model type

Opportunistic methods

Design feature database [45] Knowledge-intensive Reflex Knowledge-based

Topology optimization [46–48] Computation-intensive Goal-based Physical

Elementary shapes [49–52] Computation-intensive Goal-based Physical

Restrictive methods
Knowledge-based system [25,53] Knowledge-intensive Reflex Knowledge-based

Key feature recognition [54,55] Knowledge-intensive Reflex Knowledge-based & physical

Dual methods
Part consolidation [56] Computation-intensive Goal-based Knowledge-based & physical

Topology optimization for manufac-
turability [57,58] Computation-intensive Goal-based Knowledge-based & physical

Table 2 Intelligent agents for process design

Aspects Proposed agents Problem type Agent type Model type

Process planning

MCDM for parameter
selection [63–66]

Preference-intensive &
knowledge-intensive Utility-based Knowledge-based

& physical

Path planning [67–71] Computation-intensive Goal-based Physical

Build direction optimization [72–74] Computation-intensive Goal-based Physical

Support structure
optimization

Topology optimization [75,76] Computation-intensive Goal-based Physical

Elementary shapes [77,78] Computation-intensive Goal-based Physical

1604 Wang Y B, et al. Sci China Tech Sci September (2020) Vol.63 No.9



They involve physical models to predict the surface rough-
ness, accuracy, and other properties. Support structure opti-
mization is similar to the opportunistic methods of product
design, while targeting the support structures. The purpose is
to reduce the mass of the materials and improve the ease of
removal while ensuring functional performance.
In the process design stage, utility-based agents have been

introduced to tackle different user preferences on the prop-
erties of the printed parts. However, the accuracy of the
knowledge-based model is important for projecting user re-
quirements to suitable printing parameters. Furthermore, the
process parameters, build directions, and support structures
are interrelated. More comprehensive models are required to
find global optimal solutions.

3.5 Intelligent agents for production

In the production stage, there could be multiple printing tasks
simultaneously, especially in cloud manufacturing. Con-
sidering the long pre-processing and post-processing times, it
is more efficient to print as many parts as possible for each
print [79,80]. In this situation, production planning becomes
important to improve the overall production efficiency. The
deadline of each task, design geometries, required para-
meters, etc. should be considered. The fabrication process
typically requires hours or days to finish. During this period,
defects may occur, and they may cause the part to fail.
Therefore, real-time monitoring of the printing process is
required to quickly identify these defects, fix the problem,
and avoid unnecessary waste of time and money. Various
intelligent agents have been proposed to solve these pro-
blems. The details are listed in Table 3.
Production planning starts from single-print scenarios,

where the user attempts to place as many parts as possible
into one printing space. Each part could rotate and move to
any place in the printing space to provide infinite possible
solutions. The genetic algorithm (GA) has been widely used
to find a sub-optimal solution with reasonable computation
time. The problem becomes more complex to plan for mul-
tiple prints. There are more printers available, which may
have different statuses (idle or working). The parts may have
different deadlines. If the task space is also dynamic (i.e., a
new task could be added at any time), the computation speed
will become crucial for a fast response. Here, the GA-based

algorithms cannot meet the efficiency requirement. There-
fore, various heuristic methods are proposed to use pre-
defined rules to narrow the searching space.
Real-time control and monitoring have been evaluated in

recent years owing to the rapid development of machine
learning techniques. Image processing is one of the most
popular areas in machine learning and has enabled various
image-based monitoring agents for AM processes. These
agents use learning models to extract complex features of
targeted patterns from historical images and identify them in
real-time images. AR-based methods have also become
popular. Users can capture the 3D point cloud of the printing
part and compare it to the design model to identify dis-
crepancies. In addition, various sensors (e.g., temperature,
vibration, and power sensors) and process parameters can be
used to predict the quality of the printed parts. The learning
models are required to find features from the time-series
data.
In the production stage, attention-based problems have

occurred, and learning models have advantages for solving
these problems. These agents could release people from te-
dious process monitoring tasks. However, the image-based
and AR-based methods can only identify visible defects.
Sensor-based methods are able to identify invisible defects;
however, the relationships of the printing parameters and part
quality must be defined in advance. Furthermore, the avail-
able data for the AM processes are limited. How to use the
limited data to generate more robust and general models is
still a challenge.

