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Pore scale variables (e.g., porosity, grain size) are important indexes to predict the hydraulic properties of porous geomaterials.
X-ray images from ten types of intact sandstones and another type of sandstone samples subjected to triaxial compression are
used to investigate the permeability and fracture characteristics. A novel double threshold segmentation algorithm is proposed to
segment cracks, pores and grains, and pore scale variables are defined and extracted from these X-ray CT images to study the
geometric characteristics of microstructures of porous geomaterials. Moreover, novel relations among these pore scale variables
for permeability prediction are established, and the evolution process of cracks is investigated. The results indicate that the pore-
scale permeability is prominently improved by cracks. In addition, excellent agreements are found between the measured and the
estimated pore scale variables and permeability. The established correlations can be employed to effectively identify the
hydraulic properties of porous geomaterials.
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1 Introduction

The permeability is one of the most important factors that
involves in the oil-gas resources exploration [1,2], storage
and isolation of carbon dioxide [3,4] and safety problem of
engineering practices [5–7]. In recent decades, various
methods are applied to investigate the permeability. Darcy
law as the most basic permeability estimation method is
widely used. However, it may lead to inevitable errors
caused by viscous fingering and high injection rates in the
tests [8,9]. Moreover, the core analysis of geomaterials is
extensively applied, in which the permeability can be di-
rectly obtained [10,11]. However, it is limited to the data

absence of entire intervals and vertical plugs collection.
Considering these problems, artificial intelligence models
based on computer intelligence are introduced to estimate the
permeability such as neural network [12], fuzzy logic [13]
and genetic algorithm [14]. Unfortunately, despite of their
great contributions to parameter prediction and wide appli-
cation, most of these models are time consuming and trapped
in the local minima problem, which is limited to the datasets
of samples, learning algorithms and network topologies of
the computing models.
In addition, various numerical models are constructed to

evaluate the permeability by pore scale variables (e.g., por-
osity, grain size) [15–18], and the permeability is also ex-
tremely affected by crack types and crack propagation
mechanism in geomaterials [19–22]. In fact, pore scale
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variables in geomaterials are extremely affected by geolo-
gical process during rock formation [23–25]. Understanding
these variables is helpful to evaluate the hydraulic and me-
chanical properties of porous geomaterials [26,27]. Jobmann
and Billaux [28] proposed an interesting correlation to pre-
dict the permeability by porosity and pore radius in opalinus
clay. Zheng et al. [29] presented a permeability relation by
porosity and effective stress of sedimentary rock based on
Two-parts Hooke’s model (TPHM). Ingraham et al. [30]
discussed the permeability evolution based on the constant
mean stress and shear stress in high porosity sandstone re-
servoirs. Alyafei and Blunt [31] provided novel procedures
to obtain the imbibition constant to calculate imbibition re-
lative permeability and capillary pressure from mass im-
bibition dataset. To date, with the development of X-ray CT
imaging technologies, we can get more insights to the pore
and grain structures of geomaterails [32,33]. Latief et al. [34]
quantitatively described the 3D pore geometry reconstructed
by 3D pigeon hole, and defined the porosity, pore radius and
specific surface. Du et al. [35] proposed a novel volumetric
coupled heat transfer model of solar receiver at pore-scale to
study the fluid flow and heat transfer in volumetric solar
based on the X-ray computed tomography technique. Sun
and Wong [36] gained a permeability relation of sandstone
using hybrid lattice Boltzmann simulation on X-ray CT
images. Zhao and Zhou [37] proposed an integrated method
to reconstruct the 3D pore-scale models based on 2D X-ray
CT images, and to predict the permeability. Yang et al. [38]
studied the effects of varying pore scale variables, non-even
distribution of hydrates and fluid flow directions on the ab-
solute and relative permeability based on the X-ray CT
imaging techniques.
However, although the previous studies have offered fine

relations for permeability estimation, these permeability
correlations are concluded by only either porosity or grain
size with no consideration of their comprehensive effect on
permeability. Moreover, with the improvement of X-ray non-
destructive testing, there should be a simpler correlation for
the permeability estimation based on pore scale variables. In
addition, the effect of cracks on the pore-scale permeability
is not yet well understood. Therefore, the main purposes are
to evaluate the pore scale variables and to establish effective
relation of permeability with simple implementations. In this
paper, X-ray CT imaging techniques are applied to capture
the microstructure information of sandstone samples. The
double threshold segmentation method is proposed to accu-
rately segment the cracks, pores and grains. Moreover, the
pore scale variables are defined by the proposed double
threshold segmentation algorithm. Furthermore, the novel
correlations for permeability estimation among these pore
variables are established. In addition, the crack effect on the
pore-scale permeability is studied. Compared with the pre-
vious works, the main advantages of this works are (1) the

