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A deterministic FE contact analysis of 3D rough surfaces with
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Accurate contact calculations of real rough surfaces are fundamental but complicated. The model-based methods are convenient
and straightforward. But these methods ignore some factors and may lead to less accurate results. This is especially true when
considering multi-scale topographic features of engineering rough surfaces. Based on artificially generated rough surfaces, the
deterministic contact analysis of two 3D rough surfaces is conducted by the finite element method (FEM). The calculations show
that when the separation between surfaces reduces, results of classic model-based methods are quite different from those of this
study, especially when the roughness distribution and textures are considered. As friction pairs are working under increasing
harsh conditions, the accurate contact calculation in this paper will be of great significance.
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1 Introduction

With the development of equipment products, the working
conditions of engineering friction pairs and the contact state
between engineering rough surfaces are becoming more and
more severe. In order to support the tribological design of
engineering friction pairs, it is necessary to accurately
evaluate the contact performance of the engineering rough
surfaces at design stage. However, the accuracy of the con-
tact computation faces many challenges. In particular, when
the nominal separation between surfaces becomes very small
under severer conditions, the multi-scale topographic fea-
tures of surfaces, including roughness, texture, reticulation,
and their distribution, have a significant impact on the con-
tact performance. In order to make the calculation easy, most
previous studies have adopted several assumptions to sim-

plify the surface multi-scale features. However, this may lead
to inaccurate results. Therefore, this paper will study the
contact problem between two 3D rough surfaces with multi-
scale topography and compare the results with those of
previous methods.
There are two types of contact calculation methods in the

academic field at present. One is the model-based methods,
and the other is the numerical methods. The model-based
methods are presented on the base of statistics or the fractal
theory. Two pioneers in the field of tribology, Greenwood
and Williamson [1], calculated the contact force between a
rough surface and a rigid flat by using the statistical method
and the Hertz contact theory [2]. Then Greenwood and Tripp
[3] gave the contact calculation formula of two rough sur-
faces, namely the GT model. They proposed that two rough
surfaces contact (two-rough-surface contact) can be equal to
one equivalent single rough surface in contact with a rigid
flat (equivalent single-rough-surface contact). Based on
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these two models, Chang et al. [4] proposed the CEB model
considering the transition of the contact state from pure
elasticity to pure plasticity. Furthermore, Kogut and Etsion
[5] obtained the critical point of elastic-plastic by carrying
out a numerical simulation on the contact between an elastic-
plastic sphere and a rigid flat. Then they studied the elastic-
plastic change of the single-rough-surface contact and pro-
posed the KE model [6]. As for the aspect of the fractal
theory, Majumdar and Bhushan [7] believed that the rough
surface conforms to the fractal characteristics and proposed
the MB contact model. Persson [8] analyzed the amplifica-
tion scale and introduced the fractal parameters for rough
surfaces contact, and proposed the Persson model. Jackson
and Streator [9] studied the normal contact problem of multi-
scale rough surfaces based on the fractal theory. Further-
more, Miao and Huang [10] extended the modified asperity
contact model to study a complete contact model of a fractal
surface. They found that the critical area of a single asperity
was scale dependent and that the asperity’s plastic to elastic
mode transition agreed with some classic contact mechanics.
However, whether the fractal theory can accurately describe
the rough surface of engineering friction pairs is still con-
troversial. Meanwhile, it is also not easy to obtain the fractal
parameters of an engineering rough surface. Among the
model-based contact calculation methods, the GT model and
the KE model are very classic and representative. The cal-
culation formula of the mean contact pressure and the idea
that two-rough-surface contact can be equal to its equivalent
single-rough-surface contact have been widely adopted
[11–13]. However, due to the assumptions made in the
model-based methods, it may lead to less accurate results.
Compared with the model-based methods, the numerical

methods release some assumptions and so may be more ac-
curate in the contact calculation. The semi-analytical meth-
od, the boundary element method (BEM) and the finite
element method (FEM) have been adopted to solve en-
gineering contact problems. As for the semi-analytical
method, the researchers usually put forward some new al-
gorithms for special contact problems to release some as-
sumptions of the full-analytic method. Therefore, the results
will be more consistent with the real contact situation com-
pared with the full-analytic method. Chen et al. [14] pre-
sented a 3D numerical elasto-plastic model for the contact of
nominally flat surfaces, which can consider the effect of
asperity interactions. Their model is built on two algorithms:
the continuous convolution and Fourier transform (CC-FT)
and discrete convolution and fast Fourier transform (DC-
FFT). Zhang et al. [15] studied the influence of the kurtosis
and the skewness on the elastic-plastic contact performance
of rough surfaces based on the minimization of com-
plementary energy and semi-analytical method. Zhao et al.
[16] used the semi-analytical and numerical method to study
the sliding asperity interaction for the power-law hardening

materials. Considering the wide application of surface
coatings, Nyqvist et al. [17] presented a new semi-analytical
model for analysis of non-conformal rough surface contacts
where one or both of the contacting bodies are coated with a
multilayered coating.
In the study of the BEM for contact calculation of en-

