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Initial-dependent extreme multi-stability and offset-boosted coexisting attractors have been significantly concerned recently.
This paper constructs a novel five-dimensional (5-D) two-memristor-based dynamical system by introducing two memristors
with cosine memductance into a three-dimensional (3-D) linear autonomous dissipative system. Through theoretical analyses
and numerical plots, the memristor initial-boosted coexisting plane bifurcations are found and the memristor initial-dependent
extreme multi-stability is revealed in such a two-memristor-based dynamical system with plane equilibrium. Furthermore, a
dimensionality reduction model with the determined equilibrium is established via an integral transformation method, upon
which the memristor initial-dependent extreme multi-stability is reconstituted theoretically and expounded numerically. Finally,
physically circuit-implemented PSIM (power simulation) simulations are carried out to validate the plane offset-boosted co-
existing behaviors.
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1 Introduction

Due to the nonlinearity, plasticity, and non-volatile memory
[1], numerous memristor-based chaotic oscillating circuits
and neuromorphic computing circuits have been broadly
developed in the past few years. Generally regarded as
nonlinear components, memristors can be conveniently in-
troduced into various pre-existing oscillation circuits to
trigger chaotic oscillations. Some specific dynamical beha-
viors, such as self-exited hyperchaotic oscillations [2–4],
hidden chaotic or hyperchaotic oscillations [5,6], coexisting
multiple attractors [7,8], infinitely many coexisting attractors
[9–11], transient hyperchaotic oscillations [12,13], and
chaotic and periodic bursting oscillations [14,15], were dis-

closed by theoretical analyses, numerical simulations, and/or
hardware experiments. Interestingly enough, memristors can
be utilized to mimic neural synapses in biological neurons
[16–18] and to characterize the effects of electromagnetic
induction/radiation [19–22]. By employing the pinched
hysteresis loops, power-off plot, and dynamic route map,
Rajamani et al. [23] validated the calcium and potassium ion-
channels in Morris-Lecar neuron model of the third-order
barnacle muscle fiber as generic and volatile memristors.
Based on the presented memristor crossbar-based neuro-
morphic computing system, Hu et al. [24] investigated the
recall and training functions of the character recognition
process with multi-answer. By utilizing the voltage-con-
trolled memristor model, Ntinas et al. [25] developed a di-
gitally circuit-implemented memristor emulator for
synthesizing memristor-based oscillation circuits and de-
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ploying synapse functions in artificial neural networks. In
brief, memristors with the synaptic plasticity and non-vola-
tile memory are increasingly becoming the promising can-
didates for neuromorphic computing circuits [26–31].
With the small size and low power consumption, mem-

ristor-based chaotic oscillating circuits and neuromorphic
computing circuits have widely potential application pro-
spects [10,32]. Careful dynamical analyses of these mem-
ristor-based application circuits exhibit that the memristor
initials do play an especially important role in complex dy-
namics of these circuits [33,34]. Usually, ideal memristor-
based oscillating circuits are extremely easy to generate in-
finitely many coexisting attractors, resulting in the emer-
gence of initial-dependent extreme multi-stability [35–37].
The phenomenon of initial-dependent extreme multi-stabi-
lity relates to the ideal memristor-based oscillating circuits
owning infinitely many line or plane equilibrium points
[4,10–12], no equilibrium point [38], or switchable no and
line equilibrium point [39]. Therefore, an effective approach
to generate infinitely many coexisting attractors is to in-
troduce one, two, or more ideal memristors into some pre-
existing circuits and systems. In contrast, another useful
approach to generate infinitely many initial-offset boosted
attractors is to introduce periodic trigonometric functions in
some specific offset-boostable chaotic systems [40–44].
Offset boosting associates with a variable transformation that
shifts any of the variables in a dynamical system such that its
phase space attractor does not alter the system solutions [40].
If the periods for all the periodic trigonometric functions are
the same, any phase space attractor will be infinitely copied
by periodic offset boosting [42]. In both approaches, the
attractor offset-boosted behaviors are achieved by changing
the initials. However, the ideal memristor-based oscillating
circuits generally possess complete bifurcation routes with
the initial evolutions [10], which allow more attractor types
to be coined in these circuits.
Motivated by these two approaches, this paper presents a