accurate segmentation of cracks-pores structures with similar
gray levels by the proposed double threshold segmentation
algorithm; (2) quantitative study of the fracturing behaviors
by the defined pore-scale variables; (3) novel specific surface
relation of porosity and grain size; (4) the simple im-
plementation to rapidly calculate the pore-scale permeability
by the proposed novel relation based on pore scale variables.
This paper is organized as follows. Sect. 2 describes the

samples and methods for pore scale variables extraction, and
establishes the novel correlations and validation models of
specific surfaces for permeability estimation. Sect. 3 shows
the fracture characteristics and hydraulic properties eval-
uated by the established correlations, and simple summaries
and conclusions are drawn in Sect. 4.

2 Specimen description and methodologies

2.1 Specimen description

In this study, 11 types of sandstone specimens [39] labeled
by S1–S11 are used to investigate the fracturing and hy-
draulic properties by extracting the pore scale variables from
X-ray CT images. The helium porosity and air average per-
meability are measured by the AP608 automated Permea-
meter-Porosimeter. Moreover, to investigate the fracture
characteristics, sandstone S11 is scanned before and after the
triaxial compression tests. The detailed basic parameters of
these types of sandstone specimens are listed in Table 1.

2.2 Methodology

Determining the hydraulic and fracturing behaviors of por-
ous geomaterials is a challengeable task due to its complex
pore structures. The main issue to obtain the values of pore
scale variables is to extract reliable and available information
from X-ray CT images using the image processing algo-
rithm. The recognition of pores and cracks is crucial to in-
vestigate the fracturing behaviors and to study the
permeability of geomaterials. In this paper, a double
threshold segmentation algorithm is proposed to obtain ac-
curate segmentation results of pores and cracks in sand-
stones. Moreover, the pore scale variables are extracted from
the X-ray CT images using this proposed algorithm. Once the
pore scale variables are determined, the relations among
these variables can be established. Thus, the permeability
and fracturing behaviors can be studied.

2.2.1 Segmentation of pores and cracks
Pores and cracks are the primary structural components in
geomaterials. Therefore, the segmentation of pores and
cracks are crucial to identify the fracture behaviors and hy-
draulic properties. Common segmentation algorithms are
limited to the gray level differences between pores and
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cracks, which can not be directly applied to the segmentation
of grains, pores and cracks. In these cases, the common
segmentation algorithm of pores and grains is replaced by the
proposed double threshold segmentation algorithm of cracks,
pores and grains. Different from the classical segmentation
algorithm, two optimal threshold values are defined to seg-
ment cracks, pores and grains. In brief, this proposed ap-
proach is depicted as follows.
The relative frequency statistics of gray intensity values in

an arbitrary N N× X-ray CT image are first calculated by
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0 to 255, respectively.
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→T1] and Fs2[T1→max( f )]. The variances of these two
classes are separately computed by
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where ℑ is the count function of f, χ1
C and χ2

C are respec-
tively the variances for crack segmentation between Fs1 and
Fs2, and Fs1(i) and Fs2(i) are respectively the gray intensity
of the ith pixel.
Thus, the optimal threshold to segment the crack can be

determined by

( )T T T T f f= max ( ) ( ) , [min( ), max( )], (4)C
C C
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where ℘ denotes the searching function of the maximum of
absolute difference between χ1

C and χ2
C.