gineering rough surfaces, some researchers conducted the
calculation based on the half-space assumption. Therefore,
the subjects of the BEM are usually the high friction pairs,
and the equivalent operation is commonly used. Peng and
Bhushan [18] used BEM to study the problem that a small
rough surface in sliding contact with a layered surface. To
make the calculation easier, Bemporad and Paggi [19] re-
viewed the fundamental equations for the solution of the
frictionless unilateral normal contact problem between a
rough rigid surface and a linear elastic half-plane using the
BEM. Besides, considering the adhesive properties of rough
surfaces, Rey et al. [20] proposed a numerical method to
compute the solution of an adhesive normal contact problem.
However, the elastic half-space assumption commonly used
in the BEM, which is usually valid in high friction pairs, is
often no longer applicable in the case of low friction pairs.
Meanwhile, although the computing scale of the BEM is
smaller than that of the FEM, the BEM method does not
apply to non-homogeneous and nonlinear problems. So the
BEM is not as accurate as the FEM when describing local
characteristics of complicated rough surfaces.
Compared with the BEM method, the FEM may be more

accurate but the calculation cost may be a problem. Based on
the FEM, Jackson and Green [21] studied an elasto-plastic
hemispherical contact against a rigid flat, and concluded that
the hardness will change with the contact geometry and
materials. In their research, the hemisphere is regarded as an
asperity, so it is far from the contact calculation of rough
surfaces. It has long been believed that the use of the FEM to
simulate the contact between rough surfaces is not possible
because the cost will be very high when considering a huge
amount of roughness or asperities. However, along with the
development of computers and high-performance computing
algorithm, the cost is no longer an obstacle. So in recent
years the FEM has been found to solve the contact problems
of engineering rough surfaces [22–24]. Generally, there are
two methods to obtain the rough surface data for the FEM
calculation. One is collecting the measured surface data di-
rectly, and the other is using some algorithms to generate a
rough surface. Zhao et al. [25] studied the contact of rough
surfaces for power-law hardening materials with measured
surface data by the FEM. Using the measured surface data is
more practical, but it is less efficient and convenient. The
method of generating a rough surface with a particular al-
gorithm can quickly obtain a rough surface that meets spe-
cific statistical parameters requirements. This makes the
method more convenient, especially for the comparison of

298 Zhang R, et al. Sci China Tech Sci February (2021) Vol.64 No.2



the results of the FEM with those of the model-based
methods. The digital generation methods of Gaussian and
non-Gaussian rough surfaces were studied in refs. [26–28].
Besides, some FE analysis about the contact between a rigid
flat and a self-affine fractal rough surface based on fractal
theory were also discussed in refs. [29,30]. Recently, more
and more researchers use the FEM to study the deterministic
contact between rough surfaces. Poulios and Klit [31] used
FEM to study the deterministic frictionless contact between
nominally flat rough surfaces. Their surface topographies
were numerically generated combined with the roughness
measured by a stylus instrument. Besides, An et al. [32] used
measured surfaces to conduct the deterministic elastic-plastic
modelling of rough surfaces and compared their results with
some model-based methods based on the fractal theory.
When adopting the FEM to deal with the contact problem of
rough surfaces, the distribution and the mutual influence of
asperity peaks and the multi-scale topography features can
be considered. Therefore, using the FEM can establish a
deterministic contact model, which means that the method
can be used for contact problems between engineering rough
surfaces with multi-scale topography.
This paper will consider the multi-scale topographic fea-

tures and their distributions of engineering surfaces to reach
a deterministic contact analysis. Based on the FEM, the
contact of two rough surfaces will be analyzed. Moreover, in
order to further discuss the relevant characteristics of rough
surface contact for more accurate conditions, the results in
this study will be compared with those calculated by the
classic model-based methods.

2 Deterministic contact analysis

2.1 Generation of 3D rough surfaces

Before conducting the deterministic contact analysis, it is
necessary to obtain the 3D rough surfaces firstly. Compared
with the measurement of engineering rough surfaces, the
generation of rough surfaces using particular algorithm can
quickly obtain rough surfaces with specific statistical para-
meters. This will be beneficial for the comparison of the
results in this study with those of the traditional model-based
methods. So the generated rough surfaces will be used in this
study. Poon and Bhushan [33] have presented a generation
method of Gaussian rough surfaces. Hu and Tonder [34]
have presented a generation method of non-Gaussian rough
surfaces by the Johnson transition system. However, these
methods can only generate a Gaussian surface or a non-
Gaussian surface with specific roughness σ, which is far
away to describe a rough surface accurately. So, based on
these previous works, this paper gives a convenient com-
puting method which can generate a Gaussian 3D rough
surface with specific parameters η, β and σ. Then, textures

can be introduced into the generated rough surface to obtain
a multi-scale rough surface, which is common in engineering
friction pairs. The flow chart of generating a Gaussian 3D
rough surface with specific parameters η, β and σ is shown in
Figure 1 (see Appendix A for the specific process).
The method of generating a Gaussian 3D rough surface

with specific parameters η, β, σ is based on the generation of
white noise and the selection of autocorrelation function
(ACF). On the one hand, by taking discrete Fourier transform
(DFT) of the initial matrix, the corresponding Fourier matrix
A(m,n) can be obtained. On the other hand, after the dis-
cretization and DFT, the transfer function matrix H(m,n) can
be obtained. Then, by taking inverse Fourier transform of
(A·H) and modification, the Gaussian rough surface matrix
z(m,n) that meets the given standard deviation requirement is
obtained. Furthermore, it is necessary to confirm whether the
rough surface matrix z(m,n) satisfies the η, β requirements
and Gaussian distribution. If it does not satisfy the η, β re-
quirements, the input parameters of ACF should be mod-
ified. While if z(m,n) does not satisfy the Gaussian
distribution, it is necessary to regenerate the initial matrix

