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A periodically-poled LiNbO3 (PPLN) crystal features space-dependent second-order nonlinear coefficients, which is one of
the most important materials to effectively control nonlinear optical interactions through quasi-phase matching (QPM). By
using electric-field poling method, 1D and 2D PPLN crystals have been successfully fabricated for laser frequency con-
version, quantum light sources, nonlinear beam shaping and nonlinear optical imaging. Recently, femtosecond laser en-
gineering technique is utilized to prepare 3D domain structures inside LiNbO3 crystal, which provides a promising platform to
control nonlinear interacting waves in 3D configuration. After 40 years of developments, PPLN crystals still have exciting
prospects in fundamental researches and practical applications for integrated photonic chip, quantum information processing,
and so on.
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1 Introduction

In 1960, Maiman et al. [1] presented the first ruby laser,
which features high peak power, outstanding coherence and
monochromatic properties. Soon after that, Franken et al. [2]
injected a ruby laser into quartz samples. A blue spot ap-
peared and second-harmonic generation (SHG) was ob-
served, which opened the era of nonlinear optics. By use of
nonlinear optical frequency conversions, such as SHG, sum-
frequency generation (SFG), difference-frequency genera-
tion (DFG), optical parametric oscillation (OPO) and optical
parametric amplification (OPA), new laser sources that were
not previously available could now be obtained. However,
because of the dispersive nature of crystals, the phases of the
fundamental wave and the newly generated nonlinear wave

could not remain consistent during propagation, which re-
sults in a low conversion efficiency. To compensate the phase
mismatch, the birefringence phase matching (BPM) techni-
que was first proposed, in which the angular or temperature
dependence of the crystal birefringence is utilized to cancel
the phase mismatch. However, BPM is not suitable in several
popular nonlinear crystals including LiNbO3 crystal because
of small birefringence.
In 1962, the QPM theory was proposed [3,4], in which the

spatial modulation of χ(2) is used to satisfy the phase
matching condition. PPLN crystal is one of the most popular
crystals for QPM. Consider SHG in a one-dimensional (1D)
PPLN crystal as an example (Figure 1(a)). The reciprocal
lattice vector (RLV) is Gm=2πm/Λ with Λ being the poling
period. The QPM condition can be written as k G k2 + =1 m 2
(Figure 1 (b)). According to the Fourier transform, when the
duty cycle of the domain structure is 0.5, the intensity of the
corresponding RLV is 2/mπ. Clearly, the first-order RLV has
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the largest Fourier coefficient. In comparison with BPM,
QPM offers several unique advantages. First, the largest
nonlinear coefficient d33 can be used under QPM config-
uration. Second, QPM can be applied in many nonlinear
optical crystals that are not suitable for BPM. Third, the
spatial walk-off effect can be avoided with QPM technique.
The experimental breakthrough was made by Ming et al.

[5] and Feng et al. [6] in 1980, who successfully prepared
PPLN crystals with growth striation technique. Since then,
PPLN crystal (also called optical superlattice and nonlinear
photonic crystal) has been one important material in the field
of nonlinear and quantum optics. Now, the general way to
fabricate a PPLN crystal is the electric field poling (EFP)
method, in which the ferroelectric domains are selectively
inverted by applying an external electric field [7]. Re-
searches have also developed chemical indiffusion [8,9],
scanning force microscopic poling [10] and electron-beam
poling [11], which have been applied for specific circum-
stances such as PPLN waveguides, surface poling and short-
pitch poling. Especially, the recent advances in femtosecond
laser engineering method make it possible to fabricated 3D
domain structure inside a LiNbO3 crystal [12,13]. Its func-
tion has been significantly enlarged from laser frequency
conversion to nonlinear beam shaping, nonlinear imaging,
nonlinear holography and quantum sources.
In addition to the traditional QPM in Figure 1(b), novel

phase-matching configurations such as nonlinear Cerenkov
radiation, nonlinear Bragg diffraction and nonlinear Raman-

Nath diffraction are proposed and realized in PPLN crystals
(Figure 2(b)–(d)). In a Cerenkov-type SHG process, the
second-harmonic waves emit along an angle of θ (Figure 2
(b)). The phase matching condition satisfies |k2| · cosθ = 2|k1|
[14–22]. Cerenkov-type SHG can be enhanced by the do-
main walls in PPLN crystal [23, 24], which has been further
applied in 3D domain imaging [25,26]. In a PPLN wave-

Figure 1 (Color online) (a) SHG process in a PPLN crystal; (b) phase-matching diagram of QPM; (c) second harmonic (SH) intensities as functions of
propagation distance with (i) perfect phase-match, (ii) QPM, and (iii) no phase match.