Once the crack segmentation threshold value is de-
termined, cracks can be segmented and excluded in the pore
segmentation procedure. During the pore segmentation, the
gray intensity values in crack regions are replaced by Nan,

which are not utilized in the searching procedure of the op-
timal pore segmentation threshold.
Similar to the crack segmentation procedure, an arbitrary

threshold value T2 is selected to scan the rebuilt relative
frequency statistics Fs excluding the crack region. Ob-
viously, the renewed frequency statistics Fs is divided into
two parts Fs1∅Nan[min( f )→T2] and Fs2∅Nan[T2→max(f)]
in the same way as the crack segmentation procedure. Thus,
the variances of the two parts can be computed by
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(6)
where Fs1∅Nan and Fs2∅Nan respectively denote the re-
newed gray intensity dataset without crack region in the left
and right classes, Fs1∅Nan(i) and Fs2∅Nan(i) are respec-
tively the gray intensity in the ith pixel, p

1 and p
2 are

respectively the variances for pore segmentation between
Fs1∅Nan and Fs2∅Nan.
Then, the optimal pore segmentation can be determined by

( )T T T T f f= max ( ) ( ) , [min( ), max( )]. (7)P
P P
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2.2.2 Representation of crack, pores and grains
Generally, after the optimal crack and pore segmentation
threshold values are determined, the cracks, pores and grains
can be segmented by

f
f T

f T T
f T

=
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1, [ , 255]; for grains,

(8)
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where fb is the binary value of each gray intensity value.

Table 1 Parameters of selected sandstone specimensa)

Types S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

Resolution (μm/pixel) 5.35 8.68 4.96 9.1 8.96 4 5.1 4.8 4.89 3.4 8.01

Pixel-scale 3002 3002 3002 3002 3002 3002 3002 3002 3002 3002 3002

Slices 300 300 300 300 300 300 300 300 300 300 100

G (kN/m3) 23.25 23.28 22.97 23.35 22.88 23.12 23.15 22.89 23.11 23.15 22.89

φ 0.188 0.141 0.238 0.152 0.158 0.218 0.238 0.245 0.351 0.223 0.163

κ (mD) 279 332 550 223 251 517 594 767 706 364 172

a) G-unit weight, κ-permeability
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In fact, to represent the segmented X-ray CT image in-
tuitively, the binary values in crack region are also replaced
by 0 during the visualization process of the segmented im-
age. Finally, the segmented image is represented as a binary
image. Crack and pores are represented by black (0), and
grains are represented by white (1).
Usually, the gray intensity values of structural components

of sandstones are defined by its density. The lower the
density, the blacker the pixel and the lower the gray intensity.
Thus, the cracks, pores and grains can be segmented well
using the proposed double threshold segmentation algorithm.
Figure 1 shows the diagrams to obtain the segmented pores,
cracks and grains image. Figure 1(a) shows the pore seg-
mentation of the X-ray CT image from an intact sandstone
sample by eqs. (2)–(4) and (8). Figure 1(b) displays the
segmentation of crack, pores and grains by eqs. (5)–(8). The
segmentation threshold values are 118.9 for pores in the in-
tact samples, 50.6 and 123.6 for crack and pores in damaged
samples, respectively. Based on these threshold values, the
microscopic crack, pores and grains networks are de-
termined. Figure 2 shows the sketch maps of original images,
binary pore-grain images and color images from sandstone
specimens S4, S9 and S10, respectively. In the binary ima-
ges, the pores are black and grains are whites. Moreover, the
pores in the color images of samples are represented in dif-
ferent colors to distinguish different pores with different pore
size, as shown in Figure 2(c). In addition, the grains can also
be represented in different colors in the same way of color
pores representation. The color representations of pores and
grains are applied to calculate the pore and grain size later.

2.3 Extraction of pore scale variables

While the structural components of the sandstone are ob-
tained using the proposed segmentation algorithm, pore scale
variables used to investigate the hydraulic and fracturing
behaviors can be extracted from the segmented 2D and 3D
images. Damage ratio, porosity and grain ratio are important
factors to study the evolution process of cracks. According to
the definition of the damage ratio in previous studies [40–42]
and the proposed segmentation techniques, the damage ratio,
porosity and grain ratio at microscale in this paper are re-
spectively redefined as
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where ψ, φ and ϕ are the damage ratio, porosity and grains
ratio, respectively; Q and Qi,(i=Nan, 0, 1) are the total set

and subsets of the gray intensity representing different
structural components in the X-ray CT image.
Figure 3 shows the sketch maps of 3D pores and grains

models of sandstone specimen S8, pores and grains are
shown in different colors. Thus, from Figure 3 and eq. (9),
the porosity and corresponding grains ratio can be calculated.
Once the damage ratio, porosity and grains ratio are ex-

tracted, the fracture and hydraulic properties of the sand-
stones can be investigated. The permeability as an important
factor is applied to investigate the hydraulic properties of
geomaterials, which is usually studied using the Nuclear
Magnetic Resonance (NMR) method [43], Lattice Boltz-
mann method [44,45], Kozeny-Carman equation of porous
geomaterials [46–48], computational fluid dynamic [49] and
Level-set methods [50]. In addition, the Kozeny-Carman
equation is widely applied to investigate the permeability of
porous geomaterials, and the permeability can be computed
by [46–52]

h
=

(1 )
, (10)

