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Optimization of low-thrust trajectories that involve a larger number of orbit revolutions is considered as a challenging problem.
This paper describes a high-precision symplectic method and optimization techniques to solve the minimum-energy low-thrust
multi-revolution orbit transfer problem. First, the optimal orbit transfer problem is posed as a constrained nonlinear optimal
control problem. Then, the constrained nonlinear optimal control problem is converted into an equivalent linear quadratic form
near a reference solution. The reference solution is updated iteratively by solving a sequence of linear-quadratic optimal control
sub-problems, until convergence. Each sub-problem is solved via a symplectic method in discrete form. To facilitate the conver-
gence of the algorithm, the spacecraft dynamics are expressed via modified equinoctial elements. Interpolating the non-singular
equinoctial orbital elements and the spacecraft mass between the initial point and end point is proven beneficial to accelerate the
convergence process. Numerical examples reveal that the proposed method displays high accuracy and efficiency.
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1 Introduction

Low-thrust electric propulsion systems have attracted a sig-
nificant amount of research interest in recent years, owing to
a specific impulse higher than traditional chemical propul-
sion. Thus, low-thrust electric propulsion typically consumes
less fuel mass and, as a result, it is an important option for
interplanetary missions. Successful utilization of low-thrust
electric propulsion in interplanetary missions includes Deep
Space 1 [1], Dawn [2], Hayabusa [3], etc. Unfortunately,
the application of low thrust usually results in long-duration
orbit transfers, which may involve hundreds or even thou-
sands of orbit revolutions. Due to such characteristic geome-
try, optimizing low-thrust multi-revolution transfers has been
considered as a challenging problem since several decades
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ago, and the identification of high-performance transfer opti-
mization frameworks is still an ongoing process. To alleviate
the computational effort, developing high-precision and effi-
cient algorithms to optimize transfers with a large number of
orbit revolutions is considered to be of great significance.

Numerous computational methods for solving low-thrust
optimal trajectories have been proposed in the literature, and
they can be generally categorized as direct methods [4,5] and
indirect methods [6, 7]. Frameworks that combine direct and
indirect methods are usually termed hybrid methods [8,9]. In
an indirect method, by using the Pontryagins maximum prin-
ciple or variation principle, the original optimization prob-
lem is transformed into a nonlinear two-point boundary value
problem (TPBVP) which is generally solved via shooting
methods. The solution from indirect methods is at least lo-
cally optimal, since the first-order necessary conditions for
optimality are satisfied. However, it is generally difficult for
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indirect methods to converge to an optimal solution, since the
convergence radius of the corresponding TPBVP is small. In
addition, such a TPBVP is sensitive to the initial guess for
the costate variables, which do not have any intuitive physical
meaning. Some effective techniques to overcome the conver-
gence challenge of indirect methods include homotopic trans-
formation [10–12], switching detection [13] and costate vari-
ables estimation [14, 15]. For orbit transfer problems with
few revolutions, these techniques are proven to be highly ef-
ficient. However, when a larger number of orbit revolutions
are required for the transfer, indirect methods may struggle in
finding convergent solutions. Compared to a TPBVP formu-
lation approach, direct methods transcribe the optimal con-
trol problem into a nonlinear programming problem, which
generally exhibits a larger convergence domain at the price
of increased computational workload. For instance, Betts
[16] uses the direct collocation method paired with sequen-
tial quadratic programing to solve a 578-revolution transfer
problem, and presents an optimization problem with 416123
variables and 249674 constraints. Scheel and Conway [17]
discuss a Runge-Kutta parallel-shooting method for solving
a 100-revolution orbit transfer. Solving such large scale op-
timization problems requires a tremendous computational ef-
fort, which put forward higher demand for computational re-
sources. In addition, the solutions that are obtained from di-
rect methods do not generally satisfy the first-order necessary
conditions for optimality. Therefore, the converged solutions
are not ensured to be locally optimal. In recent years, uti-
lizing convex optimization to solve low-thrust orbit transfer
problems has attracted a significant amount of research inter-
est [18, 19], since it is more computationally tractable com-
pared to nonlinear programming [20]. It is proven that, con-
vex optimization is highly efficient for solving short-duration
trajectory optimization [21]. Nevertheless, when it comes to
long-duration missions with multiple revolutions, there are
no significant advantages from convex optimization. Hybrid
methods exhibit both indirect and direct method good prop-
erties. The thrust profile is usually assumed a priori, and the
optimal control is determined through the optimality condi-
tions that define indirect methods. However, the thrust pro-
file for orbit transfers with multi-revolutions is difficult to be
guessed, and therefore, it is difficult to find optimal multi-
revolutions solutions with hybrid methods.

Adding to the numerical methods mentioned above, sym-
plectic methods exhibit promising performance in optimal
control problems [22], owing to the preservation of the sym-
plectic structure of the original problem [23]. The symplectic
method first convert the nonlinear optimal control problem
into a TPBVP using Hamiltonian formulation. Then, based
on the dual variational principle, a symplectic form is ap-

plied to discretize the TPBVP. After discretization, the op-
timization problem is described by a set of nonlinear alge-
braic equations with sparse and symmetric coefficient matri-
ces. Accordingly, solving such type of algebraic equations
requires less computational resources. Since the symplectic
method is based on the variational principle, it satisfies the
first necessary conditions for optimality, which means that
the solutions are at least locally optimal. Furthermore, ow-
ing to the preservation of the symplectic structure, the sym-
plectic method can yield a reasonable approximation of the
continuous solution with fewer discretization points. Peng
et al. present a series of symplectic algorithms and utilize
them to solve optimal orbit rendezvous problems [24], orbit
transfer problems between halo orbits [25], optimal nonlinear
feedback control for spacecraft rendezvous between libration
point orbits [26], bound evaluation for spacecraft swarm re-
configuration on libration point orbits [27]. Li et al. [28]
introduce the symplectic algorithm with quasi-linearization
techniques to solve nonlinear optimal control problems with
inequality path constrains, and prove its efficiency for de-
signing spacecraft rendezvous between halo orbits. However,
symplectic methods that are presented in existing studies only
utilize orbit transfers with one revolution as supporting exam-
ples. In addition, the spacecraft mass variation is not taken
into consideration in those studies, and should be considered
in further research.