3.6 Global methods

The intelligent agents mentioned previously are developed
for solving single problems. However, these problems are
not isolated. For example, the design of a product will in-
fluence the selection of the printing parameters and pro-
duction plan. The process capability (e.g., minimum feature
size and printing resolution) will influence the design of the
product. Therefore, optimal AM solutions can only be
achieved with global consideration. The first step is to define
a uniform data format to carry the information from different
stages. Lu et al. proposed an integrated data schema for AM
[96]. A cloud-based automated design and AM platform was
proposed to integrate the data in the service stage to optimize

Table 3 Intelligent agents for production

Aspects Proposed agents Problem type Agent type Model type

Production planning
Single print optimization [81–84] Computation-intensive Goal-based Physical

Multiple prints optimization [79,85–87] Computation-intensive Goal-based Physical

Real-time control & monitoring

Image-based methods [39,88–91] Attention-intensive Reflex Learning

AR-based methods [42,92] Attention-intensive Reflex Physical

Sensor-based methods [93–95] Attention-intensive Reflex Learning & physical
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the product design, process setting, and production strategy
[97]. The framework was the focus, and efficient utilization
of big data has not been fully studied. A conceptual design
and modelling framework were presented to integrate var-
ious simulation and prediction models for the product de-
velopment process [98]. This framework focused on reflex
agents and other types of agents were not considered. Majeed
et al. proposed a big data-driven framework for AM process
analysis and optimization [99]. Data acquisition, manage-
ment, modelling, and utilization were discussed. A knowl-
edge-based computer-aided production planning (CAPP)
framework was proposed to integrate the product and pro-
cess design stages [100]. Processing big data requires com-
putational resources. How to efficiently process
computation-intensive models and provide a fast response
for distributed users has not been discussed.

3.7 Discussion

Current studies have shown that AM-based product devel-
opment could benefit from AI techniques. Various intelligent
agents have been developed to provide decision assistance in
the product design, process design, and production stages.
In the first two stages, the main purpose is to determine the

optimal design of the product and process. Therefore, the
problems are knowledge and computation-intensive. Reflex
and goal-based agents have been widely applied. The
knowledge-based models in the reflex agents can gather
expert knowledge and make it available to non-expert users.
AM involves a large amount of knowledge from different
disciplines, and there is a shortage of experts. Therefore,
these agents can help more users take advantage of AM. The
goal-based agents can find optimal solutions from a large
design space. Physical models are usually involved in si-
mulation and determine whether the goals and constraints are
satisfied. This type of agent can use the computational power
to maximize the efficiency of material utilization. The waste
of materials, energy, and time could be minimized.
In the production stage, learning models have printing

process control and monitoring advantages. Operators no
longer need to sit beside the printer and continually check its
status. From historical data, this model can identify the
features of abnormal situations. These agents enlarge the
production scale without dramatically expanding the oper-
ating team. Deep learning techniques have shown more po-
tential to deal with complex problems as they can
automatically extract the important features in multiple le-
vels, as performed by the human brain [101].
Although successful applications of intelligent agents have

been reported, there are still several knowledge gaps to be
explored.
(1) Scattered and conflicting knowledge management is

evaluated. AM knowledge is the central part of AM in-

telligence. As a multi-disciplinary area, the related in-
formation is widely scattered at different locations and in
different formats (e.g., test data, text, physical models, sta-
tistical models, rules, ontologies, and graphical databases).
They may be described with different standards and conflict
with each other. Knowledge bases for small applications
have been developed. However, the knowledge in different
aspects is interrelated. Informed decisions can only be made
with global consideration. Therefore, integrating these pieces
of information to form a comprehensive and accurate
knowledge base is a challenging task.
(2) A deeper understanding of AM processes is required.

