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The metal materials are susceptible to be oxidized when they are exposed to the complex and harsh environments, especially at
the elevated temperature. The development of corresponding chemo-mechanical coupling theory is indispensable in theoretically
and numerically predicting the material properties reduction and failures due to the oxidation. In this paper, we review the
historical sketch of the coupling theory of chemical reactions and mechanics in the high-temperature oxidation of metal
materials. The oxidation results in the stress generation while the generated stress in turn affects the chemical reaction rate and
the diffusion process of the reactants. It is therefore a complex chemo-mechanical coupling problem. This review begins with the
discussion of the diffusion-controlled oxidation, and then discusses the stress-dependent diffussion during the oxidation and the
oxide growth induced stress, and ends with the discussion of interaction between chemical reactions and stress. This review of
chemo-mechanical coupling literature is not exhaustive; we review much of the fundamental literature and draw comparisons of
coupling theory development in the filed of metal oxidation.
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1 Introduction

Metals are widely used as structural materials in modern
industry due to their unique physical and mechanical prop-
erties. However, being reactive in nature, metals are usually
susceptible to be oxidized in ambient oxygen or water, even
at room temperature. Due to the huge growth stress devel-
oped in the oxide film during the oxidation, not only is the
strength of material greatly reduced but also the bulking,
cracking and even spalling of the oxide film occurs. This
further leads to acute alteration in the chemical and me-
chanical properties and decreases in functionalities of host
metal materials. For this reason, such phenomena attract

much attention in the past decades. The theory regarding the
origin of growth stress was firstly proposed by Bedworth and
Pilling [1]. Then, more and more new theories were pro-
posed. Nevertheless, these theories can be roughly categor-
ized into two types, i.e., one-way coupling effect and fully
coupling effect. For the former, only is the effect of the
chemical reaction on the stress considered. For the latter, the
interaction of stress, diffusion and chemical reaction is taken
into account. In this paper, we review the research progress
of the chemo-mechanical coupling effect in high-tempera-
ture oxidation of metal materials.
The remaining manuscript is organized into the following

major topics. Sect. 2 discusses the diffusion-controlled oxi-
dation. Sect. 3 introduces the stress-dependent diffusion
during the oxidation. Sect. 4 analyzes the stress induced by
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oxide growth. Finally, the interaction between the stress and
chemical reactions is discussed in Sect. 5.

2 Diffusion-controlled oxidation

The formation of oxide film on the metal surface can sepa-
rate the oxygen and metal. Therefore, whether the oxide
layer continuously grows or not is usually believed to be
dependent on the diffusion of ions in the oxide layer such as
metal and oxygen ions. For example, Young et al. [2] studied
the formation of Cr2O3 under different oxygen partial pres-
sures. Under low oxygen partial pressure, it was found that
the oxide layer exhibits n-type semiconductor behavior while
it exhibits p-type semiconductor behavior under high oxygen
partial pressure. The service environment of metal materials
is usually high oxygen partial pressure, thus the oxide layer
exhibits p-type semiconductor behavior. As a result, it is
reasonable to believe that the oxidation rate is controlled by
the diffusion of ions.
Figure 1 [3] schematically shows the ion diffusion me-

chanism in the oxide layer proposed by Atkinson and Taylor
[4]. They quantitatively confirmed that the oxidation rate of
nickel at 500°C–800°C is controlled by the diffusion of
nickel along the grain boundary in the oxide film. Moreover,
Tsai et al. [5] established a chromia film growth model based
on the oxygen-chromium counter diffusion. Rhines and Wolf
[6] also proposed that the metal-oxygen counter diffusion
causes the growth of the oxide layer. Kirkendall effect [7]
shows that the diffusivities of the two species in binary solid
solutions are different. This indicates that diffusion occurs by
the vacancy mechanism. In the oxidation processes, the ions
diffuse through the oxide scale by vacancy mechanism, so
the diffusivities of the oxygen ions and the metal ions are not
equal. Thus the location of the newly formed oxide provides
further evidence for the diffusion-controlled oxidation pro-
cess. When the diffusion rate of metal ions is faster, the
formed oxide is mainly located near the oxygen-oxide in-
terface in the oxide layer. On the contrary, when the diffusion
rate of oxygen ions is faster, the formed oxide is mainly