Figure 1 The flow chart of generating the Gaussian 3D rough surface
with specific parameters η, β and σ.
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η(m,n). Besides, considering the randomness of the initial
matrix, each group of input parameters can be repeated for
many times when performing the operations shown in
Figure 1. The ACF selected in this paper is

f x y( , ) = e . (1)
x
L

y
L

input
2 2.3 +

x y

2 2

Using this ACF, the desired output parameters can be
controlled by adjusting the standard deviation σinput and the
autocorrelation length Lx, Ly. This paper considers isotropic
surfaces, so set Lx=Ly. And if the anisotropic surface is
wanted to be obtained, the Lx and Ly should be not equal.
When Lx/Ly>1, the surface will appear the characteristic that
along the partial x direction, and vice versa. This trend will
become more obvious as the ratio increases. The relative
properties of anisotropic surfaces, such as friction, show
significant directional differences. Therefore, the direction
should be taken into consideration when contact problems of
anisotropic surfaces are studied.
The detail relationship between input and output para-

meters are as follows: (1) The output roughness σ is posi-
tively correlated with the σinput; (2) When Lx, Ly are constant,
β is inversely correlated with σinput, while σinput have no sig-
nificant effect on η; (3) When σinput is constant, η is inversely
correlated with Lx, Ly, while β is positively correlated with Lx,
Ly. Besides, it is worth noting that the detailed change trend
is also related to the computing expression of η, β. Con-
sidering that the commonly method [35] used to calculate the
η, β is one-dimension, which means it is not accurate to deal
with the 3D rough surface problem. Therefore, the method in
ref. [25] can be referred here. As shown in Figure 2, when a
point of the matrix z(m,n) satisfies
z i j z u v( , ) > ( , ), (2)

where u=i–2, i–1,…, i+2, v=j–2, j–1,…, j+2 except (i,j)=(u,
v), then this point is regarded as an asperity peak. After
judging each point of the rough surface, the η can be ob-
tained:

N
A= , (3)

n

where N is the number of asperities on the whole rough
surface. The calculation of radius of the corresponding single
asperity peak can be calculated as follows:

z x

z x

z y

z y

=
1 + ( ( ))

( ) ,

=
1 + ( ( ))

( ) ,
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(4)
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Then, the β can be obtained by the following expression:

i
N=

( )
. (5)i

N
s=1

When judging the asperity peak, the determination is whe-
ther the point is larger than the surrounding 24 points, which
means the whole range is 4 μm. Considering the size of the
entire analysis region is 63 μm×63 μm, it is believed that this
range is reasonable in this paper. In other cases, the size of
the judging range can be modified according to the specific
situation.
One example of the rough surface data, which meets all

requirements and has a particular asperity distribution, is
shown in Figure 3. The height distribution of the rough
surface and the Gaussian fitting are shown in Figure 4.
Based on the generated rough surface with specific para-

meters η, β, σ, textures can be added according to some
purpose to obtain a multi-scale 3D rough surface. In this
paper, a common dimple texture is introduced into the center

Figure 2 (Color online) Schematic of the formula to determine the radius
of asperity peak in x-z plane and y-z plane.

Figure 3 (Color online) The rough surface data that meets all require-
ments and has a particular asperity distribution.
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of the lower rough surface. The diameter of the dimple
texture is 30 μm, and the depth is 3 μm. The 3D rough sur-
faces with solid base namely the 3D rough solid, are shown
in Figure 5. And the schematic diagram of the dimple texture
is also shown in Figure 6.

2.2 Mesh generation and validation by the FEM

Based on the artificially generated surfaces in Section 2.1,
the FE model can be obtained as shown in Figure 7. The size
of the single 3D rough solid is 63 μm×63 μm×30 μm. In the x
and the y directions, the meshing size is 0.5 μm. Hence, the
number of the elements on the surface is approximately
126×126. According to ref. [36], sparse processing is carried
out in the z direction, which is divided into 10 layers. In order
to ensure the reliability of the simulation results, the mesh
convergence test is carried out. The meshing size is reduced
from 1 to 0.25 μm. Figure 8 presents the dimensionless
contact load versus the dimensionless separation. It can be
seen that, when the meshing size is reduced to 0.5 μm, the
results are not significantly different. The corresponding
relative error is also shown in Figure 9. Compared with the
convergency test in ref. [37], the relative error in this paper
has been controlled to be small enough, which means the
meshing size 0.5 μm is reasonable in this paper. And the

computation time is also listed in Table 1.
In addition, considering the reasonable choice of the

thickness of the 3D rough solid is important. The test about
the thickness is also carried out in this paper. The thickness
increases from 20 to 40 μm. Figure 10 presents the di-
mensionless contact load versus the dimensionless separa-
tion. It can be seen that, when the thickness increases to
30 μm, the results are very close to those of 40 μm. The
corresponding relative error is also shown in Figure 11. As
shown in Figure 11, the relative error of the results for
thickness of 30 μm to those for thickness of 40 μm is around
2%.

2.3 Loads, boundary conditions and contact algorithm

As shown in Figure 12, the loads and boundary conditions
are added into the contact bodies as follows: (1) displace-
ment load is applied on the top surface of the upper solid,
while the displacement of the upper solid in the x and y
directions is constrained; (2) all degrees of freedom of the
lower solid are restricted on the bottom surface. In order to
ensure better precision, the contact algorithm is the “finite
sliding algorithm” in this paper. Following the GT and the
KE model where the smooth Hertz contact model is adopted,
the interface between two contacting surfaces is assumed to
be frictionless during the normal contact.