The convergence of indirect methods depend on the ini-
tial guess for the costates. Compared to indirect methods, the
convergence of the symplectic methods mainly depends on
the initial guess for the states. Compared to direct methods,
symplectic methods require less computational resources, be-
cause the final problem formulation incorporates sparse and
symmetric coefficient matrices. Consequently, symplectic
methods may have large potential for solving optimal control
problem with long-duration and multiple revolutions. How-
ever, to the authors best knowledge, no literature has explored
the utilization of symplectic algorithms to solve low-thrust
orbit transfer problems with many revolutions. That is mainly
because, multi-revolution orbit transfers result in oscillation
of the state variables through time, which makes difficult for
symplectic methods to find convergent solutions. Another
reason lies on the fact that, the supporting examples in pre-
vious references arbitrarily set the initial guess for the states
variables to zero or to a constant value, without providing any
reference trajectory. It is proven that, immediately supplying
proper reference trajectories can accelerate the convergence
of the optimal control problem

This paper investigates the application of symplectic al-
gorithms to solve multi-revolution transfer problems as an
alternative to indirect and direct methods. First, the opti-
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mal orbit transfer problem is posed as a constrained nonlin-
ear optimal control problem. Then, the constrained nonlin-
ear optimal control problem is converted into an equivalent
linear quadratic form near a reference solution. The refer-
ence solution is updated iteratively by solving a sequence
of linear quadratic optimal control sub-problems, until con-
vergence. An efficient symplectic algorithm is developed to
solve each sub-problem. We also explore problem formula-
tions that facilitate convergence to the optimal solution. That
includes application of modified equinoctial elements to de-
scribe the spacecraft trajectory and bootstrapping the sym-
plectic method with a linear interpolation of the state vari-
ables. Compared to Cartesian coordinates, modified equinoc-
tial elements display smaller value oscillations along the final
trajectory and may facilitate convergence to the optimal so-
lution. Interpolating the non-singular equinoctial orbital ele-
ments and the spacecraft mass between the initial point and
end point is also proven beneficial to accelerate the conver-
gence process.

This paper is organized as follows. In sect. 2, spacecraft
dynamics are expressed in modified equinoctial elements,
and the model for low-thrust orbit transfer problem is built.
The quasi-linearization method is utilized to transcribe the
original nonlinear optimal control problem into a sequence of
constraint linear-quadratic optimal control sub-problems. In
sect. 3, a symplectic method is introduced to iteratively solve
the sequence of constrained linear-quadratic optimal control
sub-problems. To validate the accuracy and efficiency of the
symplectic method, three examples of multi-revolution orbit
transfer problems are given in sect. 4. Concluding remarks
are made in sect. 5.

2 Low-thrust orbit transfer optimal control
problem

Consider a transfer problem where the spacecraft is subjected
only to gravity of the central body and the thrust of its own
electric propulsion system. The objective is to determine the
minimum-energy trajectory and thrust vector that transfer the
spacecraft from the specified initial states to the specified ter-
minal states. The low-thrust orbit transfer optimal control
problem is described next.

2.1 Equations of motion

The state vector consists of the spacecraft position and ve-
locity vectors, which are generally expressed in Cartesian
coordinates. However, for low-thrust transfers with a large
number of orbit revolutions, Cartesian coordinate values may
display strong natural oscillations along the trajectory, which
hinder the convergence to an optimal solution. In order to

get better convergence performance, this work employs mod-
ified equinoctial elements x = [p, f , g, h, k, L] to describe the
motion of the spacecraft, where p is the semi-latus rectum of
the orbit, and L is the true longitude; the remaining four ele-
ments do not have any intuitive physical meaning; however,
f together with g can describe the eccentricity of the orbit,
and h together with k can describe the inclination of the orbit.
Compared to Keplerian orbital elements or Cartesian coordi-
nates, the equinoctial elements are non-singular for most ec-
centricities and inclinations, except for absolutely retrograde
orbit. In addition, equinoctial elements conveniently describe
the time variation of the true longitude, which acts as a phase
angle. Most important for this work, when the equinoctial
elements are chosen to describe the spacecraft motion with
multiple revolutions, the natural oscillations of the state vari-
able value can be reduced, and the optimal control problem
is easier to solve. The equinoctial elements can be obtained
from the Keplerian elements as

x1 = p = a(1 − e2),

x2 = f = e cos (Ω + ω),

x3 = g = e sin (Ω + ω),

x4 = h = tan (i/2) cosΩ,

x5 = k = tan (i/2) sinΩ,

x6 = L = Ω + ω + f ,

(1)

where a is the semi-major axis, e is the eccentricity of the
orbit, i is the inclination of the orbit, Ω is the longitude of
the ascending node, ω is the argument of perigee, and f is
the true anomaly. We express the three-dimensional control
vector in local vertical/local horizontal (LVLH) coordinates,
which are attached to the spacecraft. Then, the spacecraft
dynamics can be formulated as follows:

ẋ = M
(Tmax

m
u + fp

)
+ D, ṁ = −Tmax

Ispg0
∥u∥, (2)

where M is a 6 × 3 transformation matrix from the LVLH to
the equinoctial elements and D is the six-dimensional gravity
vector. The expressions of the matrix M and the vector D are
as follows:

M=



0
2x1H

W
0 0 0 0

H sin x6
H
W

[(W+1) cos x6 + x2] −HG
W

x3 0 0 0

−H cos x6
H
W

[(W+1) sin x6 + x3]
HG
W

x2 0 0 0

0 0
HS
2W

cos x6 0 0 0

0 0
HS
2W

sin x6 0 0 0

0 0
HG
W

0 0 0



,

(3)
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D =
[
0, 0, 0, 0, 0,

W2

H3µ

]
, (4)

where µ is the gravitational constant, and the coefficients
H,W, S ,G are expressed as follows:

H =
√

x1

µ
,

W = 1 + x2 cos x6 + x3 sin x6,

S = 1 + x2
4 + x2

5,

G = x4 sin x6 − x5 cos x6.