3

2 2

where κ, ξ and h are the permeability, specific surface and
Kozeny-Carman constant determined by pore shapes, re-
spectively.
Apparently, to obtain the permeability, the values of Ko-

zeny-Carman constant and specific surface should be first
determined. In fact, specific surface denotes the ratio of in-
terstitial surface area of grains per unit to total grains volume,
which can be computed by [53,54]

A V= / , (11)grain grain

where Agrain and Vgrain respectively denote the surface area
and volume of the grains, as shown in Figure 4(b).
Actually, to compute the grain size and the surface area,

each color bulk volume in sandstone is computed by the
number of pixel with the same color. Then, each color bulk is
supposed as the equivalent sphere. Figure 4 schematically
illustrates the rules to convert color bulks to spheres, in
which each color bulk represents each grain size composed
by unit cubic pixel in the pixel matrix. Thus, the grain size
can be computed by

I If C i C= 2 × 3 × ( )
4 , [1, ( )], (12)i

i3

where λ and C are the grain sizes and color bulks of grains,
respectively.
Next, once the grain size is determined, the specific surface

should be computed by Eq. (11). In fact, for sphere, the
specific surface can be modified as

= ( / 2)
4
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In addition, it is obvious that pores and grains are two
structural components in X-ray CT images. Namely, there
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are meaningful correlations between the porosity and spe-
cific surface. From the specific surfaces and porosities of 11
fine, medium and coarse pores sandstone specimens, it is
found that the specific surface of the grain increases as the
porosity decreases. Figure 5 shows the correlation between
the porosity and specific surface for fine (S11) medium (S3)
and coarse (S8) pore sandstone specimens, respectively. As
shown in Figure 5, the general relation between porosity and
specific surface can be simply obtained using the Large-scale
Unconstrained Non-linear Optimization Algorithm from
MATLAB Optimization Toolbox, and is described as

= (1 ), (14)

where α is the correlation factor between specific surface and
porosity.
From eqs. (13) and (14), it is easy to find the meaningful

relations among porosity, grain size and specific surface,
which are written as

(1 ), , (15)

where β is the correlation factor between specific surface and
grain size.
To re-establish the relations among specific surface, por-

osity and grain size, a correlation factor would be applied to
fit the relation. The final modified correlation is expressed as

= (1 ) × = 1 , (16)

where γ is the comprehensive correlation factor of α and β.

2.4 Verification for novel specific surface correlation

To validate the accuracy and predictability of the correlation
among porosity, grain size and specific surface, a 3D micro
pore network prediction (MPNP) model and the 3D real
models (Figure 6) of fine, medium and coarse pore sandstone
samples are constructed. By integrating the micro structural
features of these 11 sandstone samples shown in Figures 4
and 6, the 3D MPNP model is constructed. Figure 7 sche-
matically illustrates the construction procedure of the 3D
MPNP model.
The 3D MPNP model is composed by pores and grains in

spheres converted by cubic bulks. In this model, porosity is
approximately considered to be the same for all fabrics in
each grain bulks. Thus, based on this proposed model, eq.
(11) can be modified as

I C= ( ) ( )
(1 )(1 + + ) , (17)

b

2

2 3

where ζb represents the bulk volume of color grains.

Figure 2 Microstructures of sandstone samples S4, S9 and S10 for (a)–
(c) original images; (d)–(f) binary images (pores presented by black and
grains presented by white); (g)–(i) color images (pores with sizes presented
by different colors and grains presented by black), respectively.