Figure 4 (Color online) The height distribution of rough surface and
Gaussian fitting.

Figure 5 (Color online) 3D rough solid. (a) Rough surface; (b) rough
surface with texture.

Figure 6 The schematic diagram of the dimple texture.
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3 Material properties

In this paper, the contact body is assumed the basic material
S235. Some properties of the S235 are shown in Table 2 [38].
As shown in Figure 13, considering that the stress-strain
curve in ref. [38] is engineering stress-strain, it is necessary

to convert it into the true stress-strain data. The transfor-
mation process is as follows.
The engineering strain during compression is

H H
H

H
H= = 1 , (6)inital now

inital

now

inital

whereHinital,Hnow are the initial length and the current length,
respectively.

Figure 7 (Color online) The FE model for (a) two-rough-surface contact
and (b) single-rough-surface contact.

Figure 8 (Color online) The test of mesh convergency.

Table 1 The computation time

Element size
(μm) Time CPU brand Multiple

processors
Memory
(GB)

1 3h20min Intel core i7-8700 @
3.20 GHz 6 24

0.5 20h25min Intel core i7-8700 @
3.20 GHz 6 24

0.25 11d4h42min Intel core i7-8700 @
3.20 GHz 6 24

Figure 9 (Color online) The relative error to the results of the element
size=0.25 μm.

Figure 10 (Color online) The test of thickness.

Figure 11 (Color online) The relative error to the results of the thick-
ness=40 μm.
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Then the true strain is
H
H= ln = ln 1

1 . (7)t
inital

now

Based on the principle of volume invariance
A H A H= = const. (8)inital inital now now

The current area is

A A H
H A= = 1

1 . (9)now inital
inital

now
inital

Therefore, the true stress is
P

A
P

A= = (1 ). (10)t
now inital

The final true stress-strain is shown in Figure 13.

4 Comparison with classic contact models

From the analysis procedure and the generated 3D rough
surfaces in Section 2, a deterministic contact analysis can be
conducted. To show the deterministic contact results more
clearly, two classic model-based methods, the GT model and
the KE model, are adopted to make the comparison.

4.1 Classic contact models

Before accurately considering the rough surfaces with multi-
scale topographic features such as textures and roughness in

the contact calculation, this paper reviews two classic model-
based contact models, the GT model and the KE model.
Some issues will be analyzed for a better comparison later.

4.1.1 GT model
The GT model is based on some assumptions [39]. Some
important assumptions are (1) there is no interaction between
separate asperities; (2) the height distribution of rough sur-
face is Gaussian; (3) the contact analysis of the two-rough-
surface contact could be equal to its equivalent single-rough-
surface contact. According to the GT model, the equivalence
requirements are below [36]:

+ = ,
1 + 1 = 1,

+ = ,

(11)

1 2

1 2

1
2

2
2 2

where η1, η2 are the areal asperity density, β1, β2 mean the
radius of asperity peaks, and σ1, σ2 are the standard deviation
of surface height for two different rough surfaces respec-
tively. While η, β, σ are the corresponding surface parameters
of the equivalent single-rough-surface. The expression of the
contact load [39] is

P d A P r r z r r z( ) = 2 4 , ( ) d d . (12)n
z r

2
p

2

By defining the integral against r, the above expression can
be decomposed into the following expression:

P d A P z d z z

P P r r r r

( ) = ( ) ( )d ,

( ) = 2 4 , d .
(13)

n
d

r
p

0

0 p

2

It can be found that the GT model considers the dislocation
contact between asperity peaks for the two-rough-surface
contact by integrating twice. The mean contact pressure of
the two-rough-surface contact is

Figure 12 (Color online) Schematic of loading form and boundary con-
dition.

Table 2 Material properties of S235

Quantity Value

Elastic modulus E (GPa) 203
Yield strength Sy (MPa) 235

Density ρ (kg/m3) 7850
Poisson’s ratio ν 0.3

Figure 13 (Color online) The curve of stress-strain.
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p d KF d( ) = 8
5 , (14)2.5

where

K E= 2 2
3 ,e

( ) ( )E v E v E= 1 / 1 / + 1 /e 1
2

1 2
2

2

is the equivalent elastic modulus, Fn(d/σ) is a calculation
formula related to the height distribution. The specific cal-
culation and results of Fn(d/σ) are shown in Appendix B. The
contact area formula of the two-rough-surface contact can
also be obtained by quadratic integration:

A A F d= ( ) . (15)r n
2 2

2

For the equivalent single-rough-surface contact, the mean
contact pressure formula is

p d KF d( ) = . (16)1.5

By comparing eqs. (14) and (16), it can be seen that the
differences between these two formulas are the coefficient

and the F function, which results from the quadratic in-
tegration.
It might as well set that ηβσ=0.05, K=100 MPa, Ee

=110 GPa for a detailed analysis. The influence of F on the
results is shown in Figure 14, in which the value of F of the
two-rough-surface is about 1–1.5 times of that of the
equivalent single-rough-surface. Meanwhile, the coefficient
8πηβσ/5 is about 0.2513 in this condition. Generally speak-
ing, it means that in the GT model, the dimensionless contact
load of the equivalent single-rough-surface contact is 2.5–3
times larger than that of the two-rough-surface contact. The
dimensionless contact load versus dimensionless separation
is shown in Figure 15. Obviously, the operation in the GT
model which considers the influence of dislocation contact
through quadratic integration form has a significant effect on
the prediction of the contact load.