novel five-dimensional (5-D) two-memristor-based dyna-
mical system, which is yielded by introducing two memris-
tors with cosine memductance into a three-dimensional (3-
D) linear system. Although the presented two-memristor-
based dynamical system has the forms of periodic trigono-
metric functions, the nonlinear terms are the product of the
cosine functions and the state variables, in which these co-
sine functions can be regarded as two alterable system
parameters controlled by other state variables. As expected,
the memristor initial-dependent bifurcation boosting beha-
viors and infinite plane offset-boosted coexisting attractors
are uncovered in such a two-memristor-based dynamical
system. In fact, combining the two approaches can be a very
effective way to implement the initial offset-boosted coex-
isting plane bifurcations with more complex extreme multi-
stability, which has not yet clarified previously.

2 Two-memristor-based system with plane
equilibrium

Memristor is a nonlinear electronic component. A novel
memristor with cosine memductance is considered firstly,
which is described as
i W v v

v
= ( ) = cos( ) ,

= ,
(1)M M M

M

where vM and iM represent the input voltage and output cur-
rent, respectively. Thus, the memductance can be expressed
by
W ( ) = cos( ). (2)
The cosine memductance is periodically multi-valued,

which is different from the quadratic double-valued mem-
ductance utilized in [2,3,12] and threshold single-valued
memductance reported in [21,39]. As a sinusoidal stimulus is
applied, the presented memristor exhibits the property of
pinched hysteresis loops by numerical and circuit simula-
tions.
By introducing two nonlinear memristors described in eq.

(1) into a 3-D linear autonomous dissipative system, a novel
5-D two-memristor-based dynamical system is easily con-
structed, which is modeled by
x y z k v y
y x z
z x z k u x
u x
v y

= + cos( ) ,
= + ,
= + cos( ) ,
= ,
= ,

(3)

where the control parameter k is a positive constant. In this
study, the unique parameter is kept unchanged as k=3.
Obviously, the two-memristor-based dynamical system

owns a plane equilibrium, which is expressed as
S x y z u v x y z u µ v= {( , , , , ) = = = 0, = , = }, (4)

where μ and η are two alterable constants.
The Jacobian matrix JO for the 5-D system (eq. (3)) at the

plane equilibrium S is derived as

k

k µJ =

0 1 cos( ) 1 0 0
1 0 1 0 0

1 + cos( ) 0 1 0 0
1 0 0 0 0
0 1 0 0 0

. (5)O

Thus, the characteristic polynomial equation is yielded as

P a a a( ) = ( + + + ) = 0, (6)O
2 3

1
2

2 3

where
a = 1,1

a k µ k= 2 cos( ) cos( ),2

a k µ k= [2 cos( )][1 cos( )].3

The eq. (6) illustrates that Jacobian matrix JO has two zero
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roots and three non-zero roots. For the three non-zero roots,
Routh-Hurwitz conditions are given by
a a a a a> 0,  > 0,  and > 0. (7)1 3 1 2 3

If the conditions of eq. (7) are satisfied, S is stable, leading
to the existence of point attractor. In contrast, if any one of
the conditions of eq. (7) is not satisfied, S is unstable, re-
sulting in that unstable behaviors may be generated in the
two-memristor-based system.
With the conditions of eq. (7), when both the memristor

initials μ and η are increased from −π to π in the primary area
(−π, π), different stability distributions for the three non-zero
roots are colored in the μ–η initial plane, as shown in Figure
1, where USP, USF, and SNF represent unstable saddle point,
unstable saddle-focus, and stable node-focus, respectively.
Note that 0P3N means three negative real parts with no
positive real part in the three non-zero roots, and 1P2N and
2P1N imply one and two positive real parts in the three non-
zero roots. For some initials μ and η located in different
colored regions, the three non-zero roots are solved from eq.
(6) and the corresponding stability types can be thereby
obtained, which are summarized in Table 1. Hence, complex
stability distributions can be observed in the μ–η initial
plane, which demonstrates that abundant dynamical beha-
viors are closely dependent on the two memristor initials.