Physical models are also important to predict the perfor-
mance of AM processes for goal-based agents. Current
models may work well in specific circumstances, however,
their accuracy and generality should be improved to generate
more realistic results. This type of model can also be applied
in the sensor-based method for remote control and mon-
itoring. In this situation, the computational efficiency of
these models becomes more important to achieve real-time
feedback.
(3) For big data management and utilization, AI techniques

are data-hungry, especially learning models. Currently, there
are no standard databases that are similar to ImageNet in AM
to gather all the data available along with the corresponding
tags for researchers to test the generality of their models in a
larger scale. Furthermore, the application of learning models
in AM is not similar to other areas. Abnormal situations are
not common in practice. Therefore, the data gathered for
training are limited. Using the limited data to train robust
models requires further study.
(4) For integration of different models, most of the current

agents have single models, which may not be adequate for
many applications. For example, the goal-based agents for
product design require physical models to simulate the
properties and knowledge-based models to examine the
manufacturability of the proposed design. The reflex agents
for real-time control and monitoring require combining
learning and knowledge models for complex problems. To
develop more effective and practical agents for complicated
scenarios, efficiently combining different types of models for
better performance should be studied.
(5) Awider application of the learning models is possible.

Current learning models are mainly developed for real-time
control and monitoring. The techniques could potentially
tackle more complex problems. The emerging reinforcement
learning methods can learn rules in strategical tasks. Ad-
vanced deep learning methods have been proposed for 3D
models. These emerging techniques could develop useful
agents for product and process design stages. The execution
of trained models could be more efficient than the commonly
used searching algorithms. The first challenge is standar-
dizing the data model for the design process to prepare the
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training data.
(6) For an efficient computational strategy, a trend of AM

development is to develop online services. In this situation,
the intelligent agents serve distributed users via the internet.
The agents with searching and planning algorithms usually
require a large computational power. In addition, some tasks
require a fast response. Learning-based real-time control and
monitoring is required for the training and execution stages,
respectively. Although cloud-based design and simulation
software have been developed, real-time tasks cannot be
performed. Therefore, a new efficient computational fra-
mework should be studied to fulfil both requirements.

4 Framework of smart AM

From Section 3.7, one problem that hinders the development
of AI for AM is the lack of high-quality and high-volume
AM related information. This information includes the data
from testing and monitoring, expert knowledge, standards,
algorithms, physical models, and other types of information.
From the rapid development of AI for image processing, the
cloud platforms, such as ImageNet, can be used to gather
distributed image data to a central location to allow anyone
to access the data and develop innovative ideas. Further-
more, information processing efficiency is another important
aspect, as there are numerous scenarios in AM that require a
real-time response. Existing platforms discussed in Section
3.6 mainly focus on a specific aspect of AM, such as product
design, fabrication or CAPP. The efficiency of data proces-
sing in the platform has not been fully considered. To realize
more intelligent AM with a high efficiency, a cloud-edge
computing-based framework for smart AM is proposed
based on AI. The goal is to provide future development of
intelligent agents for AM. Although the proposed framework
is designed for AM, it could also be applied to other man-
ufacturing processes with minor adjustments.

4.1 Definition of smart AM

Smart manufacturing can be defined as a fully integrated,
collaborative manufacturing system that responds in real
time to meet dynamic changing demands and conditions of
the factory, supply network, and customer requirements
[102]. Traditional manufacturing processes involve multiple
operations (e.g., molding, heat treatment, milling, grinding,
etc.). Therefore, this definition mainly applies to the manu-
facturing management aspect. The manufacturing process of
AM is simpler, without extra tools and complex procedures
[3]. The focus is changed from the manufacturing and as-
sembly aspects to the products. Awider design space can be

explored, and faster prototypes can be achieved. Therefore,
AM from the product-centric perspective should be under-
stood. Considering of the whole product lifecycle and in-
tegrating different stages to provide better global product
solutions. Hence, Smart AM is defined in this study as “a
fully integrated, collaborative additive manufacturing system
that responds in real time to support ubiquitous and in-
telligent design, manufacturing and services of 3D printed
products.”