Figure 2 (Color online) (a) Schematic diagram of Cerenkov-type SHG;
(b) phase-matching configuration of Cerenkov SHG; (c) phase-matching
configuration of nonlinear Bragg diffraction; (d) phase-matching config-
uration of nonlinear Raman-Nath diffraction. k1 is the fundamental wave
vector, k2 is the SH wave vector, mG0 is the RLVand Δk is the wave vector
mismatch.
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guide, QPM Cerenkov SHG, SFG and third-harmonic gen-
eration (THG) have been experimentally demonstrated
[27–29], in which the emit angle can be modulated by the
RLVs. Interestingly, scattering can involve in a QPM Cer-
enkov process and produce a SH arc pattern [30]. In the
nonlinear Raman-Nath diffraction, phase matching requires
|k2| · sinαm = m|G0| [31,32]. In nonlinear Bragg diffraction,
the phase matching condition is k2 = 2k1 + mG0 [33]. Gen-
erally, the intensity of Cerenkov SHG grows with interaction
distance because the longitudinal phase matching condition
is satisfied. In contrast, the SH signal in a nonlinear Raman-
Nath diffraction oscillates with the distance. Generally, in
comparison to Cerenkov-type and Raman-Nath-type SHG,
nonlinear Bragg configuration is more efficient since it sa-
tisfies both longitudinal and transverse phase matching
condition.
In this review, we briefly review the development of PPLN

fabrication techniques in Sect. 2. In Sect. 3, we focus on the
applications of 1D PPLN crystals in laser frequency con-
version and quantum sources. In Sect. 4, we discuss the
applications of 2D PPLN crystals in nonlinear beam shaping
and quantum light sources. In Sect. 5, we address nonlinear
optical imaging techniques of domain structures. And in
Sect. 6, we introduce the recent development of 3D domain
structure and its applications in nonlinear beam shaping.
Note that other popular periodically poled crystals such as
PPLT and PPKTP are also addressed because they work in a
similar way for QPM-based applications.

2 Fabrication techniques

2.1 Crystal growth and doping techniques

In the growth striation technique [6], the PPLN crystal is
fabricated using a Czochralski growth system. The melt is
properly doped to control the domain structure. The com-
monly used dopants include yttrium, indium and chromium.
The typical concentration is 0.1 wt.%−0.5 wt.%. The growth
striations are fabricated during the crystal growth process by

introducing temperature fluctuations between the solid-li-
quid interfaces or an alternating current [34]. The gradient of
the doping concentration is controlled to be negative (or
positive) to produce a positive (or negative) domain region
[35]. Island-like domain structure and non-uniform domain
width may appear during crystal growth, which can be
solved by carefully optimizing the experimental parameters
such as the current pulse duration. This technique has been
successfully applied to grow periodic structures in various
nonlinear crystals (including LiNbO3, LiTaO3 [36], barium
sodium niobate (BSN) [37], and triglycine sulfate (TGS)
[38]) and single-crystal fibers [39,40]. The growth striation
technique has unique advantage to produce PPLN crystals
with large cross-sections, which are very useful for fre-
quency conversion of high power laser.
Interestingly, it is convenient to dope certain laser active

ions during the crystal growth. For example, Nd3+ and Er3+

have been successfully doped in PPLN crystal [8,9], which
has potential applications in self-frequency-doubling laser.
In addition, chemical doping and ion exchange can realize
domain inversion in LiNbO3 crystals. In 1979, Miyazawa et
al. [41] found that in the 900°C–1100°C range, a LiNbO3

single crystal with a titanium (Ti)-doped +z plane formed a
domain reversal layer. In 1995, Zhu et al. [42] also confirmed
that the use of proton or ion exchange followed by heat
treatment could produce domain inversion on the +z plane of
LiNbO3 crystal. Because domain inversion caused by che-
mical doping and ion exchange only occurs within a few
micrometers of the surface of crystals [42], this technique
has been applied to fabricate optical waveguides with peri-
odic domain structures [43–46]. High efficiency SHG was
obtained in a periodically poled optical waveguide device
because of the tight beam confinement [47].

2.2 Electric field poling

Figure 3(a) shows a typical external EFP device. Generally, it
uses a patterned electrode on the crystal’s +z surface via
ultraviolet (UV) lithography and a planar electrode on the

Figure 3 (Color online) (a) Schematic setup for the EFP technique; (b) typical experimental setup for femtosecond laser direct writing technique.
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crystal’s −z surface. Avoltage that is higher than the coercive
field is applied to produce the domain reversal structure; in
this way, the electrode pattern determines the domain
structure directly. Using the EFP technique, periodic domain
structures have been successfully achieved in LiNbO3, Li-
TaO3 [48], potassium titanyl phosphate (KTiOPO4 ) [49,50]
crystals. In 1995, researchers used the EFP technique to
fabricate PPLN crystals with diameters of up to 3 inches
[51]. In 1999, a backswitching method was developed to
produce a PPLN crystal with a structure period of 4 μm for
the generation of 460 nm blue light [52]. Later, Busacca et al.
[53,54] used the intentional overpoling step to produce a
domain period of approximately 1 μm on the crystal surface.
Generally, the poling period ranges from a few microns to
30 μm and the crystal thickness is ~1 mm. To further im-
prove these parameters of PPLN crystal, one has to over-
come high coercive field and domain widening effect. The
coercive field of a MgO-doped LiNbO3 crystal is decreased
significantly in comparison with the non-doped one [55]
while its optical damage threshold is enhanced by two orders
of magnitude. The thickness of the produced MgO꞉PPLN
crystals reaches 5 mm in 2005 [56] and 10 mm in 2012 [57].
Meanwhile, the period of MgO꞉PPLN crystal has reached
1.4 μm by using a multi-pulse poling technique [57].
Currently, it is still difficult to achieve a PPLN crystal with