3 Coexisting plane bifurcations boosted by
memristor initials

Of particular concern is that the two-memristor-based dy-
namical system can emerge coexisting plane bifurcations
through offset boosting the memristor initials. The unique
control parameter is kept unchanged as k=3 and the initials
are set as (x(0), y(0), z(0), u(0), v(0))=(10−9, 0, 0, μ, η).

3.1 Mechanism analysis of coexisting plane bifurca-
tions

By integrating the last two equations of the two-memristor-

based dynamical system given in eq. (3) from –∞ to τ, there
yields:

u x x x

v y y y

= ( )d = ( )d + ( )d ,

= ( )d = ( )d + ( )d .
(8)

0

0
0

0

Define

µ u x

v y

= (0) = ( )d ,

= (0) = ( )d ,
(9)

0

0

as the initials of two memristor inner state variables. Putting
eq. (9) into eq. (8), these two expressions in eq. (8) are
simplified as

u µ x

v y

= + ( )d ,

= + ( )d .
(10)0

0

Substituting eq. (10) into eq. (3) and eliminating the
nonrelevant last two equations of eq. (3), the two-memristor-
based dynamical system can be then rewritten as

x y z k y y

y x z

z x z k µ x x

= + cos[ + ( )d ] ,

= + ,

= + cos[ + ( )d ] .

(11)
0

0

Thus, the two memristor initials μ and η can be explicitly
expressed in eq. (11).
For two natural numbers m and n, denote

µ µ m
n

= ± 2 ,
= ± 2 , (12)0

0

where μ0 and η0 are two compensation initials that allow two

Figure 1 Stability distributions of three non-zero roots in the μ–η initial
plane with k=3, where different colored regions have different stability
types.

Table 1 Non-zero roots, colored regions and stability types for different
initials in (−π, π)

μ, η Non-zero roots Colored regions Stability types

0, 0 1.0000, 0.7321,
−2.7321 Purple USP (2P1N)

0, ±1.5 1.0000, −0.5393,
−1.4607 Cyan USP (1P2N)

0, ±2.5 1.0000, −1.0000
±j1.5503 Brown USF (1P2N)

±1, 0 1.3524, −0.2691,
−2.0833 Cyan USP (1P2N)

±1, ±1.5 0.0481±j0.5197,
−1.0963 Orange USF (2P1N)

±1, ±2.5 −0.2452±j1.5724,
−0.5094 Green SNF (0P3N)

±2, 0 1.5486, −1.2743
±j1.6036 Brown USF (1P2N)

±2, ±1.5 −0.0628±j1.7095,
−0.8745 Green SNF (0P3N)

±2, ±2.5 0.3231±j2.5713,
−1.6463 Orange USF (2P1N)
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following relations be satisfied as

µ x

y

< + ( )d < ,

< + ( )d < . (13)

0 0

0 0

So that we have

µ x µ x

y y

cos[ + ( )d ] = cos[ + ( )d ],

cos[ + ( )d ] = cos[ + ( )d ].
(14)0 0 0

0 0 0

The above results exhibit the cyclic repetition of cosine
memductance given in eq. (2).
The system model described by the mathematical equa-

tions of eq. (11) is cyclic about the two memristor initials μ
and η. The cyclic characteristic can be derived from the in-
variance of the model (eq. (11)) when substituting the con-
versions in eq. (12) into eq. (11). It turns out that the
bifurcation behaviors of the two-memristor-based dynamical
system are cyclically varied with the periodic evolutions of
the two memristor initials μ and η, so that the memristor
initial regions in the μ–η plane can be divided into m×n
bifurcation distribution windows that each has width 2π and
height 2π. Therefore, the two-memristor-based system de-
scribed by eq. (3) is a plane bifurcation-boostable system
induced by the two memristor initials in the μ–η initial plane.