(5)

Tmax is the maximum thrust magnitude, m is the instanta-
neous mass of the spacecraft, g0 is the standard gravitational
acceleration at sea level, and Isp is the specific impulse of
the thruster. The control vector is expressed by a three-
dimensional vector u, with norm between 0 and 1. The sym-
bol fp represents the perturbation vector. In the central body
reference frame, only the central body gravitational force is
taken into consideration, and fp equals 0. In the vicinity of
Earth, the J2 perturbation is the main perturbation and should
be considered. Accordingly, the vector fp is expressed in
LVLH coordinate as follows:

fpr =−
3
2

J2
µR2

eW4

x4
1

(
1 − 12G2

S 2

)
,

fpt =−
3
2

J2
µR2

eW4

x4
1

4
[(

x2
4−x2

5

)
sin 2x6−2x4x5 cos 2x6

]
S 2

 , (6)

fpn =−
3
2

J2
µR2

eW4

x4
1

[
4 (2 − S ) G

S 2

]
,

where Re represents the Earth radius.
In order to facilitate numerical propagation of spacecraft

dynamics, the equations of motion are normalized by appro-
priate characteristic length, time and mass that will be de-
scribed in sect. 4, as they vary with each application. Finally,
reference physical constants which will be used in all simu-
lations for this paper, are given in Table 1.

2.2 Energy-optimal control problem

An optimal trajectory and control input to transfer the space-
craft from a given orbit state to a target orbit state can
be obtained by minimization of energy consumption with

Table 1 Physical constants

Quantity Value

gearth 9.80665 m s−2

µearth 3.9860047 × 1014 m3 s−2

Re 6378140 m

J2 1082.639 × 10−6

µsun 1.327124 × 1020 m3 s−2

appropriate constraint conditions, and the energy consump-
tion can be expressed as

J =
Tmax

Ispg0

∫ tf

t0
∥u∥2dt, (7)

where t0 and tf denote the initial and final times, respectively,
and they are both fixed. In this paper, both rendezvous and
orbit transfer problems will be considered. Correspondingly,
the boundary conditions for the two scenarios are described
as follows.
• Boundary conditions for rendezvous problems
In rendezvous problems, the initial mass, initial states, and

final states are all fixed, while the final mass is free. Thus, the
following boundary constraints must be satisfied:

x(t0) = x0, x(tf) = xf, (8)

m(t0) = m0,m(tf) = Free. (9)

According to the transversality condition, the boundary
costates are free when the corresponding boundary states are
fixed. Thus, the initial costates and the final costates should
be free

λx(t0) = Free, λx(tf) = Free. (10)

Since the final mass is free, the final costate of mass should
be zero as

λm(tf) = 0. (11)

• Boundary conditions for orbit transfer problems
In orbit transfer problems, the initial mass and initial orbit

states, are both fixed. In contrast, the final mass is free. In
addition, which final states are free or fixed depends on the
geometry of the final orbit. If the destination orbit is circular,
the following boundary constrains need to be satisfied:

x(t0) = x0,

p(tf) = p0, f (tf) = 0, g(tf) = 0,

h(tf) = Free, k(tf) = Free, L(tf) = Free,

(12)

m(t0) = m0,m(tf) = Free. (13)

According to the transversality conditions, the initial
costates and the final costates should be free or zero as fol-
lows:

λx(t0) = Free,

λp(tf) = λ f (tf) = λg(tf) = Free,

λh(tf) = λk(tf) = λL(tf) = 0,

λm(tf) = 0.

(14)

To maintain the thrust magnitude below its maximum
value during the transfer process, the following inequality
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path constraint is enforced throughout the trajectory:

∥u∥ 6 1. (15)

The slack variable α is introduced to transform the inequal-
ity constraint to an equality form:

∥u∥ − 1 + α = 0, α > 0. (16)

Thus, the energy-optimal control problem is constructed
by state eq. (2) and performance index eq. (7). with bound-
ary conditions eqs. (8)–(11). or eqs. (12)–(14). and path
constraint eq. (16).

2.3 Quasi-linearization method

To construct the symplectic-preserving condition both the
state and constraint equations need to be linear in the control
variable [22]. In order to apply symplectic method, quasi-
linearization techniques are applied in this paper. The state
and constraint equations are linearized, while the cost func-
tion is expanded up to second order around a reference solu-
tion. Thus, the original nonlinear optimal control problem is
transformed into a sequence of constrained linear quadratic
optimal control sub-problems that can be solved individually
via a symplectic method. The solution to the quasi-linear
problem is, then, utilized as new reference, and this process
is iterated until convergence. Each time the reference is up-
dated, the algorithm advances by one iteration.

Denoting the state vector x = (p, f , g, h, k, L,m) and
the control vector u = (ux, uy, uz), the constrained linear
quadratic optimal control sub-problem at the (k + 1) iteration
can be described by the following state equations:

ẋ(k+1) = A(k)x(k+1) + B(k)u(k+1) + w(k), (17)

where

A(k) =
∂ f (x,u, t)
∂x

∣∣∣∣∣ x(k),u(k) , B(k) =
∂ f (x, u, t)
∂u

∣∣∣∣∣ x(k),u(k) , (18)

w(k) = f (x(k),u(k), t) − A(k)x(k) − B(k)u(k). (19)

Subject to the path constraints:

h(k+1)(x,u, t) = C(k)x(k+1) + D(k)u(k+1) + v(k) 6 0, (20)

where

C(k) =
∂h(x,u, t)
∂x

∣∣∣∣∣ x(k),u(k) ,D(k) =
∂h(x,u, t)
∂u

∣∣∣∣∣ x(k),u(k) , (21)

v(k) = h(x(k),u(k), t) −C(k)x(k) − D(k)u(k). (22)