4.1.2 KE model
As shown in Figure 16, Kogut and Etsion [5] made a dis-
tinction between the mean height of the surface D and that of

Figure 14 (Color online) The data of Fn(d/σ).
Figure 15 (Color online) Comparison of dimensionless contact load
versus dimensionless separation.

Figure 16 (Color online) Contacting rough surfaces in KE model.
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the asperities d in the KE model. Then they presented the
contact calculation formulas considering the elastic and
plastic deformation between a rough surface and a rigid flat
surface.
The following parameters with superscript * mean that

these parameters are dimensionless by the σ. Expressions of
the critical interface and the corresponding dimensionless
parameters are below:

KH
E

KH
E

= 2 ,

= = 2 ,
(17)

c
e

c
c

e

2

*
2

where K=0.454+0.41ν, H=2.8Sy, Sy means the yield strength
of the material. The calculation expression of the mean
contact pressure in the KE model is as follows (see Appendix
C for the specific process):

}

{ ( )
( )
( ) ( )

( )
( ) ( )

( )

p d KH

F d F d

F d F d

F d F d

K F d

( ) = 2
3 ×

× ( ) ( ) +

+1.03

× + + 6

+1.4

× + 6 + 110

+ 3 + 110 . (18)

c c

c

c c

c

c c

c

*

* 0.5
1.5

*
1.5

* *

* 0.425

1.425
* *

1.425
* *

* 0.263

1.263
* *

1.263
* *

1
* *

While the contact area formula is

{

}

( )
( )
( ) ( )

( )
( ) ( )

( )

A d A F d F d

F d F d

F d F d

F d

( ) = × × ( ) +

+0.93

× + + 6

+0.94

× + 6 + 110

+2 + 110 . (19)

r n c

c

c c

c

c c

c

*
1

*
1

* *

* 0.136

1.136
* *

1.136
* *

* 0.146

1.146
* *

1.146
* *

1
* *

Because the plastic deformation is considered, the pre-
diction of the mean contact pressure of the KE model is
smaller than that of the GT model at the later contact stage.
The detailed comparison results are shown in Section 4.3.

4.2 Dimensionless separation

Dimensionless separation, such as d/σ in eq. (16) or d* in eq.
(18), is a very important parameter in both the GT model and
the KE model. However, when comparing the results of
different methods, the dimensionless separation must be
carefully processed to make the results comparable.

When directly using the function Fn(d/σ), the variable is
the dimensionless separation corresponding to the rough
surface σ. However, different surfaces have different σ. In
this situation, when comparing the results of two contact
cases, in which the σ is different, it will be reasonable to
select the same value of σ. Taking the situation in Figure 17
as an example, it may as well suppose that σa=2σb, where σa is
the composite roughness of contact case 1 and σb is the
composite roughness of contact case 2. When the dimen-
sional separations in two cases are the same, for example, it
is equal to 2σa, the dimensionless separation in case 1 will be
half of that in case 2 if different roughness are used for
dimensionless calculation. To compare the contact perfor-
mance of two cases in one figure, it is better to use the same
roughness, such as σa, for dimensionless calculation.
Another problem is that the definition of the separation. As

the discussion in the KE model, the separation D based on
surface heights is different from the separation d based on
asperity heights. Therefore, when comparing the simulation
results with the results of the GT model and the KE model,
the separation needs to be modified to be the same. As shown
in Figure 18, for the single-rough-surface contact, the mod-
ification Δs is one-sided, while for the two-rough-surface
contact, the modification Δd is two-sided.

4.3 Comparison between the deterministic analysis
and the model-based analysis

Here the 3D rough surface parameters listed in Table 3 will
be adopted to conduct the deterministic analysis. While the
corresponding σ, β, η used in the GT model and the KE
model are listed in Table 4. The calculation of equivalent
surface parameters follows eq. (11). And formulas used to
calculate the GT model are the formulas for two-rough-

Figure 17 (Color online) Schematic of separation dimensionless pro-
cessing. (a) Contact case 1; (b) contact case 2; (c) contact load versus
dimensionless separation of case 1 and case 2.
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surface contact. It can be seen from Table 2 that deviation
between composite values of the two-rough-surface and
values of the equivalent rough surface are very small. And
modified separations are shown in Table 5, which can be
obtained by post-processing of the data in Section 2.1. The
3D rough solids and rough surface data are also shown in
Figure 19.
Figure 20(a) presents the dimensionless contact load ver-

sus the dimensionless separation, in which σe of the

equivalent single-rough-surface is used for the dimensionless
processing. At the early stage of the contact, the results of the
deterministic analysis are similar to the GT model and the
KEmodel, no matter for the two-rough-surface contact or the
equivalent single-rough-surface contact. However, when the
dimensionless separation d/σe reduces to about 1.5, the re-
sults begin to differ significantly. It should be noticed that the
results of the KE model is closer to that of the deterministic
results than that of the GT model.
Figure 20(b) presents the contact area ratio versus the di-

mensionless separation. It can be seen that the predicted
results of the GT model is obviously smaller than that of the
KE model and the deterministic results. Similar to the di-
mensionless contact load results, the contact area ratio of the
KE model is closer to the deterministic results than the GT
model, especially to the deterministic results of the equiva-
lent single-rough-surface contact. Comparing eq. (15) with
eq. (19), it can be seen that the contact area formula of the GT
model has an extra coefficient ηβσ due to the quadratic in-
tegration. Considering that the value of ηβσ is usually be-
tween 0.03–0.05, the effect of the coefficient is significant.
The dislocation contact between peaks may really exist. As
shown in Figure 20, the results of the two-rough-surface
contact are both smaller than those of the equivalent single-
rough-surface at the later stage, which can confirm the idea
of dislocation contact. However, the effect of the coefficient
introduced by the quadratic integration seems too significant.