3.2 Coexisting plane bifurcations by numerical plots

Based on fourth-order Runge-Kutta algorithm, the time-step

0.01 and time-interval [550, 600] are employed. Firstly, the
memristor initial η is set as 2π, 0, and −2π, respectively, and
the memristor initial μ is varied in the region [−3π, 3π]. The
bifurcation diagrams of the maxima vmax of the state variable
v are together simulated, as shown in Figure 2(a), where the
dark green, black and magenta colored trajectories corre-
spond to η=2π, 0 and −2π, respectively. Secondly, the
memristor initial μ is arranged as 3π, π, and −π, respectively,
and the memristor initial η is adjusted in the region [−3π, 3π].
The bifurcation diagrams of the maxima umax of the state
variable u are together simulated, as shown in Figure 2(b),
where the blue, brown and red colored trajectories relate to
3π, π, and −π, respectively.
Corresponding to the bifurcation diagrams in Figure 2, the

first four Lyapunov exponents (LEs) are numerically drawn,
as shown in Figure 3, from which it can be seen that the
dynamics depicted by the LEs are exactly the same as those
described by the bifurcation diagrams. Remark that there are
always two zero LEs with the variations of the memristor
initials μ and η, which are caused by the introduction of two
memristors.
Observed from Figures 2 and 3, chaotic, periodic, and

point behaviors with forward/reverse period-doubling bi-
furcation routes and crisis scenarios along with anti-
monotonicity can be found, which just reflect the emergence
of extreme multi-stability, i.e., the coexistence of infinitely
many attractors. In particular, coexisting plane bifurcations
with the identical bifurcation structure are boosted in the two

Figure 2 Initial-dependent bifurcation boosting behaviors along the v coordinate and u coordinate with the variations of the memristor initials μ and η,
where x(0)=10−9, y(0)=0, and z(0)=0. (a) For three different values of η, bifurcation diagrams as μ varies in [−3π, 3π]; (b) for three different values of μ,
bifurcation diagrams as η varies in [−3π, 3π].

Figure 3 First four LEs corresponding to the bifurcation diagrams in Figure 2. (a) For η=0, LEs as μ varies in [−3π, 3π]; (b) for μ=π, LEs as η varies in
[−3π, 3π].
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dimension of u×v owning a width or height 2π cycle by the
periodically varied memristor initials in such a two-mem-
ristor-based system, which are distinguished from those of
the reported boosting behaviors in [40–44].
As shown in Figure 4, the memristor initial-offset boosting

behaviors in the two dimension of u×v in system (3) can be
depicted by phase plots in the u–v plane, where seven kinds
of memristor initial offset-boosted coexisting attractors are
disclosed. Thus, the coexisting disconnected attractors with
different attractor types (such as chaos, period, and point),
different attractor structures (such as double-scroll, single-
scroll, large size, small size), different periodicities (such as
period-1, period-2, period-4), and different positions (such as
left, right, up, down) are included in Figure 4. Particularly,

when m and n tend to infinite, infinitely many coexisting
attractors, i.e., extreme multi-stability, are emerged in the
two-memristor-based system.
The attraction basin is the initial plane region of an at-

tractor, in which any initial point will be iterated into the
attractor. Here the two memristor initials are treated two
invariant measures for classification of dynamical behaviors
[45,46]. Through examining the periodicities of the state
variable y, 2-D attraction basin in the μ–η initial plane is
plotted for the two-memristor-based system with k=3, as
shown in Figure 5(a). The colored attracting regions re-
present the memristor initial regions that trigger the motion
trajectories with different periodicities. In other words, the
red marked with CH stands for chaos, the yellow marked

Figure 4 Memristor initial offset-boosted coexisting attractors distributed in the u−v plane, where (m, n=0, ±1). (a) Double-scroll chaotic attractors under
(μ, η)=(π+2mπ, 2nπ); (b) single-scroll chaotic attractors under (μ, η)=(0.2+2mπ, 2nπ) and points under (μ, η)=(1+2mπ, π+2nπ); (c) large size period-2 limit
cycles under (μ, η)=(−0.8+2mπ, 2nπ) and small size period-2 limit cycles under (μ, η)=(−1.8+2mπ, 2nπ); (d) chaotic spiral attractors under (μ, η)=(π+2mπ,
1.98+2nπ) and period-1 limit cycles under (μ, η)=(π+2mπ, 1+2nπ). Here black for (m, n)=(0, 0), blue for (m, n)=(0, 1), green for (m, n)=(0, −1), purple for (m,
n)=(1, 1), orange for (m, n)=(1, 0), magenta for (m, n)=(1, −1), red for (m, n)=(−1, 1), cyan for (m, n)=(−1, 0), brown for (m, n)=(−1, −1).