The cost function is also transformed into:

J(k+1) =

∫ tf

t0
g(k+1)dt, (23)

where

g(k+1) = ḡ(k) + (u(k+1) − u(k))E(k)

+
1
2

(u(k+1) − u(k))T F(k)(u(k+1) − u(k)), (24)

ḡ(k) =
1
2
∥u∥2 |u(k), (25)

E(k) =
∂ḡ
∂u

∣∣∣∣∣ u(k) , F(k) =
∂2ḡ
∂u2

∣∣∣∣∣∣ u(k) . (26)

Superscript in the above equations are an iteration index:
the symbol (k+1) denotes variable values in the current (k+1)
iteration, (k) refers to values at the previous k iteration, which
serve as the initial reference for the current update. There-
fore, the original nonlinear optimal control problem is trans-
formed into a sequence of constrained linear quadratic con-
trol sub-problems. The iteration process ends when the vari-
ation of the orbit states is smaller than a given tolerance. The
convergence criteria is defined as

∥xk+1 − xk∥
∥xk∥

6 ε, (27)

where ε is a small quantity which denotes the selected tol-
erance. Next, a symplectic method is proposed to obtain the
solution of the linear quadratic control sub-problem at each
iteration.

3 Symplectic approach for constrained linear
quadratic optimal control

In this section, a symplectic method based on dual vari-
ational principle is proposed to obtain the solution of the
linear quadratic optimal control sub-problems. First, the
symplectic-preserving condition is obtained according to
dual variational principle. Then, based on the symplecitc-
preserving condition, the symplectic algorithm is con-
structed. To deal with path constraint in eq. (16), at the dis-
crete points, the original linear quadratic control sub-problem
is transcribed into an explicit linear complementary problem.
Finally, the solution of the original optimal control problem
can be obtained by solving the standard linear complemen-
tary problem. For brevity, the iteration index will be omitted
in the following derivations.

3.1 Derivation of the symplectic-preserving condition

First, based on the dual variational principle, the symplectic-
condition is derived. The derivation follows that in ref. [22].
The Hamilton function for each constrained linear quadratic
optimal control sub-problem can be obtained as follows:

H =ḡ + (u − ud)E +
1
2

(u − ud)TF(u − ud)
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+ λ(Ax + Bu + w) + β(Cx + Du + v + α), (28)

where the subscript d represents the initial reference for the
current iteration. The parameter variable β should satisfy the
complementary condition:

α > 0,β > 0,αTβ = 0. (29)

The first order necessary conditions of the optimal control
problem can be obtained by the following equations:

∂H
∂u
= 0. (30)

Substituting eq. (28) to eq. (30), the expression for the con-
trol variable at the (k + 1) iteration can be obtained as

u = ud − F[E + BTλ + DTβ]. (31)

Substituting eq. (31) back into eq. (28), yields

H =ḡ − 1
2

(ET + λTB + βT D)F−1(E + BTλ + DTβ)

+ λ(Ax + w) + β(Cx + v + α) + (λB + βD)ud. (32)

In addition, by substituting eq. (31) back into eq. (16), the
eq. (20) can be rewritten as

Cx + Dud − DF−1
[
E + BTλ + DTβ

]
+ v + α = 0. (33)

Therefore, the Hamilton function is independent from the
control variable. We define an action S in a generic time
interval (a, b) as

S =
∫ b

a
[λT ẋ − H]dt. (34)

Based on the action S , the fourth kind of generating func-
tion is produced:

V = λT
a xa − λT

b xb + S . (35)

Variation of the fourth generating function yields

δV = xT
a dλa − xT

b dλb +

∫ b

a

[(
ẋ − ∂H
∂λ

)
δλ −

(
λ̇ +
∂H
∂x

)
δx

]
dt.

(36)

According to the variation principle, the optimal solution
should satisfy the Hamilton canonical equations:

ẋ =
∂H
∂λ
, λ̇ = −∂H

∂x
. (37)

Then, the relationship between the action V and the states
and costates at two ends of the interval is given by

δV = xT
a dλa − xT

b dλb. (38)

In this formulation, the costate variables at the extremes
of the time interval (a, b) are the free variables, also called
independent variables. And the action V must only be the
function of λa and λb. Numerical method that satisfys eq.
(38) is symplectic-preserving, which is demonstrated in ref.
[22].

3.2 Construction of the symplectic algorithm

Based on the symplectic-preserving condition, the symplectic
algorithm is constructed next. First, the trajectory is divided
into N arcs with equal time intervals η = (tf − t0)/N. There-
fore, the time interval of jth trajectory arc can be define as
[t j, t j−1], where t j−1 = ( j − 1)η and t j = jη. Correspondingly,
state variables and costate variables at t j are denoted as x j and
λ j, respectively. Within each trajectory arc, the state vector
x(t) and the costate vector λ(t) are approximated by using La-
grange interpolation polynomials with order m − 1 and n − 1,
respectively. We have tried to combine our methods with the
symplectic methods using other interpolation schemes, in-
cluding the Legendre Gauss Lobatto interpolation schemes
[29], Legendre Gauss interpolation schemes, etc. The nu-
merical results indicate that our methods also can improve
the convergence of symplectic methods using other interpo-
lation scheme. Note that, the costate variables at both ends
of each arc form the set of independent variables, state and
costate variables at the internal interpolation points are not
considered independent variables. The parameter variables α
and β are assumed to be constant. A scheme of the trajectory
discretization is depicted in Figure 1. The resulting system of
expressions is

x(t) = (M ⊗ I)x̄ j, (39)

λ(t) = N1λ j−1 + (N̄ ⊗ I)λ̄ j + Nnλ j, (40)

α(t) = α j, (41)