sub-micron domain structure. The main reason is that side-
ways growth occurs when the domains are reversed under the
surface electrodes [58,59]. Because the external electric field
is normally oriented in the z-direction, it is inconvenient to
electrically pole x- or y-cut crystals.

2.3 Electron and ion beam poling

In 1990s, researchers attempted to use an electron beam to
write on the surfaces of nonlinear crystals to form domain
reversal structures [11]. This technique uses a scanning
electron microscope (SEM) as the electron beam source; the
position of the electron beam was controlled to enable
writing of a specific pattern. The LiNbO3 crystal was
mounted on the SEM sample stage and a high-energy elec-
tron beam was focused on its −z plane. The penetration depth
generally extends to only a few micrometers, but the domain
inversion can be stably extended through the entire thickness
of the sample (typically ~1 mm). Mizuuchi et al. [60] re-
ported the ion beam exposure techniques in 1994. However,
electron beam and ion beam exposure techniques are not
widely applied because of their high costs and high demands
on the equipment.

2.4 Laser engineering techniques

The early laser engineering technique is UV light poling,
which uses the strong absorption of UV laser radiation to

heat up crystals locally to high temperatures. At the focus
point, the coercive field of the crystal drops significantly,
thus causing local domain inversion under extreme tem-
perature gradient conditions [61–63]. UV light poling is no
longer dependent on photolithography and high voltage
equipment, which provides process flexibility and accuracy
[61,64]. However, the domain structures can only be realized
in the very shallow surface region of the crystal (usually at a
depth of a few hundred nanometers), and it is easy to cause
crystal surface damage. In addition, light-mediated methods
for ferroelectric domain engineering, including light-assisted
poling and UV laser-induced inhibition of poling, have been
developed (see ref. [65] for an overview). In 2013, Thomas et
al. [66] used ultrashort pulses to reduce the nonlinear coef-
ficients of a x-cut LiNbO3 crystal periodically and 1D and 2D
QPM structures were obtained.
Until recently, laser writing technology was applied to

direct writing of 3D domain structures in ferroelectric crys-
tals. In 2018, Wei et al. [12] realized fabrication of the first
3D periodic domain structures in LiNbO3 crystal. Figure 3(b)
shows a typical setup of femtosecond laser direct writing
system. The principle is to selectively erase the nonlinear
coefficients χ(2) inside the LiNbO3 crystal. Meanwhile, Xu et
al. [13] used femtosecond laser writing technique to de-
monstrate a 3D periodically poled Ba0.77Ca0.23TiO3 (BCT)
crystal, which is based on ferroelectric domain inversion.
The realization of true 3D domain structures has always been
a major challenge in the past twenty years. The experimental
demonstrations [12,13] pave a way for studying new phe-
nomena and to control nonlinear interactions in ways that
were not accessible before.

3 Applications of 1D PPLN crystal

3.1 Laser frequency conversion

The reliable solid-state laser sources that are currently
available cover the wavelength range from 630 to 2000 nm.
However, the wavelengths that are required in the display,
color printing, medical, and biological fields are often out-
side this range, as in the case of the demand for blue and
green laser sources. The PPLN crystal based on QPM can
perform frequency conversion to obtain an efficient solid-
state laser source that covers the visible to UV range.
Early research on QPM-based solid-state lasers has fo-

cused on the generations of red (R), green (G), blue (B), and
UV lasers. A red laser source can be obtained directly from
infrared light via SHG or SFG configuration. Thompson et
al. [67] obtained a 780 nm laser that was multiplied from
1560 nm to achieve a red laser with a continuous wave (CW)
output of 900 mW. Chiow et al. [68] obtained a 43 W quasi-
continuous red laser output with total efficiency of 66% via
single-pass frequency doubling at 1560 nm. Hart et al. [69]
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and Boullet et al. [70] obtained a red laser output at 630 nm
using SFG of the 1060 and 1550 nm outputs from an
Er3+/Yb3+-co-doped fiber laser. In addition, Bosenberg et al.
[71] reported the use of PPLN with two periodic gratings in
series to achieve a 2.5 W 629 nm red laser based on a two-
step OPO and SFG process.
The common way to achieve a green laser output is