located near the oxide-substrate interface in the oxide layer.
For example, the diffusion rate of oxygen is about three
orders of magnitude smaller than that of chromium [8]. As a
result, the formed chromia is mainly located near the oxy-
gen-oxide interface in the oxide layer. Such was further
confirmed by O’Keeffe and Moore [9]. They found that the
diffusion rate of oxygen is several orders of magnitude
smaller than that of nickel in nickel oxide, and the newly
formed nickel oxide is also mainly located near the oxygen-
oxide interface in the oxide layer. For the case in which the
metal ions diffuse faster, a large number of vacancies form in
the metal near the oxide-substrate interface. The vacancies
then agglomerate to form voids, which reduces the bonding
strength of the interface.
Based on the diffusion-controlled oxidation mechanism,

Wagner [10] firstly established the growth theory of thick
oxide film. With this theory, the oxide film growth rate can
be correlated with other measurable transport properties of
the oxide film, such as the diffusion coefficient. Prior to this
theory, it has been observed that the growth of oxide films
obeys parabolic kinetics [11]

h k t= , (1)ox
2

p

where hox and kp are the oxide film thickness and the para-
bolic rate constant, respectively; t is the oxidation time. The
parabolic kinetics is consistent with diffusion-controlled
oxidation with the ions concentration gradient as the driving
force. As the oxide film thickens during the oxidation pro-
cess, the growth rate decreases by following:

h
t

k
h

d
d = 2 . (2)ox p

ox

3 Stress-dependent diffusion

The oxidation process of the metal material is controlled by
the ion diffusion process in the oxide layer. Although dif-
fusion is thought to be unaffected by stress in some studies,
the importance of stress-diffusion interactions has attracted
more and more attention in simulating the oxidation pro-
cesses. Based on the thermodynamics, Li et al. [12] estab-
lished the chemical potential of the mobile and immobile
components in solids subjected to a non-uniform stress field.
Subsequently, Koehler [13] studied the influence of lattice
strain, caused by defects such as precipitation and disloca-
tion, on the saddle-point configuration during the diffusion
process. Their calculations showed that the migration energy
of vacancies can be changed by 10% due to the influence of
stress. Therefore, the stress affects the defect migration in at
least two fundamental aspects [13–15]. One is the thermo-
dynamics effect, which can be attributed to the dependence
of the chemical potential on the stress. The other is the ki-

Figure 1 (Color online) Schematic diagram of diffusion mechanism, re-
produced from ref. [3].
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netic effect, which results from the effect of the stress on the
diffusion migration barrier. Since the volumetric strain is
generated by the formation volume and migration volume of
the defect, the local elastic energy directly affects the dif-
fusion. Therefore, both the stress-dependent chemical po-
tential and the kinetic parameters controlling diffusion
should take into account the effect of stress on the volume
changes. For simplicity, the stress slightly affects the kinetic
parameters of diffusion so that its effect can be neglected,
and the formation volume of defect is greater than the vo-
lume change associated with migration such that the latter
can be also neglected [16]. Some studies were also carried
out to reveal the effects of stress on the formation and mi-
gration energies of defects, for example, Olmsted et al.’s [17]
molecular dynamics simulation work.
Li et al. [18] were the first one who used the chemical

potential gradient of point defects as the driving force for the
diffusion of defects in solids with non-uniform stress field.
For the point defect diffusion problem, the diffusion poten-
tial gradient should be used as its driving force. However, for
dilute defect concentrations, the diffusion potential and the
chemical potential are equal and indistinguishable [19]. Li et
al. [12] developed Maxwell’s type expressions of chemical
potential, stress, strain and concentration. Later, Larché and
Cahn [20] developed a diffusion potential as a function of
local stress states based on the integral of Maxwell’s type
expressions [21].
For oxides in the form of MO, the stress-dependent dif-

fusion potential of the ions in the lattice is generally ex-
pressed as [20]