β(t) = β j, (42)

where x̄ j comprises all the state variables at both the ex-
treme and interpolation points within the jth arc, defined as
x̄ j = [x̄1

j , x̄
2
j , ..., x̄

m
j ]T, λ j−1 and λ j denote the costate variables

at the left and right end of the jth arc, λ̄ j is composed of
the remaining dependent costate variables at the interpolation

Independent variables

Trajectory

Dependent variables

Figure 1 Trajectory discretization scheme.
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points within the jth arc, defined as λ̄ j = [λ̄2
j , λ̄

3
j , ..., λ̄

n−1
j ]T, I

denotes a n× n identity matrix, and the symbol ⊗ denotes the
Kronecker product of two matrices. Other matrices in eqs.
(39) and (40) are defined as

M = [M1,M2, ...,Mm], (43)

N̄ = [N2,N3, ...,Nn−1], (44)

Mi =

m∏
j=1, j,i

t − ( j − 1)η/(m − 1)
(i − j)η/(m − 1)

, (45)

Ni =

n∏
j=1, j,i

t − ( j − 1)η/(n − 1)
(i − j)η/(n − 1)

. (46)

Substituting interpolated state and costate variables eqs.
(39) and (40) into eq. (38) gives

V j = λ
T
j−1 x̄1

j − λT
j x̄r

j +

∫ t j

t j−1

(λT ẋ − H)dt. (47)

Hence, based on eq. (38), the following equations must be
satisfied at each arc

F j
1 = x j−1, (48)

F j
2 = 0, (49)

F j
3 = 0, (50)

F j
4 + x j = 0, (51)

where

F j
1 =

∂V j

∂λ j−1
= K j

11λ j−1 +
(
ET

u + K j
12

)
x̄ j + K j

13λ̄ j

+ K j
14λ j + f j

1 , (52)

F j
2 =
∂V j

∂x̄ j
=

(
K j

21 + Eu

)
λ j−1 − K j

22 x̄ j + K j
23λ̄ j

+
(
K j

24 − Ed

)
λ j + f j

2 , (53)

F j
3 =
∂V j

∂λ̄ j
= K j

31λ j−1 + K j
32 x̄ j + K j

33λ̄ j + K j
34λ j + f j

3 , (54)

F j
4 =
∂V j

∂λ j
= K j

41λ j−1 +
(
K j

42 − ET
d

)
x̄ j + K j

43λ̄ j

+ K j
44λ j + f j

4 . (55)

The detailed expressions for K j
u,v (u, v = 1, 2, 3, 4) and

f j
i (i = 1, 2, 3, 4) in eqs. (52)–(55) can be found in ref. [26].

Thus, the symplectic algorithm in an trajectory arc is con-
tructed by eqs. (52)–(55). Applying eq. (38) to the each arc
throughout the entire trajectory, yields the following nonlin-
ear equation:

F j+1
1 + F j

4 = 0 ( j = 1, · · ·,N − 1) . (56)

Since the derivations of nonlinear eqs. (48)–(56) are based
on dual variational principle and symplectic-preserving con-
dition, it is a symplectic numerical method.

3.3 Formulation of the complementary problem

Note that, the number of nonlinear eqs. (48)–(56) is less than
the unknown variables, which means the nonlinear equation
can not be solved directly. In this subsection, the comple-
mentary problem is formulated based on the eqs. (48)–(56)
and the path constraint eq. (33).

The x̄ j and λ̄ j vectors can be expressed using the indepen-
dent variables λ j−1 and λ j by solving eqs. (49) and (50). After
that, substituting the expression for vectors x̄ j and λ̄ j into eqs.
(48) and (51), yields

F j
1 = S j

11λ j−1 + S j
12λ j + ζ

j
11 + ζ

j
12β j, (57)

F j
4 = S j

21λ j−1 + S j
22λ j + ζ

j
21 + ζ

j
22β j. (58)

The detailed expression of S j
u,v (u, v = 1, 2) and

ζ j
pq (p, q = 1, 2) can be seen in ref. [26] (see eqs. (50)–

(57) and appendix). Utilizing eqs. (48), (51) and (55), the
eqs. (57) and (58) can be expressed in a impact form as

λ̂ = A−1Ψβ̂ + A−1Φ. (59)

Refer to ref. [28] for a detailed expressions for the above ma-
trices A,Ψ,Φ. Then, the state vector can be expressed in the
parameter β̂ by utilizing eqs. (51) and (58)

x j = −F j
4 = −(S j

21λ j−1 + S j
22λ j + ζ

j
2). (60)

That allows to express the state and costate vectors at the dis-
cretization points along the trajectory through the parameter
variable β̂ . Moreover, the complementary conditions in eqs.
(33) and (29) also need to be satisfied. Substituting eqs. (59)
and (60) back to eq. (33), a standard linear complementary
problem can be obtained:

α̂ − Mnewβ̂ = qnew, (61)

α̂ > 0, β̂ > 0, β̂Tα̂ = 0. (62)

The symbol Mnew, qnew and derivation process follows that
in ref. [28]. In general, the parameter β̂ at the discretization
points can be obtained by solving the standard linear comple-
mentary problem. In this paper, we utilize lemke method to
solve the formulated linear complementary problem. Next,
the costate vector can be obtained by substituting β̂ into eq.
(59); similarly the state vector is produced by eq. (60). Fi-
nally, the control input is derived by eq. (31). Following this
procedure, constrained linear quadratic optimal control with
given terminal states can be solved. In addition, the matri-
ces A,Ψ,Φ,Mnew all have sparse structure with small band
width, which makes the numerical implementation of the pro-
posed method highly efficient. It should be noted that, eqs.
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(59) and (61) can be modified to reflect the desired boundary
conditions.