through SHG. In 1997, Miller et al. [72] obtained a green
CW light output of 2.7 W at 532 nm from a Nd꞉YAG laser
using frequency doubling in PPLN; the conversion effi-
ciency reached 42%. To provide further improvement of the
efficiency, Ricciardi et al. [73] placed the PPLN crystal into a
resonant cavity to achieve a conversion efficiency of up to
76% for their 6.1 W green light output.
Blue laser generation can be achieved by frequency dou-

bling or tripling of near-infrared light. In first-order QPM
materials, the challenge lies in the fabrication of small per-
iodic domain structures (typically with periods of less than
5 μm). Pruneri et al. [74] prepared a PPLN crystal with a
domain period of 4.6 μm and achieved 49 mW CWoutput of
a 473 nm blue laser. The conversion efficiency was 4.6%.
Batchko et al. [75] reported a 60 mW, 465 nm blue laser
output by use of a backswitch-poled PPLN with a 4 μm
period. Xu et al. [76] obtained a blue light output with a
20 nm tuning range using a 532 nm green-pumped OPO
cascaded with an SHG or SFG process.
The 589 nm yellow laser has a wide range of potential uses

in medical, communications, and display applications. There
are two main QPM ways to produce a yellow laser. The first
is based on frequency mixing of the two emission lines of
Nd꞉YAG laser at 1064 and 1319 nm. In this method, LiNbO3

[77], PPLN [78], periodically poled stoichiometric LiTaO3

(PPSLT) [79] or periodically poled KTP (PPKTP) [80]
crystals can be used and laser outputs of up to 16 W were
obtained experimentally. The second approach is to use

MgO꞉PPLN crystal to obtain a 589 nm narrow-linewidth
CW laser output of up to 3 W by frequency doubling of a
1179 nm Raman laser [81]. LiNbO3 [82,83], LiTaO3 [84–87],
and KTP [88–90] crystals can also be periodically poled to
produce UV light. However, their inherent band edges at
approximately 300 nm mean that the generated nonlinear
waves cannot be moved to shorter wavelengths.
In addition, the generation of multi-wavelength solid-state

lasers such as RGB three-elementary-color lasers has also
attracted widespread attentions. Yamamoto et al. [91] used
1.3 and 0.86 μm laser diodes (LDs) as fundamental sources
and generated 0.65 and 0.43 μm lights through SHG and
0.52 μm light through SFG in a proton exchange MgO꞉-
LiNbO3 waveguide. Cantelar et al. [92] produced a Zn-dif-
fused Er3+/Yb3+-co-doped aperiodically poled LiNbO3

channel waveguide to achieve a wideband-adjustable RGB
laser output. Capmany achieved a RGB laser via use of a
Nd3+-doped PPLN crystal that was pumped using a 1084 nm/
1372 nm dual-wavelength source [93].
In 1990, Feng et al. [94] proposed multiple-QPM theory,

which can satisfy the phase matching conditions of multiple
nonlinear processes simultaneously. In 1997, Zhu et al. [95]
experimentally demonstrated cascaded THG from a single
piece of quasi-periodic optical superlattice with Fibonacci
sequence as shown in Figure 4(a), where the THG efficiency
reached 23% (Figure 4(b)). In 2008, Hu et al. [96] used a
1064 nm/1319 nm working wavelength intermittent oscil-
lating dual-wavelength Nd꞉YAG laser to achieve 1 W quasi-
white-light output using a cascaded PPLT crystal; the pho-
tographic and schematic setup for quasi-white-light genera-
tion is shown in Figure 5(a) and (b). By changing the crystal
temperature, the output RGB laser power ratio can be
changed, allowing for the adjustment of the quasi-white-light
color temperature. Figure 5(c) shows the relationship curve
between RGB laser power and temperature. Another method

Figure 4 (Color online) (a) Quasi-periodic poled structure with a Fibonacci sequence; (b) QPM SHG and THG processes; (c) photograph of experimental
test. Adapted with permission from ref. [95].
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for RGB laser output implementation is based on frequency
down-conversion and cascaded multiple frequency-upcon-
version processes. In 2001, Liu et al. [97] used a LiTaO3

crystal with two periodic structures arranged in tandem to
obtain an RGB laser output. The incident 532 nm green light
was converted into 631 nm red light by frequency down-
conversion. The 460 nm blue light was generated from the
remaining green light and the mid-infrared (IR) idler of the
former parametric process. Xu et al. [98] and Zhao et al. [99]
demonstrated a noncollinear RGB laser source based on a 2D
optical superlattice. The RGB laser light generated by the
noncollinear reciprocal vectors was separated automatically
without any requirement for optical splitting elements. Fur-
thermore, PPLN crystals with 2D domain structures have
also been employed for simultaneous laser Q-switching and
optical parametric oscillation [100].
Following the development of QPM technology, new light

sources have broadened the available spectral range fromUV
to mid-IR. QPM all-solid-state laser technology is now
widely used in the modern laser industry.