Figure 5 2-D dynamical behaviors in the μ−η initial plane. (a) Memristor initial attraction basin through examining the periodicities of the state variable y;
(b) spectral entropy-based complexity for the time series of the state variable y.
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with P0 denotes point, and the other colors marked with P1–
P6 represent limit cycles with period-1 to period-6. Thus,
abundantly memristor initial-dependent dynamical behaviors
with the plane cyclic characteristic can be uncovered by the
2-D attraction basin in Figure 5(a).
To further confirm the complex dynamical behaviors

triggered by the memristor initials, the complexity dis-
tributed in the μ–η initial plane for the two-memristor-based
system can be calculated and drawn in Figure 5(b), where the
complexity values using the rods are obtained by calculating
the spectral entropy of the time series of the state variable y
based on the Fourier transform [39,47]. The irregularly
chaotic time series possesses a relatively large complexity
value, whereas the regularly periodic time series owns a
relatively small complexity value. Hence, the complexity
distributions in Figure 5(b) can reflect the dynamical beha-
viors closely relying on the memristor initials, similar to
those demonstrated in Figure 5(a).
The numerical plots given in Figure 5 effectively validate

the plane cyclic characteristic for the two memristor initials μ
and η. In each of the cyclic areas, a variety of disconnected
attractors can be intuitively exhibited in Figure 5, including
chaotic attractors with different topologies, limit cycles with
different periodicities, and stable points with different posi-
tions. Therefore, the phenomenon of memristor initial-
dependent extreme multi-stability, i.e., the coexistence of
infinitely many disconnected attractors, is demonstrated in
the two-memristor-based system.

4 Extreme multi-stability reconstitution via in-
tegral transformation

An integral transformation method [11,34] can be applied to
derive the dimensionality reduction model of system (3). By
doing so, all the system initials are converted into the initial-
related parameters in an explicit form. Thus, the memristor
initial-motivated extreme multi-stability in the original sys-
tem is reconstituted by the initial parameter-associated dy-
namics of the dimensionality reduction model.

4.1 Dimensionality reduction model with determined
equilibrium

To employ the integral transformation method in [11,34],
five new state variables X, Y, Z, U, and V for representing the
incremental integral transformation of the original state
variables x, y, z, u, and v are defined as

X x Y y

Z z U u

V v

( ) = ( )d ,  ( ) = ( )d , 

( ) = ( )d , ( ) = ( )d ,

( ) = ( )d , (15)

0 0

0 0

0

and the five system initials are denoted as
c x c y c z µ u v= (0),  = (0),  = (0),  = (0),  = (0), (16)1 2 3

where μ and η are two alterable constants.
By integrating the equations of eq. (3) from 0 to τ and

considering the definitions of eq. (15), one has:

x x Y Z k v y

y y X Z

z z X Z k u x

u u X
v v Y

(0) = + cos[ ( )] ( )d ,

(0) = + ,

(0) = + cos[ ( )] ( )d ,

(0) = ,
(0) = .

(17)

0

0

Based on the last two equations of eq. (3), there exists the
relations du(τ)=x(τ)dτ and dv(τ)=y(τ)dτ, so that the integral
terms in eq. (17) are formulated as

u x u u

u u
X µ µ

cos[ ( )] ( )d = cos[ ( )]d ( )

= sin[ ( )] sin[ (0)]
= sin( + ) sin( ), (18a)

0 0

v y v v

v v
Y

cos[ ( )] ( )d = cos[ ( )]d ( )

= sin[ ( )] sin[ (0)]
= sin( + ) sin( ). (18b)

0 0

Meanwhile, according to the definitions of eq. (15), the
original state variables can be expressed by the reconstituted
state variables as

x X y Y z Z

u U v V

( ) = d ( )
d ,  ( ) = d ( )

d ,  ( ) = d ( )
d ,

( ) = d ( )
d ,  ( ) = d ( )

d .
(19)

Substituting eqs. (16), (18) and (19) into eq. (17), a
mathematical model with the reconstituted state variables
and five initial-related parameters are derived as

X Y Z k Y k c
Y X Z c
Z X Z k X µ k µ c
U X µ
V Y

= + sin( + ) + sin( ) + ,
= + + ,
= + sin( + ) sin( ) + ,
= + ,
= + .