As it is described in sect. 2.2, boundary conditions for ren-
dezvous problems and orbit transfer problems are considered
in this paper. In the case of boundary conditions for ren-
dezvous problems, the costate for the final mass equals zero.
Thus, the last row of vector λN is removed from the list of un-
known variables. Correspondingly, the last row of the β̂, eqs.
(59) and (61) should also be deleted. In the case of boundary
conditions for orbit transfer problems, the costate of the final
mass and the costate of the last three components of the state
vector are zero. Thus, the last four rows of λN are removed
from the list of unknown variables. Similarly, the last four
rows of β̂, eqs. (59) and (61) should be deleted.

4 Numerical examples and discussion

This section presents three examples of energy-optimal trans-
fers with multiple revolutions to illustrate the accuracy and
efficiency of the techniques and methods presented in the last
two sections. To capture the oscillation of the state variables
well, the number of the interpolation points for the state vari-
ables in a sub-interval is set to be 4, and that for the costate
variables is set to be 5. All computations are performed in
MATLAB (R2016b) on a desktop computer with a CPU of
4.00 GHz. The heliocentric position and velocity vectors of
the planets, when needed, are computed online using the Jet
Propulsion Laboratory Horizons system. The value of con-
vergence tolerance in eq. (27) is set to be 1.0×10−6.

4.1 Generation of nominal trajectories

Since the state equations of spacecraft are linearized around
a sequence of reference trajectories, the iteration process for
achieving an acceptable error is impacted by the quality of
the initial guess, especially for orbit transfer problems with
multiple revolutions. If the initial nominal trajectory is too
far from the true optimal trajectory, the symplectic method
presented in this paper may not converge to the optimal solu-

tion. In contrast to other studies [22, 27, 28], the initial refer-
ence trajectory is generated by linear interpolation of the state
variables, which are the non-singular equinoctial orbital ele-
ments and the mass of the spacecraft between the initial and
final trajectory points. Empirically, that results in an effective
strategy for multi-revolution transfers. Initially, the control
variable value at every discretization point is identically set
to 0.005 N. Although the initial nominal trajectory may be
neither optimal nor feasible, an optimal, feasible trajectory
can be generally obtained after a small number of iterations
with the symplectic method.

4.2 Rendezvous from Earth to Venus

A low-thrust rendezvous problem from Earth to Venus is con-
sidered in this section. Namely, the spacecraft starts at the
instantaneous Earth heliocentric position and velocity and ar-
rives at Venus with its same instantaneous heliocentric po-
sition and velocity. This example exactly replicates that in
ref. [6], and is presented to illustrate the accuracy of results
that are obtained by our optimization strategy. In ref. [6],
the optimal trajectory is obtained via an indirect method and
will serve as comparison. The method in ref. [6] includes an
homotopic transformation of the solution. Since we search
for the energy-optimal trajectory, we only consider the solu-
tion for an homotopic parameter equals to one. All the in-
put parameters are listed in Table 2. For computational con-
venience, length, time, and mass are nondimensionalized by
the astronomical unit (AU, 149597870.66 km), solar year (yr,
365.25 × 86400 s), and spacecraft initial mass, respectively.

Converged results obtained by the symplectic method with
different number of trajectory arcs are listed in Table 3. It can
be seen in Table 3 that, the number of iterations to converge to
the optimal solution is not influenced by the number of arcs.
In contrast, a dozen of grams may add to the final mass if the
number of arcs is increased. We also note from Table 3 that,
the third decimal place of the final mass value is converged
when the number of arcs equals 20, while the fourth decimal
place of the final mass value is converged when the number

Table 2 Parameters for a representative Earth-to-Venus transfer

Parameter Value Units

Initial date October 7, 2005 0:0:0.0 Coordinate time

Flight time 1000 d

Initial position
[
9.708322 × 10−1, 2.375844 × 10−1,−1.671055 × 10−6

]
AU

Initial velocity
[
−1.598191, 6.081958, 9.443368 × 10−5

]
AU/yr

Final position
[
−3.277178 × 10−1, 6.389172 × 10−1, 2.765929 × 10−2

]
AU

Final velocity
[
−6.598211, − 3.412933, 3.340902 × 10−1

]
AU/yr

Isp 3800 s

Tmax 0.33 N

m0 1500 kg
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Table 3 Converged solutions from the symplectic method with different number of arcs

Number of arcs Number of iterations Computational time (s) Final mass (kg)

5 9 0.136186 1274.747782

10 9 0.326455 1274.959963

15 9 0.363343 1274.959691

20 9 1.220348 1274.957674

25 9 1.749006 1274.957120

30 9 3.145607 1274.956974

35 9 4.625240 1274.956923

of arcs equal 30. The indirect method predicts a final mass
of 1274.956883 kg, with a variation of 0.0304 kg when the
number of arcs equals 10, and a variation of 0.00043 kg when
the number of arcs equals 35. Thus, the relationship between
the number of arcs and the accuracy of the optimal solution
can be inferred. That is, if one revolution contains 3 or 4
arcs, the symplectic method can produce the optimal solu-
tion with relatively high accuracy. When the number of arcs
equals to 9 or 10 in a revolution, the symplectic method can
achieve the same precision of the indirect method. This fact
is also demonstrated in other numerical examples. The accu-
racy of the proposed method can be improved by increasing
the number of discretization points, as demonstrated by Fig-
ure 2. Figure 2 clearly illustrates that the difference of final
mass, mf, between the indirect and the symplectic method de-
creases as the number of the trajectory arcs increases. Since
solutions via the indirect method are guaranteed to be at least
locally optimal, the optimality of the trajectories produced by
the symplectic method is also demonstrated in this example.

A comparison of the optimal low-thrust multi-revolution
trajectories solved by the symplectic method and indirect
method is displayed in Figure 3. The symplectic method uses
35 arcs. Parameters of the indirect method are set to follow
that in ref. [6]. The symbol represents the trajectory obtained
from the symplectic method, while the dashed orange line
renders the trajectory obtained from the indirect method. Fig-
ure 3 portrays the path of the spacecraft from the initial Earth
heliocentric position and velocity to the Venus rendezvous by
matching Venus heliocentric position and velocity after 3 or-
bital revolutions. Both the symplectic method and the indirect
method produce nearly identical optimal low-thrust trajecto-
ries.