3.2 Quantum sources

QPM technology has opened up a new path for quantum
optics research [101]. Entangled two-photon sources are
significant elements for testing of Bell inequality [102,103],
quantum information [104], ghost imaging [105,106] and
high-precision measurement applications [107]. Using
spontaneous parametric down-conversion (SPDC), bipho-
tons can be generated from second-order nonlinear crystals
with entanglements in energy-time [108], polarization [109],
and spatial modes [110]. Additionally, heralded single-pho-
ton sources [111] and multi-photon entanglement [112] can
be generated by SPDC for quantum computing and quantum
network applications. In previous experiments, type-Ⅱ
noncollinear BPM in a nonlinear crystal was used to obtain

polarization-entangled photons, with only a small portion of
the emitted photons being collected [109]. To enhance the
efficiency of these polarization-entangled photons [113],
QPM in PPLN or PPKTP crystals is used to realize collinear
phase matching, which can be applied in the cavity config-
uration to obtain high-brightness narrowband outputs
[114,115]. Such configuration is also the main approach for
the generation of high-quality squeezed state, which has
widespread applications in quantum sensing and tracking
[116–118]. Periodically poled crystals were used to produce
sources at telecommunication wavelengths for squeezed
state generation [119], optical parametric amplification
[120], quantum teleportation [121], quantum key distribution
[122], and quantum memory [114,123].
In addition, dual-periodically poled crystals are designed

to yield polarization-entangled photon pairs, where two types
of collinear reciprocal vectors take part in the SPDC process
[124–126]. In 2011, Gong et al. [124] offered a scheme for
the generation of counter-propagating polarization-entangled
photon states from a dual-periodically poled crystal. Ueno et
al. [125] demonstrated a scheme for generating polarization-
entangled photon pairs with type-ⅡQPM-SPDC having two
poled domain periods. Furthermore, aperiodically poled
nonlinear crystals also supply multiple reciprocal vectors to
satisfy multiple SPDC processes concurrently, leading to
generation of broadband biphotons [127,128], which are
promising for applications in clock synchronization [129],
quantum metrology [130] and quantum optical coherence
tomography [131]. In 2008, Nasr et al. [128] generated ultra-
broadband biphotons (300 nm bandwidth) via chirped QPM
optical parametric down-conversion in PPSLT crystal.
For high-performance quantum information processing,

tremendous efforts have been made in integrated photonic
circuits [132–135]. In 2014, Jin et al. [132] realized gen-
eration and manipulation of entangled photons over the tel-
ecommunication band on integrated LiNbO3 waveguide

Figure 5 (Color online) (a) Photograph of the RGB quasi-white-light laser; (b) schematic setup for quasi-white-light generation; (c) temperature curves of
the measured RGB lasers. Adapted with permission from ref. [96].
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circuits. Using an annealed proton exchange process, wa-
veguides were integrated on the PPLN, thus enabling both
propagation and interference. Visibility of 92.9%±0.9% was
obtained in Hong-Ou-Mandel interference and ~1.4×107

pairs nm−1 mW−1 photon flux was achieved. The experi-
mental schematics are shown in Figure 6. Krapick et al. [134]
abtained time-correlated photon triplets via a pulsed cas-
caded parametric down-conversion process in an integrated
LiNbO3 chip. In 2018, Atzeni et al. [135] obtained polar-
ization entanglement photons using a chip composed of
hybrid materials with femtosecond-laser-written technology,
for which the visibility exceeded 92%.

4 Applications of 2D PPLN crystal

4.1 Nonlinear beam shaping

One important application of 2D PPLN crystal is nonlinear
beam shaping based on various QPM configurations. In refs.
[136–138], nonlinear beam shaping has been well over-
viewed. Here, we briefly introduce several classic examples.
Xu et al. [139] proposed a scattering-assisted QPM me-
chanism for nonlinear shaping of conical beams. Figure 7(b)
illustrates the reciprocal vector of the hexagonally poled
PPLT structure shown in Figure 7(a). When the fundamental
wavelength is gradually detuned from the traditional phase
matching point toward a longer wavelength, the far field SH
pattern gradually changes from a point into a ring, and the
radius of the ring expands continuously (Figure 7(c) and (d)).
This phenomenon is caused by a new mechanism in which
the fundamental scattered light participates in the phase
matching process (Figure 7(e) and (f)). This novel QPM
mechanism offers new possibilities for engineering of non-
linear interactions, and it can also be used to disclose the
internal information of the PPLN structure. Recently, such
scattering-assisted configuration has been extended to con-

ical THG [140].
Allen et al. [141] proposed that the vortex beam’s spiral

wave-front is the root of orbital angular momentum (OAM)
in 1992. Generally, the vortex beam including Laguerre-
Gaussian (LG) beam and Bessel beam has a phase singu-
larity, which forms a ring-shaped profile with a dark center.
The spiral wave-front can be described using exp(ilφ), where
l is the topological charge. These novel characteristics have
been applied in optical tweezers [142–145], optical com-
munications [146,147], rotation measurement [148] and
quantum information processing [149]. It has been ex-
tensively studied to use spatial light modulators, fork grat-
ings, meta-surface devices, and cylindrical lenses to produce
vortex beams. 2D PPLN crystals provide a compact way to
produce vortex beams at new frequencies, which have at-
tracted increasing research interests. Shapira et al. [150] used
holographic theory to design the binary modulation function
of the nonlinear coefficient to realize two-dimensional non-
linear beam shaping, which was given as follows [151]:

{ }[ ]
d x y

d f x x y q x y

( , )

= sign cos 2 ( , ) cos[ ( , )] , (1)ij

NLO

carrier

where dij is the element of quadratic susceptibility
(2) ten-

sor, x y( , ) is the phase of the target light field after Fourier
transformation, the amplitude A x y( , ) is given by

q x y A x ysin[ ( , )] = ( , ), fcarrier is the carrier frequency that
determines the diffraction angle. The first-order SH dif-
fraction is the desired light field. The fundamental beam
propagates along the z-axis. Because the electrical poling
technique is limited to the x-y plane, only the transverse
phase matching condition can be satisfied in 2D nonlinear
beam shaping process. Figure 8(a) shows a typical experi-
mental scheme, in which the target SH light field is generated
by the nonlinear Raman-Nath process on first-order dif-
fraction. The nonlinear crystal is irradiated with a Gaussian

Figure 6 (Color online) (a) Schematics of integrated LiNbO3 waveguide circuits; (b) detailed structure of the chip; (c) photograph of the chip. Adapted with
permission from ref. [132].
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mode fundamental wave, and an SH vortex beam and an SH
Hermitian-Gaussian (HG) beam are generated, as shown in
Figure 8(b) and (c), respectively.
In 2012, Bloch et al. [152] studied nonlinear vortex beam

generation in a fork-grating poled LiTaO3 crystal that carried
a topological charge lc. As shown in Figure 9(a), the Gaus-
sian mode fundamental wave passes through the nonlinear
crystal and an SH vortex beam with a topological charge of
±mlc can be obtained at the ±m orders of diffraction, re-
spectively. When fundamental wave carries a non-zero OAM
as shown in Figure 9(b), the law of OAM conversion during
frequency doubling satisfies [153]:

l l m l= 2 + , (2)m c2 ,

where l2 and l are the topological charges of the SH and
fundamental wave, respectively.
Diffraction is a general phenomenon in light propagation,

but one type of beam can maintain non-spreading properties

over a certain distance, which is called a diffraction-free
beam. The Airy beam is a typical diffraction-free beam,
which can be described using the Airy function [154]. The
Airy beam has self-healing and self-acceleration features. In
linear experiments, Gaussian beams are modulated using a
cubic phase and are then Fourier transformed to obtain Airy
beams [155]. In PPLN crystals, the wave front of the second
harmonic can also be controlled continuously by properly
designing the domain structure. In 2009, Ellenbogen et al.
[156] designed a 2D nonlinear modulation pattern shaped
like an “S” to realize nonlinear generation and manipulation
of Airy beams. The second-order nonlinear coefficient
modulation function is given as follows:

( )x y d f x f y( , ) = sign cos 2 + . (3)ij x c
(2) 3

The generated SH wave is then subjected to a lens Fourier
transform, allowing a 1D SH Airy beam to be obtained at the
back focal plane. Interestingly, dynamic control of the SH

Figure 7 (Color online) (a) Structure of hexagonal domain structure; (b) the reciprocal vectors; (c), (d) the measured patterns and angles as a function of SH
wavelength for a single ring and a pair of rings, respectively; (e), (f) the phase matching mechanisms. Adapted with permission from ref. [139].
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Airy beam can be realized by adjusting either the tempera-
ture or the fundamental wavelength.

4.2 Quantum light sources in 2D PPLN crystal

In SPDC, a 1D PPLN crystal can provide collinear RLVs for
generation of two-photon states. The collinear and non-col-
linear RLVs in 2D PPLN crystals provide a potential way to
manipulate the spatial mode of a two-photon state such as
spatial entanglement and path-entangled states in infinite
dimensional Hilbert space. Spatial mode entanglement can

be used to increase the efficiency of quantum communica-
tions [157] and quantum imaging [158]. Multi-path en-
tanglement also plays an important role in quantum
lithography [159] and quantum precision measurement [107]
applications. In 2004, Torres et al. [157] proposed QPM
engineering for the spatial control of entangled photons. In
2008, Yu et al. [160] fabricated a multi-stripe periodically
poled structure and modulated the spatial correlation of the
two-photon state using SPDC (Figure 10). The far-field
diffraction interference revealed the transverse modulation
of the domain patterns as shown in Figure 11. In 2011, Leng

Figure 8 (Color online) (a) Schematic of 2D nonlinear beam shaping process; (b) experimentally generated SH LG beam pattern; (c) experimentally
generated SHG beam pattern. Adapted with permission from ref. [150].