4.2 Cloud-edge computing

Cloud computing utilizes simple centralized architectures
with dedicated data centers to offer several allowances, such
as self-service provisioning, elasticity, pay per use, etc.
[103]. Big data generated from distributed IoT devices can-
not be properly handled by the remote cloud owing to the
large consumption of time, energy, and bandwidth with a
high response time [104]. Privacy concerns are another cri-
tical issue. Services providers may not want to expose their
confidential data on the cloud.
Multi-access edge computing (MEC) was standardized by

the European Telecommunications Standards Institute
(ETSI) and Industry Specification Group (ISG) and defined
as “MEC provides an IT service environment and cloud
computing capabilities at the edge of the mobile network,
within the radio access network (RAN) and in close proxi-
mity to mobile subscribers”1). MEC offers cloud computing
capabilities within the RAN and connects the users directly
to the nearest cloud service-enabled edge network, by de-
ploying edge nodes at the base stations to enhance compu-
tation efficiency and avoid bottlenecks and system failure
[105]. A comparison of cloud and edge computing [106] is
listed in Table 4. Combining the advantages of both methods,
cloud-edge computing could handle more complex demands
in the industrial environment [107,108].

4.3 Proposed framework

The proposed smart AM framework is shown in Figure 4.
Because massive data are generated in the process, the cloud-

Table 4 Comparison of cloud and edge computing

Criterion Edge computing Cloud computing

Computing equipment
location On-premises Remote

Computation power Limited Unlimited

Storage Limited Unlimited

Latency Low High

Accessibility Local Public

1) ETSI. Multi-access Edge Computing (MEC). https://www.etsi.org/technologies/multi-access-edge-computing, accessed 30 January 2020
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edge computing framework is applied to facilitate efficient
information transmission and processing.
The information layer contains the source information for

the platform to form basic knowledge and models. The in-
formation could come from the standards, expert know-how,
test data, historical data, real-time data, etc. As in a different
format, this information should be standardized before in-
tegrated processing.
The cloud computing layer is responsible for distributed

information integration, forming intelligent agents for public
access and processing computationally heavy tasks. For
central information storage, the cloud environment can form
more comprehensive knowledge-based and learning models
to developing effective agents. Combining the physical
models and searching and planning algorithms, various
agents can be formed for different stages. Hybrid models can
be developed as they are all available in the cloud environ-
ment.
The edge computing layer is used to process light agents

for a fast response and to reduce the burden for the cloud. For
example, the learning-based agents can put the training
process in the cloud, while the execution process at the edge
can achieve maximum efficiency and response time. The
reflex agents can be deployed at the edge, as they do not
require large computation. Conversely, the goal-based agents
often require a large computational power, thus, it is better to

deploy them in the cloud. The edge nodes can also syn-
chronize useful local data to the cloud when the network is
not busy for model improvement.
The users can access these agents and resources from the

user layer using various devices.

5 Conclusion

Because of deep learning development, AI use has increased
in many fields. The unique capabilities of AI have also in-
creased the attention given to the improvement of AM-based
product development. This study reviewed the current re-
search activities on the application of AI in AM, including
product design, process design, production and services.
Several research gaps and future directions are summarized.
To develop a more efficient and comprehensive environment
for AI-enabled AM, a smart AM framework is proposed.
Cloud-edge computing is applied to fulfil the computational
requirements of different types of agents. The aim of this
study is to better understand how AI techniques can help AM
product development and provide our view of the future of
smart AM.

This work was supported by the National Natural Science Foundation of
China (Grant No. 51890885) and the Natural Science Foundation of Zhe-
jiang Province (Grant No. LY19E050019).

Figure 4 (Color online) Smart AM framework.
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