µ µ V V s( , ) = ( , 0) 2 , (3)s s s s m ij
s

ij
m

ijk l
s

k l ij

where µ ( , 0)s s , Vm and ij are the stress-free diffusion po-
tential, the molar volume of the solid and the Cauchy stress,

respectively. =ij
s ij

s

s
, s

S
=ijk l

s ijkl

s
and s are the chemical

expansion coefficient, the change of compliance caused by
the concentration change of defect species s and the molar
fraction of defect species s, respectively. ij

s and Sijkl are the
strain produced by the concentration change of the defect
species s and the compliance of the material, respectively.
It can be seen from eq. (3) that two material parameters ij

s

and sijk l
s are introduced in the stress-dependent diffusion

potential. ij
s represents the eigenstrain (i.e., stress-free

strain) due to the local composition change, and is also
known as the chemical expansion coefficient. The chemical
expansion coefficient is similar to the thermal expansion
coefficient and represents the strain caused by the change per
unit concentration. sijk l

s represents the change of the com-
pliance matrix caused by the change in composition. It
should be noted that the compositional strain generally needs

to follow Vegard’s law, which states that the strain is linearly
related to the composition change [22].
Eq. (3) was first applied to metal systems by Larché and

Cahn [20] and then was extended to nonlinear materials [23].
It was also applied to ionic solids containing charged defects
in refs. [24,25]. The diffusion potential described in eq. (3)
has a variety of applications. It can be used to determine the
equilibrium concentration distribution of defects in solids
with non-uniform stress field [26], and to study the stress
caused by steady-state and transient diffusion in thin films
and electrolytes by using the diffusion potential gradient as
the driving force for diffusion [27,28]. The stress-dependent
potential can also be used to simulate the kinetics demixing
of solids under non-hydrostatic pressure [29]. It is worth
noting that in addition to determining the diffusion equili-
brium in solids, the chemical potential also controls the
chemical equilibrium of solid state reactions [30]. The che-
mical reaction equilibrium constant is no longer just a
function of temperature [31], but also a function of the stress
state. Therefore, this is another level of coupling between the
chemical reaction and the stress field. Finally, the boundary
concentration also varies due to the applied boundary force
and can be obtained by the stress-dependent diffusion po-
tential in the boundary chemical reaction. Thus, the stress-
dependent chemical potential couples the concentration field
with the stress field.
Although the stress-dependent chemical potential de-

scribed in eq. (3) has lots of applications, the differential
equations that control diffusion and the mechanical equili-
brium equations can be completely decoupled under certain
conditions. The stress-dependent chemical potential de-
scribed in eq. (3) is only a special case of a more general
diffusion potential based on thermodynamics. Indeed, the
Eshelby stress tensor should be the elastic contribution to the
diffusion driving force, not the Cauchy stress [32]. That is
why eq. (3) is only applicable under self-stress diffusion, i.e.,
the non-stoichiometry is the only source of stress.

4 Stress induced by oxide growth

When the metal materials are exposed to the high tempera-
ture oxygen-containing environments, oxidation reaction is
highly prone to occurring so that oxide film forms. The
stresses [33–36] and stress gradients [37,38] are generated in
the dense oxide film, which in turn cause the buckling,
cracking and even spalling of the oxide film. The measure-
ments of the dimension change of the oxidized specimen
[6,39], the strain by X-ray diffraction [40] and piezo-
spectroscopic techniques [41] and the deflection of the oxi-
dized specimen [42] directly prove the presence of stress in
the oxide film. Although the stress in the oxide film has long
been recognized, the mechanism of the stress origin during
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oxidation is still unclear. The earliest mechanism of stress
origin in oxide films was proposed by Bedworth and Pilling
[1]. They believed that the stress was caused by the volume
difference between the oxide and the consumed metal. The
volume ratio of the formed oxide to the consumed metal
known as Pilling- Bedworth ratio (PBR) has the form of

V
N VPBR = , (4)p

m met

whereVp,Vmet and Nm are the molar volume of the oxide, the
molar volume of the metal and the number of metal atoms in
one unit oxide, respectively. For isotropic materials, the
growth strain induced by PBR is

= PBR 1. (5)g 3

When the PBR is not equal to 1, for example, greater than
1, stresses are generated in the constrained oxide layer and
substrate. Thus, the region near the oxide-substrate interface
in the oxide layer is subjected to compressive stress while the
region near the oxide-substrate interface in the substrate is
subjected to tensile stress. Huntz [43] emphasized that PBR
is a key factor of stress generation in oxide layers with the
preferential anion diffusion. The stress is smaller at the
oxygen-oxide interface due to the weak geometric con-
straints while it is very large at the oxide-substrate interface
[3]. The PBR of some common pure metals and alloys is
listed in Table 1 [44]. The PBR theory can predict whether
tensile stress or compressive stress is generated in a thick
oxide film, but the calculated stress values are much larger
than the experimental measurements, usually several orders
of magnitude. In addition, the growth strain predicted by this
theoretical model is only related to the molar volume of
oxides and metals. The molar volume is independent of time,
implying that the stress does not change with time.
Later, Rhines and Wolf [6] proposed a new model. In their