(20)

1

2

3

Since the last two equations of eq. (20) have nothing to do
with the first three equations, the model eq. (20) can be
simplified by

X Y Z k Y k c
Y X Z c
Z X Z k X µ k µ c

= + sin( + ) + sin( ) + ,
= + + ,
= + sin( + ) sin( ) + ,

(21)
1

2

3

where the explicitly appearing parameters c1, c2, c3, μ, and η
stand for the initials of the original system (3).
The newly reconstituted model (21) is a 3-D dimension-

ality reduction system with the initial-related parameters in
an explicit form, which can be employed for quantitatively
exploring the initial-dependent dynamics of the two-
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memristor-based system. Consequently, the extreme multi-
stability disclosed in system (3) can be reconstituted by the
initial parameter-associated dynamics in the dimensionality
reduction model (21). Note that the model initials of (21) are
ensured to be set as X(0)=Y(0)=Z(0)=0.
The equilibrium of the model (21) is determined by solving

the following equations:
Y Z k Y k c

X Z c
X Z k X µ k µ c

0 = + sin( + ) + sin( ) + ,
0 = + + ,
0 = + sin( + ) sin( ) + ,

(22)
1

2

3

which can be expressed as
( )E c= ,  , . (23)1 2 1 2

The ξ1 and ξ2 are the solutions of the following transcen-
dental functions:
F k µ k µ c c( ) = 2 sin( + ) + sin( ) = 0, (24)1 1 1 1 2 3

and
F k k c c( ) = + sin( + ) + sin( ) + = 0, (25)2 2 1 2 2 1 2

respectively. The two functions imply that the determined
equilibrium (23) depends on the five initial-related para-
meters c1, c2, c3, μ, and η in eq. (16). Thus, the plane equi-
librium S in eq. (4) can be converted into the determined
equilibrium E in eq. (23).
The Jacobian matrix JD for the dimensionality reduction

model (21) at the determined equilibrium E is given as
k

k µ
J =

0 1 cos( + ) 1
1 0 1

1 + cos( + ) 0 1
. (26)D

2

1

So that the characteristic polynomial equation is derived as
P b b b( ) = + + + = 0, (27)D

3
1

2
2 3

where
b = 1,1

b k µ k= 2 cos( + ) cos( + ),2 1 2

a k µ k= [2 cos( )][1 cos( )].3

Denote the three non-memristor initial-related parameters
(c1, c2, c3) as (0, 0, 0). The equilibrium of the model (21) can
be numerically solved as E=(0, 0, 0). Thus, the characteristic
polynomial equation given in eq. (27) is exactly the same as
those of three non-zero roots in the bracket of eq. (6), re-
sulting in the identical stability distributions in the μ–η plane.
However, since the determined equilibrium E changes with
the three non-memristor initial-related parameters, the sta-
bility distributions in the μ–η plane will also change.

4.2 Initial parameter-associated extreme multi-stability

Similarly, the fourth-order Runge-Kutta algorithm with the
time-step and time-interval used in Figure 2 are utilized for
numerically exploring the reconstituted model (21). When
the initial-related parameter η is set as 0 and μ is varied in the
region [−3π, 3π], the bifurcation diagram of the maxima Ymax