Figure 18 (Color online) Schematic of separation modification. (a) The
single-rough-surface contact; (b) the two-rough-surface contact; (c) contact
load versus dimensionless separation of the single-rough-surface contact;
(d) contact load versus dimensionless separation of the two-rough-surface
contact.

Table 3 Summary of surface parameters for deterministic analysis

Type Surface σ (μm) β (μm) η (mm−2)

Two-rough-surface
Rough surface 1 0.3668 7.4649 9070
Rough surface 2 0.3668 7.4649 9070
Composite surface 0.5187 3.7325 18140

Equivalent single-rough
-surface

Rigid flat surface – – –
Equivalent rough surface 0.5295 3.7196 18392

Deviation – 2.09% 0.34% 1.39%

Table 4 Summary of surface parameters for the KE model and the GT model

Type Surface σ (μm) β (μm) η (mm−2)

GT model
Rough surface 1 0.3668 7.4649 9070
Rough surface 2 0.3668 7.4649 9070
Composite surface 0.5187 3.7325 18140

KE model
Rigid flat surface – – –

Equivalent rough surface 0.5187 3.7325 18140

Table 5 Rough surface modified separation

Type Δ (μm) Δall (μm)

Two-rough-surface contact 0.4412 0.8824
Single-rough-surface contact 0.6830 0.6830
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The specific analysis will be carried out in the next.
By comparing the prediction results of the GT model with

the deterministic results, it can be seen that the dimensionless
contact load of the GT model at the later contact stage are
obviously larger than that of the deterministic contact. It is
mainly because the plastic stage is not considered in the GT
model. As a comparison, the results of the KE model, in
which both the elastic and the plastic deformation have been
considered, are more consistent with the deterministic results
than that of the GT model. At the later stage, it is interesting
to notice that the dimensionless contact load value of the KE
model is smaller than that of the deterministic equivalent
single-rough-surface contact while greater than that of the
deterministic two-rough-surface contact. The KE model is

also based on the assumption of the equivalent single-rough-
surface contact. So, the critical parameters in the KE model
may be the reason why its dimensionless contact load is
smaller than that of the deterministic equivalent single-
rough-surface contact. It is well known that the critical
parameters in the KEmodel are derived based on the analysis
of single asperity. However, in actual contact, the radius and
height of each asperity are quite different. The higher aspe-
rities will come into contact earlier, while the lower aspe-
rities will come into contact later. Therefore, the critical
value given by the KE model based on statistics may be
inaccurate. Meanwhile, the predicted dimensionless contact
load of the KE model is greater than that of the deterministic
two-rough-surface contact. This phenomenon may because

Figure 19 (Color online) The rough surface contact (a) deterministic two-rough-surface contact, and (b) deterministic equivalent single-rough-surface
contact.

Figure 20 (Color online) Comparison of dimensionless contact load (a) and contact area ratio (b) versus dimensionless separation.
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that the effect of dislocation contact is not considered in the
KE model. Therefore, the dislocation coefficient should be
introduced into the KE model.
To make more comparisons between the deterministic

rough surface contact and the model-based methods, the
other two sets of rough surface contact in different σ, β, η
cases are also carried out. The surface parameters of the new
case A and case B are listed in Table 6. And the results are
shown in Figures 21 and 22. It can be seen that the new

deterministic results have the similar tendency with the
previous results shown in Figure 20. Although the KE model
considered the plastic stage, the results of the KE model are
still have some differences with results of the deterministic
rough surface contact.
And it is interesting to notice that, in the case A, as shown

in Figure 21(a), there exists a small mutation of the di-
mensionless contact load of the deterministic two-rough-
surface contact, when the dimensionless separation reduces

Table 6 Summary of surface parameters in case A and case B

Case Type Surface σ (μm) β (μm) η (mm−2)

Case A

Two-rough-surface contact
Rough surface 1 0.2986 9.4683 9238
Rough surface 2 0.2986 9.4683 9238
Composite surface 0.4223 4.7341 18476

Equivalent single-rough-surface
Rigid flat surface – – –

Equivalent rough surface 0.4217 4.7872 18087

Deviation – 0.15% 1.12% 2.10%

GT model
Rough surface 1 0.2986 9.4683 9238
Rough surface 2 0.2986 9.4683 9238
Composite surface 0.4223 4.7341 18476

KE model
Rigid flat surface – – –

Equivalent rough surface 0.4223 4.7341 18476

Case B

Two-rough-surface contact
Rough surface 1 0.4014 8.0691 8715
Rough surface 2 0.4014 8.0691 8715
Composite surface 0.5676 4.0346 17430

Equivalent single-rough-surface
Rigid flat surface – – –

Equivalent rough surface 0.5633 4.0120 17123

Deviation – 0.76% 0.56% 1.76%

GT model
Rough surface 1 0.4014 8.0691 8715
Rough surface 2 0.4014 8.0691 8715
Composite surface 0.5676 4.0346 17430

KE model
Rigid flat surface – – –

Equivalent rough surface 0.5676 4.0346 17430

Figure 21 (Color online) Deterministic analysis in case A. (a) Dimensionless contact load versus dimensionless separation; (b) contact area ratio versus
dimensionless separation.
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to 1. This phenomenon is corresponding to the deterministic
contact area ratio in Figure 21(b). As shown in Figure 21(b),
when the dimensionless separation reduces to 1, the contact
area ratio has a small mutation as well. It is hard for the
model-based methods to predict this kind of “special” si-
tuation because some information has been omitted.