The time evolution for costate variables of the symplec-
tic and indirect method is depicted in Figure 4, denoted by
stars and lines respectively. From Figure 4, it is clear that the
costate variables obtained from the two methods are in a close
agreement. From Figure 4, it is easy to verify that the termi-
nal mass costate λm satisfies the transversallity condition in
eq. (14), i.e. λm(tf) = 0, and demonstrates that boundary
conditions for the spacecraft mass costate are also satisfied.

The optimal thrust profile is displayed in Figure 5. Both,

the symplectic and indirect method converge on nearly iden-
tical optimal thrust profiles. In addition, the thrust magnitude
is below one during the entire transfer, and the path constraint
in eq. (15) is satisfied.

Thus, for this problem, since the solution from the two
methods are in close agreement, we can conclude that the
symplectic method converges on the locally optimal solution
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Figure 2 (Color online) Final mass difference between the indirect and
symplectic algorithm as a function of number of trajectory arcs.
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Figure 5 (Color online) Optimal thrust profile of the rendezvous from Earth
to Venus.

with high accuracy.

4.3 Orbital transfer between two circular orbits

In this section, a low-thrust orbit transfer problem between
two circular orbits around the Sun is considered: the space-
craft starts from the instantaneous Earth heliocentric position
and velocity and arrives at a final, given circular orbit. This
example replicates that in ref. [30], and is presented to il-
lustrate the efficiency of the symplectic method. The specific
impulse Isp is assumed to be constant and equals to 2000 s
and the initial mass of the spacecraft is 1000 kg. The initial
epoch is 00:00:00, April 10th, 2007, and the corresponding
Earth position and velocity vectors at this epoch are retrieved
from JPL ephemerides DE405:

r0 = [−140699693,−51614428, 980] km, (63)

v0 = [9.774596,−28.07828, 4.337725 × 10−4] km/s. (64)

The final spacecraft terminates in a circular orbit with radius
at arg et = 1.95 AU. Since the final orbit is a circular orbit, the
eccentricity is zero. The remaining four Keplerian elements
are free. The corresponding equinoctial orbit elements are

p (tf) = 1.95 AU,

f (tf) = 0,

g(tf) = 0,

h(tf) = Free,

k(tf) = Free,

L(tf) = Free.

To facilitate numerical computations, length, time, and
mass are nondimensionalized as in the last section. Since in
both the current and previous example, the central body is the
Sun, both problems can be nondimensionalized by the same
characteristic quantities.

To better understand the influence of the number of rev-
olutions on the optimization process, the optimal transfer is
solved for a set of four different times of flight (which corre-
spond to a different number of revolutions). For each given
time of flight, the maximum thrust magnitude is adjusted to
ensure that there exists a feasible low-thrust transfer. Result-
ing parameters for the four time of flight cases are listed in
Table 4.

The results produced by the optimal control software
GPOPS are chosen for comparison to illustrate the efficiency
of the symplectic method. GPOPS is an open source MAT-
LAB software developed by ref. [31], for solving complex
optimal control problems using the nonlinear programming
solver SNOPT, which is developed by Gill et al. [32]. To
make a legit comparison of the algorithm efficiency, the ini-
tial guess of state variables and control variables are set the
same for both the symplectic method and the GPOPS. As for
the other parameters of GPOPS, they are listed in the Table 5.

Table 4 Parameters for the numerical examples

Case Nrev Tmax (N) TOF (d)

1 2 0.2 1165.65

2 5 0.14 2325.30

3 9 0.05 4650.60

4 17 0.015 8719.88

Table 5 Parameters for the optimal control software GPOPS

Parameters Value

Setup.mesh.tolerance 1×10−6

Setup.mesh.iteration 30

Setup.derivatives Finite-difference

Setup.checkDerivatives 0

Setup.autoscale off
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The results for different time of flight cases are listed in
Table 6. From Table 6, it can be found that, the final mass
obtained by symplectic methods is nearly the same as that
of GPOPS, which means the solution produced by symplec-
tic methods can have the same accuracy as that of GPOPS.
Moreover, it should be noted that, the symplectic method
converges to the optimal solution with fewer discretization
points when compared to GPOPS. Thus, it can be concluded
that the symplectic method can preserve the continuous na-
ture of the original dynamics with fewer discretization points
when compared to GPOPS. Besides, the symplectic method
is significantly faster than GPOPS in terms of total computa-
tional time. Thus, for this example, the efficiency and opti-
mality of the symplectic method can be demonstrated.

For reference, the optimal solution obtained by symplectic
method for Case 3 is depicted in Figures 6–9. Figure 6 shows
the optimal spacecraft trajectory obtained from the symplec-
tic method and SNOPT solver. The complete orbit transfer
contains nearly 9 revolutions. The thrust profiles are por-
trayed in Figure 7. From Figures 6 and 7, it can be noticed
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Figure 6 (Color online) Low-thrust trajectory from Earth to a circular orbit.
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Figure 8 (Color online) Evolution of the final mass during the optimization
process for the symplectic method.

that, the optimal transfers obtained from the two methods are
in close agreement. The evolution of the final mass and final
true anomaly with the number of iterations during the op-
timization process for the symplectic method is depicted in
Figures 8 and 9. The final mass approximately converges af-
ter 3 iterations. During the remaining iterations, the solution
slowly updates its final true longitude. As a consequence, the
efficiency of the symplectic method can be further improved
by giving better initial guesses for the true longitude.

Table 6 Comparison between the symplectic method and SNOPT solver for multi-revolution orbital transfers

Case Method mf (kg) Number of discretization points CPU time (s)

1 Symplectic method 647.5883 40 0.2269

GPOPS/SNOPT 647.5883 321 2.2056

2 Symplectic method 649.1790 60 0.3747

GPOPS/SNOPT 649.1790 466 3.7903

3 Symplectic method 649.6894 80 0.4891

GPOPS/SNOPT 649.6878 897 8.0261

4 Symplectic method 649.6167 200 3.9055

GPOPS/SNOPT 649.6168 1661 38.1206
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Figure 9 (Color online) Evolution of the final true longitude during the
optimization process for the symplectic method.