Figure 9 (Color online) (a) Various SH vortex beams are generated through nonlinear Raman-Nath diffraction; (b) OAM of the diffracted vortex beams are
conserved in the linear and nonlinear processes. Adapted with permission from ref. [152].
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et al. [161] steered a spatially entangled two-photon state in a
PPLT crystal with a parabolic phase profile. When changing
the position of the pump light, the role of PPLT crystal is to
focus or dual-focus the entangled photon pairs. The quantum
Talbot effect was also observed from a domain-engineered
nonlinear crystals [162].
The path-entangled state can be transformed into a hyper-

entangled state [163,164] and a cluster state [165]. However,
the general ways to obtain the path-entangled state are not
integrated and are not sufficiently stable [166]. The 2D
PPLN crystal supplies a good solution. When the pump light
passes through a 2D PPLN crystal, multiple RLVs take part

in SPDC for the generation of the multipath-entangled state.
In 2013, Megidish et al. [167] produced a beam-like path-
entangled state in a rectangular lattice domain-engineered
structure, in which two entangled photons propagated colli-
nearly along either one of two paths. Additionally, Jin et al.
[168] fabricated a hexagonally poled PPLTcrystal to obtain a
beam-like path-entangled state and a heralded single-photon
path-entangled state by modifying the crystal temperature
(Figure 12).
Furthermore, many schemes with 2D PPLN crystals were

proposed for more complex quantum engineering applica-
tions [169–173], e.g., the polarization-entangled state [170],
the multipath Dicke state [169], and manipulation of the
OAM of entangled two-photon states [171,172]. These ef-
forts paved a desirable way for miniaturization of quantum
technologies.

5 Nonlinear optical imaging of domain struc-
tures

Techniques for observation of the domain structure in peri-
odically-poled crystals are generally divided into electron
microscopy and optical imaging technology approaches.
Electron microscopy techniques mainly include SEM
[174,175] and transmission electron microscopy (TEM)
[176]. Use of linear optical imaging requires the crystal itself
to have a refractive index change, which is generally difficult
for the domain structure in a periodically-poled crystal with
its uniform refractive index. Therefore, it is often necessary
to corrode and destroy the crystal to change the relevant
properties near the domain wall [177]. Nonlinear optical
imaging takes advantage of the nonlinear effects from the
domain structure to detect nonlinear signals directly and thus
obtain the domain structure images. SHG is one of the most
widely used methods.

Figure 10 (Color online) (a) Schematic of the multistripe PPLT crystal;
(b) the structure image; (c) experimental setup. Adapted with permission
from ref. [160].

Figure 11 (Color online) Coincidence counts and single counts versus the
position of detector D1. (a) Detector D2 was fixed; (b) both D1 and D2 were
scanned; (c) single counts measured when the sample mask was illuminated
by the pump light. The solid red curves denote theoretical fitting. Adapted
with permission from ref. [160].

Figure 12 (Color online) (a) Image of the hexagonally poled LiNbO3
crystal; (b) the reciprocal vectors; (c), (d) phase matching configurations
for single-photon and two-photon path entanglements, respectively.
Adapted with permission from ref. [168].
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The nonlinear Talbot self-imaging effect is an interesting
phenomenon and has been used in the nonlinear domain
imaging field. In 1836, Talbot [178] discovered for the first
time that the diffraction intensity distribution from a peri-
odically structured object is similar to the structure itself at a
specific position; this lensless self-imaging effect is called
the Talbot effect. Zhang et al. [179] extended the Talbot
effect to the nonlinear optics field and reported the first ex-
perimental observation of nonlinear Talbot effect in 2010.
For an artificially periodically poled nonlinear crystal, the
SH generated by the crystal is also a periodically distributed
light field. According to the Talbot effect, SH self-imaging
should be observed at a specific position relative to the
crystal, and the light intensity of the SH indicates the dis-
tribution of the domain structure. As shown in Figure 13(a),
by adjusting the objective lens position to obtain the light
field distributions at the different imaging planes, the ex-
periments test the 1D and 2D domain structures. For 1D case
(Figure 13(b)), the SH Talbot distance is zT=4a

2/λp , where a
is the structure period and p is the fundamental wavelength.
The SH images obtained on the first and third Talbot planes
are shown in Figure 13(c) and (d), respectively, where the SH
field reproduces the domain structure very well. For the 2D
hexagonal domain structure (Figure 13(e)), the SH Talbot
distance is zT=3a

2/λp . Figure 13(f) and (g) shows the first and
third Talbot plane images, respectively, which is consistent
with the domain structure distribution.
Cerenkov SHG is generally used for nonperiodic domain

structure imaging; the fundamental wave is focused on the
structure, the SH signal is detected, and the domain structure
distribution imaging is performed by point-by-point scan-
ning [26]. This method is capable to observe 3D domain
structures [12,13,180,181]. Recently, Lu et al. [182] pro-
posed a novel imaging method that used the nearly diffrac-
tion-free SH dark fringes generated at the domain wall to
image the irregularly distributed domain structure without
scanning. As shown in Figure 14(a), the domain polarization
directions on the two sides of the wall are opposite, which
indicates a π phase difference in the SH waves, and the in-
terference then forms a dark line. After theoretical deriva-
tion, the relationship between the line width and the
propagation distance of the dark line is found to bew z
(Figure 14(a)). Figure 14(b) shows the experimental results
obtained from a disordered domain structure.