5 Deterministic contact analysis

5.1 Deterministic two-rough-surface contact and de-
terministic equivalent single-rough-surface contact

Engineering contact is a two-rough-surface contact problem,
in which both the surfaces are rough. So the deterministic
two-rough-surface contact is theoretically more in line with
the actual situation. However, in traditional model-based
methods, the equivalent single-rough-surface contact is more
frequently used. Here the deterministic two-rough-surface
contact and the deterministic equivalent single-rough-sur-
face contact will be compared and analyzed. Considering
results of the deterministic rough surface contact at three
different cases have similar tendency, this section takes the
rough surface contact shown in Figure 19 as an example for
analysis.
It can be seen from Figure 20(a) that at the early stage of

contact, the dimensionless contact load of the deterministic
two-rough-surface contact is slightly higher than that of the
deterministic equivalent single-rough contact. It is similar for
the contact area ratio in Figure 20(b). This phenomenon can
be illustrated in Figure 23(a) and (b) where the equivalent
contact stress nephogram is given. At the later contact stage,
the dimensionless contact load of the deterministic two-
rough-surface contact is gradually smaller than that of the
deterministic equivalent single-rough-surface contact. As
shown in Figure 23(c)–(f), when the separation is reduced,
the contact area ratio of the equivalent single-rough-surface

is gradually larger than that of the two-rough-surface contact.
Meanwhile, the region with plastic deformation is larger in
the deterministic equivalent single-rough-surface contact
analysis.
The solid results of the bottom body of the two kinds of

deterministic rough surface contact at d/σe=0 are also given
in Figure 24.

5.2 Deterministic contact analysis between surfaces
with similar statistic parameters

In the classic model-based contact methods, some statistic
parameters such as η, β and σ are adopted to express the
rough surfaces. So the contact results for different pair of
rough surfaces with similar statistic parameters will be si-
milar. However, the roughness distribution is not considered
in the model-based methods. This may lead to different re-
sults in different contact cases even the statistic parameters
are similar. Here the deterministic two-rough-surface contact
will be used to check the effects of the roughness distribu-
tion. Besides, considering the practice engineering applica-
tions, the separation D based on the surface height is used in
this section.
Figure 25 shows the generated 3D rough surfaces with

similar roughness parameters, which are listed in Table 7.
However, the roughness distribution of different surfaces
will be quite different, because the surfaces are generated
randomly. For simplicity, the two same surfaces are used to
conduct the deterministic two-rough-surface contact analy-
sis.
Figure 26 shows the dimensionless contact load versus the

dimensionless separation after a deterministic two-rough-
surface contact analysis. There is little difference at the early
stage of contact. However, as the separation between two
surfaces decreases, the difference gradually increases. It can
also be seen in Figure 27, when the separation between the

Figure 22 (Color online) Deterministic analysis in case B. (a) Dimensionless contact load versus dimensionless separation; (b) contact area ratio versus
dimensionless separation.
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two rough surfaces becomes smaller, the contact regions and
equivalent stress distribution of each group are significantly
different. In this situation, the relationship between contact
load and separation of each group is more dependent on its
specific roughness distribution.

The relationship curve of the contact area ratio and the
dimensionless separation is shown in Figure 28, which has a
similar trend to the curve in Figure 26. At the early stage of
contact, there is a little difference. With the decrease of se-
paration, the difference in contact area ratio gradually in-

Figure 24 (Color online) Equivalent stress nephogram (GPa) of the bottom body. (a) Two-rough-surface at d/σe=0; (b) equivalent single-rough-surface at
d/σe=0.

Figure 23 (Color online) Equivalent stress nephogram (GPa) of deterministic contact. (a) Two-rough-surface at d/σe=2; (b) equivalent single-rough-surface
at d/σe=2; (c) two-rough-surface at d/σe=1; (d) equivalent single-rough-surface at d/σe=1; (e) two-rough-surface at d/σe=0; (f) equivalent single-rough-surface
at d/σe=0.
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creases, which also confirms that the roughness distribution
is significant in the contact analysis.

5.3 Deterministic contact analysis considering multi-
scale features

Most engineering surfaces have multi-scale features, in
which both the roughness and textures are included [40].

Therefore, the height distribution of the corresponding rough
surface with textures becomes non-Gaussian. By introducing
a dimple texture into the rough surface contact shown in
Figure 19, this paper considers the multi-scale rough surface
contact problem. The corresponding rough solids are shown
in Figure 29. The dimple texture is located in the center of the
bottom rough solid. The diameter of the dimple texture is
30 μm, and the depth is 3 μm. The detail size and location of
the dimple texture can be seen in Figure 6.
At first, the deterministic contact results of the two-rough-

surface are analyzed. As shown in Figure 30(a), after the
introduction of the texture, the relationship between the di-
mensionless contact load and the dimensionless separation
changes little at the initial contact stage. With the decrease of
separation, the dimensionless contact load of the surface with
texture is gradually smaller than that of the surface without
texture. As the separation between two rough surfaces de-
creases, the difference gradually increases. Figure 31 pre-
sents the equivalent stress nephogram of the two-rough-
surface contact. As shown in Figure 31(a), (c), and (e), the
equivalent stress in the central region, in which the dimple
texture is located, is large. Therefore, where the dimple
texture exists belongs to the primary contact region. After the
introduction of the texture, the central region is no longer in
contact. So, as shown in Figure 30(b), the contact area ratio
of the surface with texture decreases. The corresponding

Figure 25 (Color online) 3D rough surfaces with similar roughness parameters. (a) σ=0.5437 μm, β=2.6066 μm, η=19148 mm−2; (b) σ=0.5428 μm, β
=2.6077 μm, η=19400 mm−2; (c) σ=0.5428 μm, β=2.6060 μm, η=19148 mm−2.