model, the new oxide forms in the grain boundary perpen-
dicular to the oxide-substrate interface in the oxide film, as
shown in Figure 2. This leads to the lateral stress due to the
lateral constraint of the substrate to the oxide film. On the
contrary, the formation of the oxide lamella parallel to the
oxide-substrate interface only increases the thickness of the
oxide film without causing lateral stress. Figure 3 shows a
schematic diagram of the possible formation position of the
oxide lamella. There are three typical positions, i.e., the
oxygen-oxide interface, the oxide film interior and the oxide-
substrate interface. They correspond to the three situations
that the cation diffusion rate is faster than the anion diffusion
rate, the cation and anion diffusion rate are comparable, and
the cation diffusion rate is slower than the anion diffusion
rate, respectively. Rhines and Wolf’s model has profound
significance. Since then, many of the theoretical models are
based on this model framework.
Speight and Harris [45] suggested that when the oxide

forms at any position in the original oxide film, not ne-
cessarily at the grain boundary, compressive stresses are
generated in the oxide film and tensile stresses in the sub-
strate. And only a small amount of oxide generated in the
oxide film will induce very large compressive stress. Evans
[46] proposed that the oxide intrusion formed at the oxide-
substrate interface acts as a linear center of dilatation, gen-
erating tensile stress in the substrate and compressive stress
in the oxide. Based on the Rhines and Wolf’s framework, an
elastic analysis of stress in the oxide was carried out using
the continuum dislocation theory [47]. Tolpygo et al. [48,49]
experimentally measured the growth strain and found that
the growth strain increased parabolically with the oxidation
time. Based on the microstructure of the oxide layer and the
assumption of rapid mixed diffusion at the grain boundary,

Table 1 PBR of some common metals and alloys [44]

Substrate Oxide PBR

K K2O 0.45

Mg MgO 0.81

W WO3 3.30

V V2O5 3.19

Cr Cr2O3 2.07

Al α-Al2O3 1.28

Al γ-Al2O3 1.38

Ni NiO 1.65

Ti TiO2 1.73

Ni-20Cr-0.4Ti NiO 1.47

Ni-20Cr-0.4Ti Cr2O3 2.14

Ni-30Cr-1.8Ti-1.0Al Cr2O3 2.11

Fe-18Cr-9Ni-0.65Ti Cr2O3 2.08

Fe-22Cr-5Al-0.3Y Al2O3 1.92

Co-30Cr-6Al Al2O3 1.94

Ti-5.0Al-2.5Sn TiO2 1.80

Figure 2 (Color online) Schematic diagram of diffusion path and newly
formed oxide position, reproduced from ref. [6].
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Clarke [50] analyzed the origin of growth stress by using the
dislocation climb model. A schematic diagram of the dis-
location climb model is shown in Figure 4. The edge dis-
locations climb by trapping the “unlucky” counter-diffusing
anions and cations at the dislocation cores. Most of the dif-
fusing ions pass through the oxide film without being trap-
ped. There are dislocations that climb inward from the
oxygen-oxide interface and outward from the oxide-substrate
interface. The climb of edge dislocations with Burgers vector
perpendicular to the interface will produce lateral stress (for
example, the A edge dislocation in Figure 4), while the climb
of edge dislocations with Burgers vector parallel to the in-
terface will not produce lateral stress (for example, the B
edge dislocation in Figure 4). Through a series of deriva-
tions, Clarke gave the expression of the lateral growth strain
rate d g /dt as

t D h
t

d
d = d

d , (6)g
ox

ox

where Dox and hd ox/dt are the lateral growth coefficient and
oxide film thickness change rate. From eq. (6), the growth
strain rate is proportional to the growth rate of the oxide layer
thickness. According to Clarke’s growth strain expression,
the growth strain can be readily obtained as long as the
growth kinetics of the oxide film is known, and then the
stress in the oxide film can be calculated as well. The dif-
fusion-controlled parabolic kinetics presented by Wagner
[10] is often adopted.
Based on the Clarke’s model, many analyses on the stress

in the oxide layer have been carried out [51–61]. On the basis
of thermodynamic explanation, multi-scale method and
symmetry property, Panicaud et al. [62] proposed a new
explanation for the proportional relation between growth
strain and oxide layer thickness, and analyzed the stress
evolution in oxide layer using viscoplastic model. For the
one-side oxidation case, many studies have also been con-

ducted on the bending deformation of the oxide-substrate
system [53,54,57,63,64]. Figure 5 shows the schematic dia-
gram of the bending deformation of the oxide-substrate
system during the one-side oxidation process.
As mentioned above, the growth strain calculated by the