Figure 1 Pore and crack segmentation demonstration using double threshold algorithm.
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In fact, the bulk volume of color grains is related to the
total volume of spherical color grains by considering a cor-
relation factor λ, and can be computed by

I C= ( )
6 . (18)b

3

Submitting eq.(18) into eq.(17), the relation among por-
osity, grain size and specific surface can be rewritten as

= 6 /
(1 )(1 + + ) . (19)2 3

In this study, γ=6/λ is assumed to be the comprehensive
correlation factor determined by different number of samples
with different porosities and grain sizes, which is expressed
as

= ( 1) , (20)n
j

n
j j

=0

where γn denotes the comprehensive correlation factor with
different porosities and grain sizes from n samples.
In fact, the porosity varies from 0 to 1, based on Taylor

expansion theorem, the general expression of the porosity
geometric sequences of sandstone samples can be expressed
as

( 1) = 1 + + = 1
1 . (21)

j

n
j j

=0

2 3 4

Submitting eq. (21) into eq. (20), it is easy to find that the
specific surface can be computed by porosity and grain size
in following form

= 1 . (22)

Apparently, eq. (22) is the same as eq. (16). Thus, we can
state that it is accurate and reliable to estimate the specific
surface by the correlations derived from porosity and gain
size. By replacing the specific surface in eq. (10) by eq. (22),
the permeability can be rewritten as

=
(1 )

. (23)
2 3

2 4

3 Results and discussion

In this study, X-ray CT datasets are obtained from 11 types of
sandstone samples (Figure 1), which contain fine, medium
and coarse pore sandstone samples. The former ten types of

Figure 3 3D Sketch maps of (a) pores with different color bulks and (b) grains with different color bulks from sandstone specimen S8.

Figure 4 Sketch maps of converting unit cubic pixel grains to spheres.
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sandstone samples are employed to investigate the relations
among the pore scale variables and to predict the perme-
ability. The other type sandstone samples are applied to study
the fracturing behaviors of sandstone. The effects of cracks
on the sandstone permeability are also analyzed.

3.1 Fracture evolution process

The sandstone samples are failed under triaxial compression
with the confining pressure of 20 MPa. Considering the si-

milar failure modes of these sandstone samples, sandstone
samples S11 are selected to describe the evolution process of
cracks by eqs. (9) and (16). Figure 8 shows the damage ratio
and equivalent specific surface of the crack with corre-
sponding crack images at each stage. The evolution process
of the crack is classified into 5 phases, as shown in Figure 8(a).
In the phase I, the crack grows as the axial stress increases in
a nearly linear way. The crack propagates from the top to the
bottom of the sample. As the continuous increase of the axial
stress, the macroscopic crack propagates stably, as shown in
the phase II. With the continuous propagation of the mac-
roscopic crack, it gradually becomes unstable, as shown in
the phase III. As the sustaining increase of axial loading, a
secondary crack initiates and propagates, and the damage
ratio of cracks fluctuates sharply, as shown in the phase IV. In
the phase V, the sandstone sample is failed. Figure 8(b) il-
lustrates the change of the specific surface. In the phase I, the
crack is initially considered as a color band due to the pro-
pagation of the crack, and it can be further divided into more
color sub-bands for specific surface. Thus, the average spe-
cific surface decreases in a linear way. As the crack propa-
gates in stable way, the number of color sub-bands and their
volumes keep almost constant, and the value of specific

Figure 5 Porosity versus specific surface of (a) S11, (b) S3 and (c) S8 for
fine, medium and coarse pore sandstones.

Figure 6 Real 3D pore models of sandstone samples S1–S10 (a)–(j) and
fracture model of sandstone sample S11 (k).
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surface almost keeps constant, as shown in the phase II. In
the phase III, the crack propagates unstably, and the specific
surface fluctuates due to the unstable propagation of crack.
In the phase IV, the secondary crack propagation leads to the
obvious fluctuation of specific surface. In the phase V, the
crack propagates to the edge of the sample, and the specific
surface fluctuates sharply.