of the state variable Y and the first two LEs are plotted, as
shown in Figure 6(a). In the same way, when the initial-
related parameter μ is set as π and η is varied in the region
[−3π, 3π], the bifurcation diagram of the maxima Xmax of the
state variable X and the first two LEs are plotted, as shown in
Figure 6(b). The numerical results in Figure 6 do well match
with those in Figures 2 and 3, which manifest that the model
(21) is suitable and feasible to reconstitute the memristor
initial-motivated extreme multi-stability in the original sys-
tem. However, the bifurcation boosting behaviors along the u
coordinate and v coordinate no longer exist in the recon-
stituted model (21) due to the elimination of the original state
variables u and v via integral transformation.
The three non-memristor initial-related parameters are set

as (c1, c2, c3)=(10
−9, 0, 0). When both the two memristor

initial-related parameter μ and η are continuously altered in
the region [−3π, 3π], 2-D bifurcation diagram and dynamical
map in the μ–η plane are shown in Figure 7(a) and (b),
respectively. The 2-D bifurcation diagram in Figure 7(a) is
depicted by the periodicities of the state variable Y, similar to
that used in Figure 5(a). In contrast, the 2-D dynamical map
in Figure 7(b) is depicted by the values of the largest LE with
the coded colors [46], in which the yellow-red-white stands
for positive values (chaos), the dark-yellow for zero (period),
and the black for negative values (point). Therefore, the 2-D
dynamical map in Figure 7(b) is a useful supplement to
dynamical descriptions of the 2-D bifurcation diagram in
Figure 7(a). It is observed that both complex dynamical
behaviors depicted by the 2-D bifurcation diagram and dy-
namical map are mutually consistent, which well confirms
the 2-D dynamical behaviors given in Figure 5(a), indicating
the reconstitution of extreme multi-stability for the two-
memristor-based dynamical system.
Furthermore, the three non-memristor initial-related

parameters (c1, c2, c3) are set as (1, 0, 0) and (0, 1, 0), re-
spectively. When both the two memristor initial-related
parameters μ and η are continuously altered in the region
[−3π, 3π], the 2-D bifurcation diagrams in the μ–η plane are
shown in Figure 8. Comparing Figure 8 with Figure 7(a), the
stable point regions shrink distinctly, the period-1 region
enlarges apparently, and the other regions vary slightly. As a
result, the non-memristor initial-related parameters (c1, c2,
c3) have a great impact on dynamical behaviors of the re-
constituted model (21) due to the variations of the de-
termined equilibrium and its stabilities, but the cyclically and
symmetrically dynamical behaviors can be observed in the
μ–η initial plane as well.

5 Physically circuit-implemented PSIM simu-
lations

By employing operation amplifier, multiplier, capacitor,
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resistor, and trigonometric function converter, an analog
circuit for implementing the two-memristor-based system
described by eq. (3) can be designed [46,48–51]. Because the
memristor initials, i.e., the initial capacitor voltages, are
hardly set in hardware experiments [46,52], memristor initial
plane offset-boosted coexisting attractors are confirmed by
PSIM (power simulation) simulations.
Figure 9(a) displays an electronic emulator module for

implementing the memristor with cosine memductance,
which contains integrator U1 (time constant τ0=RC), trigo-
nometric function converter U2, multiplier U3, and output
resistor Rk. Note that the voltage output of U2 is cos(vφ) when

choosing AD639AD as the trigonometric function converter
in the physical circuit. According to the circuit schematic, the
memristor emulator can be modeled as
i g v v R
RC v t v

= cos( ) / ,
d / d = ,

(28)M M k

M

where vφ denotes the output voltage of integrator U1, and g
stands for the gain of multiplier U3.
With the designed memristor emulator module, Figure 9(b)

exhibits the implementation circuit of the two-memristor-
based system, which only involves three integrators and
three inverters. Thus, the circuit equations of the im-

Figure 7 2-D initial-related parameter bifurcation diagram and dynamical map in the μ−η plane with (c1, c2, c3)=(10
−9, 0, 0). (a) Bifurcation diagram

depicted by the periodicities of the state variable Y; (b) dynamical map depicted by the values of the largest LE.

Figure 8 2-D initial-related parameter bifurcation diagrams depicted by the periodicities of the state variable Y in the μ−η plane with (a) (c1, c2, c3)=(1, 0, 0)
and (b) (c1, c2, c3)=(0, 1, 0), demonstrating dynamical effects of the non-memristor initial-related parameters on the extreme multi-stability.