Table 7 Summary of surface parameters for groups 1–3

Group σ (μm) β (μm) η (mm−2) Δσ (μm) Δβ (μm) Δη (mm−2)

1 0.5437 2.6066 19148 – – –
2 0.5428 2.6077 19400 0.02% 0.04% 2.73%
3 0.5428 2.6060 19148 0.02% 0.02% 0.00%

Figure 26 (Color online) Comparison of dimensionless contact load
versus dimensionless separation.
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dimensionless contact load also decreases for the reduction
of interference. As two rough surfaces get closer, the influ-
ence of the dimple texture gradually increases. Therefore, the

Figure 27 (Color online) Equivalent stress nephogram (GPa) of groups 1–3. (a) Group 1 at D/σ=3; (b) group 1 at D/σ=1; (c) group 2 at D/σ=3; (d) group 2
at D/σ=1; (e) group 3 at D/σ=3; (f) group 3 at D/σ=1.

Figure 28 (Color online) Comparison of contact area ratio versus di-
mensionless separation.

Figure 29 (Color online) 3D rough solids. (a) Two-rough-surface with
texture; (b) equivalent single-rough-surface with texture.
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difference between two-rough-surface without texture and
two-rough-surface with texture becomes more significant.
Then, the contact results of the equivalent single-rough-

surface are also analyzed. As shown in Figure 30(c), after the
introduction of texture, it is interesting to find that there is no
significant change. Figure 32 presents the equivalent stress
nephogram of the equivalent single-rough-surface. Com-
bined with the equivalent stress nephogram, it can be found
that the equivalent stress of the central region is small. By
comparing Figures 31 and 32, we can see that the texture is
not at the main contact region for the equivalent rough sur-
face contact. Therefore, after the introduction of the texture,
the change of the dimensionless contact load is not sig-
nificant. However, as shown in Figure 30(d), because the
existence of the texture, the contact area ratio of the textured
situation increased slightly compared with the non-texture
situation.
To sum up, the influence of texture on the contact of rough

surfaces is not simply the increase of mean contact pressure,
the decrease of contact area ratio or vice versa, but is related
to the specific distribution of multi-scale features. Therefore,
the prediction results of classic model-based methods such as
the GT model and KE model are even less applicable for the
multi-scale rough surfaces. In this case, the multi-scale de-
terministic contact model shows its significance and should
be introduced. Besides, this conclusion can be obtained by
differences between the two-rough-surface contact and the
equivalent single-rough-surface contact: two-rough-surface
contact cannot be equal to its equivalent single-rough-sur-
face contact when there exist textures.

6 Conclusion

Considering the distribution of multi-scale features, includ-
ing roughness and textures, this paper has conducted a de-

Figure 30 (Color online) (a) Comparison of dimensionless contact load versus dimensionless separation; (b) comparison of contact area ratio versus
dimensionless separation; (c) comparison of dimensionless contact load versus dimensionless separation; (d) comparison of contact area ratio versus
dimensionless separation.
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terministic analysis of the multi-scale 3D rough surfaces
contact problem. The results have been compared with those
of the classic GT model and KE model. The following
conclusions can be obtained.
(1) At the early stage of contact, the results of the classic

GT model and the KE model are very close to the determi-
nistic results. However, with the decrease of the separation
between two contact surfaces, the difference becomes very
big, although the KE model is more accurate than the GT
model for the former considers the plastic contact. So the
specific roughness distribution should be considered in the
contact calculation.
(2) Through the deterministic contact analysis, it can be

seen that the difference between the two-rough-surface
contact and the equivalent single-rough-surface contact is
significant, especially for the later contact stage. Considering
that the two-rough-surface contact is more consistent with
the actual situation theoretically, it is essential to use this
kind of contact analysis when dealing with practical en-
gineering problems.
(3) The distribution of multi-scale topographic features,

including the roughness distribution and the texture dis-
tribution, is significant for the contact analysis. The multi-
scale features will lead to very different results and should be
considered during the contact calculation of engineering
surfaces.

Figure 31 (Color online) Comparison of equivalent stress nephogram (GPa). (a) Two-rough-surface at d/σe=2; (b) two-rough-surface with texture at d/σe=2;
(c) two-rough-surface at d/σe=1; (d) two-rough-surface with texture at d/σe=1; (e) two-rough-surface at d/σe=0; (f) two -rough-surface with texture at d/σe=0.
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This paper mainly considers the influence of the multi-
scale topographic features of the surface and its distribution
on the contact calculation. In fact, if considering the prop-
erties of the surface materials, especially when considering
the surface physical adsorption membrane, the chemical re-
action membrane, the basic materials and their difference,
the contact situation will become more complicated. These
factors’ influences will be carried out in future studies.
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