3.2 Pore scale variables

To improve the accuracy of the correlations derived from
pore scale variables, and to predict hydraulic properties, pore
scale variables should be precisely estimated from the vari-
ety of pore structures (Figure 6) using the proposed method.
In addition, 10 types of sandstones containing fine, medium
and coarse pores are applied to extract the pore scale vari-
ables from their X-ray CT images. The pore scale values can
be calculated by eqs. (9)–(22), and the permeability can be
estimated by eq. (23).
In total, pore scale variables are all extracted from X-ray

CT images of sandstone samples. Figure 9 shows the por-
osity and specific surface of undamaged sandstone samples
S3 and S11 and damaged sandstone sample S11. Obviously,
these curves show good opposite correlations between the

porosity and specific surface, as described in eq. (14). It
should be a reliable evidence for the accuracy and reliability
of this correlation between porosity and specific surface.
Figure 10 shows the relative content distribution of spe-

cific surface and porosity extracted from 11 types of sand-
stone samples (Figure 6). Fine pore sandstone samples S2,
S4, S5 and S11 have the highest peak in their distribution
curves, and coarse pore sandstone samples S6, S7, S8 and
S10 have the lowest peak in their distribution curves. In total,
the specific surface varies from 34.58 to 77.64 (1/mm) with
an average of 54.19 (1/mm). The porosity changes from
0.142 to 0.345 with an average of 0.213. More details are
shown in Table 2.
Figure 11 schematically illustrates the relative content

distribution of equivalent pore and grain size for these 11
types of sandstone samples. The average gain size denoted
by its spherical radius varies from 64.40 to 161.74 μm, and
its corresponding standard error varies from 31.42 to 76.10 μm.
The average pore radius changes from 29.25 to 53.64 μm,
and its corresponding standard error varies from 12.16 to
36.22 μm. The detailed datasets are listed in Table 3. Gen-
erally, fine pore sandstone samples show the highest peak
and the narrowest distribution, followed by medium and
coarse pore sandstone samples in turn.

Figure 7 Sketch maps of constructing 3D MPNP model.

Figure 8 Fracture evolution process of sandstone S11 for (a) damage ratio with crack images at each stage and (b) specific surface of crack with crack
images at each stage.
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3.3 Permeability

To validate the reliability and accuracy of the proposed ap-
proach in Sect. 2, the specific surface and porosity are cal-
culated by eqs. (11)–(22). The comprehensive factor
represented by porosity and grain size is first calculated by
the measured data extracted from 11 types of fine, medium
and coarse pores sandstone samples. Considering that the
difference of pore structures leads to the difference of por-
osity, grain size and specific surface, an average compre-
hensive correlation factor is applied to calculate the specific
surface of sandstone samples. Thus, the specific surface in

this study can be written as

= 6.27 × 1 . (24)

Consequently, the real specific surface can be estimated by
eq. (24). Figure 12(a) shows the comprehensive correlation
factors obtained from fine, medium and coarse pores sand-
stone samples. Figure 12(b) illustrates the relation between
the estimated specific surface and the equivalent radius under
different porosity, which is a lookup table of specific surface
with known porosity and grain size.
Figure 13 shows the relative content distribution of por-

osity and specific surface of intact and damaged sandstone

Figure 9 Porosity (a) and specific surface (b) distribution curves with schematic pore-crack images of sandstone S3 and sandstone S11.

Figure 10 Relative content of specific surface and porosity for different types of sandstone samples.

Table 2 Results analysis of the 11 types of sandstone samplesa)

Rock types S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

Sample numbers 26 25 28 12 9 14 29 15 15 14 14

φ 0.191 0.142 0.241 0.153 0.162 0.212 0.244 0.253 0.345 0.227 0.168

ξM (1/mm) 83.96 43.94 54.74 53.38 60.03 53.32 31.04 65.69 52.05 63.55 70.86

ξC (1/mm) 80.23 40.92 54.29 50.42 56.73 50.62 27.44 61.84 49.63 60.41 68.70

γ 5.95 7.20 5.89 7.33 7.12 5.71 5.83 5.66 5.69 5.72 7.35

a) ξM and ξC are respectively the experimental and estimated specific surface.
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samples S11. Obviously, the distributions of these two
samples are similar to each other. However, due to the crack
propagation, the increase of void spaces leads to local change
of porosity and specific surface. In addition, the damage ratio
and specific surface distribution of cracks is similar to that of
the void space. Thus, it is concluded from eq. (23) that the

permeability increases due to the crack propagation.
Exactly, once the specific surface and porosity of geoma-

terials are determined, the permeability can be obtained. To
validate the reliability and accuracy of the proposed corre-
lations, the estimated specific surface and permeability are
compared with the measured specific surface and perme-

Figure 11 Relative content distributions of equivalent pore and grain size for different types of sandstone samples.