Figure 6 Numerical plots of the bifurcation diagrams and first two LEs for different bifurcation parameters. (a) For η=0, the initial-related parameter μ
varying in [−3π, 3π]; (b) for μ=π, the initial-related parameter η varying in [−3π, 3π].
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plementation circuit shown in Figure 9 are modeled as
v t v v gR v v R
v t v v
v t v v gR v v R
v t v
v t v

d / d = + cos( ) / ,
d / d = + ,
d / d = + cos( ) / ,
d / d = ,
d / d = ,

(29)

x y z v y k

y x z

z x z u x k

u x

v y

0

0

0

0

0

where vx, vy, vz, vu, and vv are the five circuit variables, τ0=RC
is the time constant of the five integrators, and g is the
multiplier gain. Setting τ0=RC=15 kΩ×33 nF=495 μs and
g=1, the unique circuit parameter in Figure 9 is determined as
Rk=5 kΩ.
Corresponding to the phase plots in Figure 4, PSIM si-

mulated memristor initial offset-boosted coexisting attrac-
tors distributed in the vu–vv plane are obtained, as shown in
Figure 10. Due to the calculation errors in MATLAB nu-
merical simulations and PSIM circuit simulations, the two
memristor initials used in Figure 10 are partially different
from those used in Figure 4 and period-1 limit cycles in
Figure 10(d) have larger size than those in Figure 4(d). But
the circuit simulated results figure out that the plane offset-
boosted coexisting behaviors can be captured from the
physical circuit of the two-memristor-based system as well.

Figure 9 Circuit implementation for the two-memristor-based system. (a)
Memristor emulator module; (b) analog electronic circuit.

Figure 10 PSIM simulated memristor initial offset-boosted coexisting attractors distributed in the vu−vv plane, where (m, n=0, ±1). (a) Double-scroll chaotic
attractors under (μ, η)=(π+2mπ, 2nπ); (b) single-scroll chaotic attractors under (μ, η)=(0.2+2mπ, 2nπ) and points under (μ, η)=(1+2mπ, −π+2nπ); (c) large size
period-2 limit cycles under (μ, η)=(−0.8+2mπ, 2nπ) and small size period-2 limit cycles under (μ, η)=(−1.8+2mπ, 2+2nπ); (d) chaotic spiral attractors under
(μ, η)=(π+2mπ, −1.98+2nπ) and period-1 limit cycles under (μ, η)=(π+2mπ, 1+2nπ). The colors coded for (m, n) represent the different values used in
Figure 4.
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6 Conclusions

By introducing two ideal memristors with cosine memduc-
tance into a 3-D linear autonomous system, this paper pre-
sented a novel 5-D two-memristor-based dynamical system.
Thus, the two-memristor-based system was achieved by
combining the two approaches to the memristor initial-
motivated and periodic offset-boosted infinitely many co-
existing attractors, which have been significantly concerned
in plenty of research achievements recently. With the pre-
sented two-memristor-based dynamical system, the plane
equilibrium and complex stability distributions in the initial
plane were investigated. In the meantime, the mechanism
analysis of coexisting plane bifurcations was performed,
which demonstrated that the presented dynamical system
was a plane bifurcation-boostable system induced by the two
memristor initials. By means of numerical simulations, the
memristor initial-boosted coexisting plane bifurcations were
found and the memristor initial-dependent extreme multi-
stability was revealed. Moreover, by using an integral
transformation method, a 3-D dimensionality reduction
model with the determined equilibrium was established, with
which the memristor initial-dependent extreme multi-stabi-
lity was reconstituted theoretically and expounded numeri-
cally. At last, physically circuit-implemented PSIM
simulations were carried out to validate the plane offset-
boosted coexisting behaviors. Therefore, the theoretical and
numerical results prove that the initial offset-boosted coex-
isting plane bifurcations in the two-memristor-based system
lead to the emergence of more complex extreme multi-sta-
bility, which could gain broad interest for its potential chaos-
based applications by supplying more flexibility [53,54].
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