4.4 Low Earth orbit sacecraft rendezvous

Consider a spacecraft rendezvous mission in low Earth or-
bit (LEO): the chaser satellite starts from a sun-synchronous
orbit and transfer to another sun-synchronous orbit to ren-
dezvous with the target satellite. Unlike the last two nu-
merical examples, the spacecraft dynamics around Earth in-
clude the J2 perturbation, which makes the optimal control
problem much challenging to solve [33]. This example il-
lustrates that, the symplectic method can also be applied to
optimize low-thrust trajectories with a very large number of
revolutions within perturbed dynamics. The specific impulse
fixed to 3800 s and the initial mass of the chaser spacecraft is
equal to 1500 kg. The maximum thrust magnitude is 0.33 N.
The initial state vector of the chaser spacecraft is specified in
terms of equinoctial orbit elements as

p0(t0) = 6899.4468 km, f0(t0) = −0.00008344,

g0(t0) = 0.00067183, h0(t0) = −0.06749657,

k0(t0) = −1.13743783, L0(t0) = 1.85174464 rad.

(65)

The initial state of the target spacecraft is also specified in
terms of equinoctial orbit elements as

p1(t0) = 6897.4283 km, f1(t0) = −0.00026998,

g1(t0) = 0.00040531, h1(t0) = −0.06750251,

k1(t0) = −1.13753794, L1(t0) = 1.99497980 rad.

(66)

It should be noted that, the target spacecraft is subject only to
the Earth gravity, while the chaser spacecraft is subject both
Earth gravity and the thrust of its own electric propulsion sys-
tem. The characteristics quantities that normalize the prob-
lem are changed to reflect the fact that the Earth is, now, the
central body (in contrast to the previous examples). The char-
acteristic length is set to L = 6878.137 km. Then, the charac-
teristic time can be defined as T = (L3/µe)0.5 = 903.52 s, so
to make the normalized µe equal to 1. The initial spacecraft
mass is chosen as the characteristic mass.

Initially, we set the transfer time of flight to 2 d, which cor-
responds to a trajectory with 30 revolutions. Again, we solve
this numerical example with different number of trajectory
arcs. The converged results are listed in Table 7. Observa-
tions from sect. 4.2 are still valid in Table 7. That is, the
symplectic method may reach relatively high accuracy with
3 or 4 arcs, and the accuracy of the symplectic method can
further improve when more arcs are added. As a reference,
the optimal solution for 100 intervals is portrayed through
Figures 10–12.

Next, we consider a longer time of flight, i.e., 15 d which
corresponds to a 228-revolutions trajectory. Solving low-
thrust trajectory with such a large number of revolutions is
considered a challenging problem. The optimal solution can
be successfully obtained by the symplectic method, when a
good initial guess is supplied. The converged optimal solu-
tions are listed in Table 8. The CPU cost could be further
reduced by improving code quality. For completeness, the
trajectory, the costate variables and the thrust profile are de-
picted in Figures 13–15. This example supplies preliminary
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Figure 10 (Color online) Low-thrust trajectory with 30 revolutions for the
chaser spacecraft.

Table 7 Converged solutions from the symplectic method with different number of arcs

Number of arcs Number of iterations Computational time (s) Final mass (kg)

50 3 2.172762 1499.764308

80 3 6.768178 1499.761093

100 3 11.512130 1499.761217

200 3 70.278182 1499.761266

300 3 216.140373 1499.761265
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Table 8 Converged solutions from the symplectic method with different number of arcs

Number of arcs Number of iterations Computational time (s) Final mass (kg)

600 3 1719.7184 1499.943624

800 3 3476.3645 1499.943511
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Figure 11 (Color online) Costate variables time histories of the chaser
spacecraft along a 30 revolutions trajectory.
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Figure 14 (Color online) Low-thrust trajectory of the chaser spacecraft
with 228 revolutions.
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Figure 15 (Color online) Low-thrust trajectory of the chaser spacecraft
with 228 revolutions.

evidence that the proposed symplectic method is a promising
tool to optimize low-thrust transfers with a large number of
revolutions.

5 Conclusion

A symplectic method is presented in this paper to optimize
multi-revolution low-thrust orbit transfer trajectories. To re-
duce the oscillatory nature of the Cartesian coordinates along
spiraling trajectories with multiple revolutions, osculating
equinoctial elements are chosen to describe the motion of the
spacecraft. In addition, an initial reference solution is given
to accelerate the optimization process. These two techniques
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may enable the symplectic method to converge rapidly, when
it is applied to the optimization of orbit transfers with multi-
ple revolutions.

A representative renhdezvous problem from the Earth to
Venus is successfully solved by the proposed method. The
accuracy and optimality of the symplectic method are demon-
strated by comparison with known results obtained from an
indirect method. In addition, the relationship between the
number of intervals and the accuracy attainable with the sym-
plectic method is discussed, and may be a reference for fu-
ture research. The symplectic method is also compared to
the well-known SNPOT solver. In optimizing an orbit trans-
fer between two circular orbits, which serves as a benchmark
problem, the symplectic method is significantly faster than
SNOPT in terms of computational time. In addition, com-
pared to SNOPT, the proposed method can produce a rea-
sonable approximation of the continuous solution with fewer
discretization points. Finally, low Earth orbit spacecraft ren-
dezvous with a very large number of revolutions are success-
fully solved by the proposed symplectic method, within J2-
perurbed orbit dynamics. In conclusion, the symplectic meth-
ods prove valid in solving known problems and seem to be-
have well when applied to more complex dynamics. In future
work, we envision the application of symplectic methods to
optimize more complex transfers within higher fidelity envi-
ronments.
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