Table 3 Pore and grain sizes of 11 types of sandstone samples

Rock types
Average pore size (μm) Standard errors (μm)

Maxima Minima Average Maxima Minima Average

S1 34.41 27.82 30.16 17.46 12.87 14.90

S2 63.67 43.99 53.64 37.72 19.60 28.47

S3 42.94 26.78 35.29 24.92 11.86 17.19

S4 46.49 35.06 39.35 21.01 14.55 17.49

S5 41.38 35.35 37.84 20.64 13.55 16.64

S6 55.67 29.71 40.54 38.22 16.41 25.26

S7 66.31 42.98 52.51 57.99 23.11 36.22

S8 49.71 32.94 40.77 34.16 15.93 22.69

S9 51.10 35.68 41.98 30.11 17.23 21.78

S10 38.38 24.96 31.89 28.15 12.05 20.07

S11 38.22 26.80 29.25 18.17 10.50 12.16

Rock types
Average grain size (μm) Standard errors (μm)

Maxima Minima Average Maxima Minima Average

S1 99.46 72.62 82.93 55.05 28.86 41.26

S2 185.34 142.63 161.37 104.53 57.81 76.1

S3 82.85 60.25 72.21 41.73 25.40 31.42

S4 133.25 98.77 116.37 72.30 47.83 59.16

S5 122.84 99.96 109.47 63.15 39.88 51.12

S6 117.84 69.87 92.49 65.62 38.56 50.91

S7 150.82 77.69 106.13 106.19 51.1 77.02

S8 89.57 68.30 78.13 60.80 36.80 48.28

S9 71.42 55.09 63.40 43.83 28.03 34.08

S10 86.62 59.37 70.57 47.67 26.13 35.91

S11 107.96 53.35 90.53 57.65 23.9 43.67
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ability for the 11 types of sandstone samples. Figure 14(a)
shows the correlation between the estimated and measured
specific surface. The correlation coefficient reaches to 0.98,
which implies the precision of the proposed correlations.

Figure 14(b) shows the histogram of estimated and measured
permeability. The estimated permeability (black) well agrees
with the laboratory measured permeability (red). The aver-
age permeability values are respectively 245, 512 and 561 mD

Figure 12 Estimated results of sandstone samples for (a) comprehensive factor and (b) specific surface versus grain size under different porosity.

Figure 13 Relative content of porosity and specific surface from sandstone S11 for (a) intact samples and (b) damaged samples.

Figure 14 Comparison of the laboratory measured value and estimated value for (a) specific surface (R2=0.98432) and (b) permeability for sandstone
samples S1–S11.
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for estimated results and 251, 542 and 551 mD for the la-
boratory measured permeability, which increases from fine
pore sandstones to coarse pore sandstone samples. Moreover,
the permeability obtained from the intact sandstone sample
S11 (172 and 198 mD for estimated and laboratory measured
result, respectively) is lower than that obtained from the
damaged sandstone sample S11 (blue, 324 mD), which im-
plies that fracture improves the permeability in the damaged
sandstone samples.

4 Summary and conclusions

In this study, a double threshold segmentation algorithm is
proposed to segment the pore structures of X-ray CT images
for different types of sandstone samples. The pore scale
variables are extracted from the segmented images. A novel
correlation for permeability derived from pore scale vari-
ables is proposed and validated by the proposed 3D MPNP
model. The fracture characteristics and permeability are in-
vestigated as well. The main conclusions are drawn as fol-
lows.
(1) The proposed double threshold algorithm is not only

applicable to distinguish the pores and cracks of sandstone,
but also useful for other porous geomaterials. Thus, the pore
scale variables can be estimated, and the hydraulic, fractur-
ing behaviors can be studied.
(2) Pore scale variables can be extracted from the seg-

mented pores-crack-gains image. The distribution char-
acteristics of the pore scale variables are useful to investigate
the hydraulic and fracture characteristics.
(3) The permeability of different types of geomaterials can

be simply predicted by the proposed relations among these
pore scale variables. Therefore, it becomes easier and more
efficient to obtain the hydraulic properties compared with the
classical permeability prediction methods.
(4) The proposed equations are not only applicable for

sandstone, but also can be employed to estimate the pore
scale variables of other porous geomaterials. By considering
suitable numbers of samples, the precision can be improved
for comprehensive factor, which increases the availability of
these correlations.
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and Innovation Foundation of Chongqing, China (Grant No. CYB18037).
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