6 Applications of 3D domain structures

6.1 3D nonlinear beam shaping

In 2018, Wei et al. [12] and Xu et al. [13] used femtosecond
laser direct writing technology to realize preparation of 3D
domain structures based on different processing mechan-
isms. This was the first time that 3D nonlinear coefficient
modulation was experimentally realized. The 3D domain
structure can provide abundant reciprocal vectors in 3D
space to satisfy the full QPM conditions in the nonlinear

Figure 13 (Color online) (a) Schematic of experimental setup; (b), (e) 1D and 2D domain structure; (c), (f) SH self-images at the first Talbot plane; (d), (g)
SH self-images at the third Talbot plane. Adapted with permission from ref. [179].
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process and realize efficient modulation of the frequency,
amplitude and phase of the light. It thus shows exciting po-
tential for integrated control of nonlinear waves. Take non-
linear beam shaping as an example. In comparison to 2D
nonlinear beam shaping, 3D case can achieve higher non-
linear beam shaping efficiency and multiple beam wave-
front processing.
In 2019, Wei et al. [180] experimentally realized efficient

nonlinear beam shaping in 3D-engineered LiNbO3 crystal.
2D nonlinear beam shaping is generally realized via non-
linear Raman-Nath process, in which the conversion effi-
ciency is limited by the longitudinal phase mismatch. In 3D
case, the transvers and longitudinal phase matching condi-
tions can be satisfied simultaneously to enhance the non-
linear beam shaping efficiency. Based on binary holographic
theory and the QPM conditions, they designed the nonlinear
coefficient modulation function of the 3D structure as fol-
lows:

} ( )
{ [ ]f x y z T G x E

E T G y

( , , ) = cos arg( )

cos sin amp( ) × cos . (4)

x

y

2

1
2

In eq. (4), E2ω is the desired light field. As shown in Figure
15, the 3D nonlinear structure provides an additional re-
ciprocal vector Gy along the propagation direction so that the
QPM condition is completely satisfied and the SH beam
shaping efficiency is enhanced. Besides, the phase matching
condition can be altered by varying the fundamental wave-
length and selecting a specific diffraction order to be
brightened.
Liu et al. [181] used a tightly focused femtosecond laser to

form a thermoelectric field at the focal point in a crystal, thus
inducing locally poled domain structure in BCT crystals. In
the experiment, they fabricate multilayer 2D structures at

different depths. As shown in Figure 16(a) and (b), when
compared with the 2D nonlinear beam shaping, the additional
dimension in the depth direction allows multiple beam wave-
front generations. Figure 16(c)–(e) shows schematics of three
structures. The fork gratings with different angles in
Figure 16(c) generated far-field SH vortex beams at ±1st order
diffraction in three directions as shown in Figure 16(f); the
structure in Figure 16(d) includes a concentric ring, a common
grating and a fork grating at different depths, and the SH
distribution is the superposition of the far-field diffraction
patterns of these three structures as shown in Figure 16(g).

6.2 Potential applications of 3D domain structures

Besides 3D nonlinear beam shaping, 3D domain structures
have potential applications in nonlinear multiplexing, cas-
caded nonlinear optical processes, THz sources, and quan-
tum optics [183]. In comparison to 1D and 2D structures, 3D
domain structures naturally have higher information capa-
cities, which can be effectively utilized in information cod-
ing, high-quality nonlinear holography, and so on. The 3D
RLVs make it possible to control multiple nonlinear optical
processes simultaneously in 3D space, which is not acces-
sible before. In quantum state engineering, a 3D structure
provides an integrated platform for steering of the spatial
degree of freedom of the entangled two-photon states. For
example, 3D domain structures can increase the di-
mensionality and quantity of path-entangled states simulta-
neously. The experimental demonstrations are ongoing.

7 Conclusion

In 1980, the first PPLN crystal was fabricated by crystal

Figure 14 (Color online) (a) Simulated SH images and line width for single domain wall; (b) experimental SH images acquired at different distances from
the crystal. Adapted with permission from ref. [182].
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growth method, which opens the door to investigate QPM in
experiment. 40 years later, PPLN crystal has been extended
from 1D to 2D and 3D, and its applications have been de-
veloped from frequency conversion to nonlinear beam
shaping, quantum entangled source, and integrated photonic
circuits. PPLN crystal is still an active topic and the related
researches are prospective.
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