PBR is much larger than the measured value. Some re-
searchers [65–67] adopted the various anisotropic strains,
verified in refs. [65,68], which makes the growth strain more
reasonable. The PBR is defined as (1 + ) (1 + )1

2
3 , where 1

and 3 are the lateral strain and the strain along the oxide
thickness direction, respectively. Take the zirconium/zirco-
nia system as an example, its corresponding PBR is 1.56 and
the anisotropic strain tensor is [67]

=
0.005 0 0

0 0.005 0
0 0 0.54

. (7)

Despite of extensive studies on the stress evolution in
oxide layers, much attention was paid to the average stress in
the oxide layer and the distribution of stress in the oxide layer
was not unveiled. Maharjan et al. [53,57] analyzed the stress
distribution caused by the bending deformation of the oxide-
substrate system during the one-side oxidation process.
However, due to the thin oxide layer, the strain variation

Figure 3 (Color online) Schematic diagram of possible position of the
newly formed oxide lamella, reproduced from ref. [6].

Figure 4 (Color online) Schematic diagram of the dislocation climb
model, reproduced from ref. [50].

Figure 5 (Color online) Schematic diagram of bending deformation of
oxide-substrate system during one-side oxidation process, reproduced from
ref. [57].
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along the oxide thickness direction caused by the bending
deformation is very small, and so is the stress variation along
the oxide thickness direction caused by the geometric de-
formation. Their calculated results show that the stress in the
oxide layer is almost constant along the oxide thickness di-
rection. The stress in the oxide layer changes slightly in the
oxide thickness direction only when the oxide layer is very
thick. In addition, Dong et al. [54] directly neglected the
strain variation along the oxide thickness direction caused by
the bending deformation, and assumed that the strain in the
oxide layer did not change along the oxide thickness direc-
tion.
The Clarke’s model can only predict the average stress in

the oxide layer. In addition, the stress variation along the
oxide thickness direction caused by the bending deformation
can also be neglected. Therefore, the Clarke’s model itself is
incapable of predicting the stress distribution in the oxide
layer. Besides, the articles reviewed in this section are only
focused on the stress caused by the chemical reaction, but the
influence of the stress generated in the oxide layer on the
chemical reaction is not considered.

5 Interaction between stress and reaction

Chemical reactions could generate stress in the oxide layer.
In fact, the stress also impacts the chemical reaction process.
Zhang et al. [52] studied the effects of external loading on the
oxidation kinetics and oxidation process, and pointed out that
external tensile stress can promote the growth of oxide lay-
ers. Dong et al. [58,69] and Suo et al. [64] assumed that the
stress in the oxide layer had an effect on the diffusion
coefficient and analyzed the diffusion-stress coupling effect
in the oxidation process. Their results revealed that the ten-
sile stress may accelerate the oxidation rate while the com-
pressive stress restrains the oxidation rate. Zhang et al. [52]
introduced the effect of stress on the chemical reaction by the
stress-dependent vacancy concentration, while such is in-
troduced by the stress-dependent diffusion coefficient in
Dong et al.’s [58,69] and Suo et al.’s [64] models. Qi et al.
[70] experimentally studied the effect of tensile stress on the
oxidation behavior of DZ125 Ni-based superalloy. The ten-
sile stress leads to the formation of fast diffusion paths for Cr
to diffuse to the surface. The initial oxidation rate is in-
creased, but the less protective transient oxidation period is
reduced by the rapid formation of protective chromic oxide
layer. Overall, the oxidation resistance is improved.
In fact, there exists more direct coupling between stress

and chemical reaction [71–74]. By the stress-dependent
chemical potential, the stress can directly affect the diffusion
of the reactants. At the same time, the strain energy is also
incorporated into the chemical reaction affinity, and the
stress can also directly affect the chemical reaction rate.

Sallès-Desvignes [75] investigated the effect of stress on
diffusion by both the stress-dependent diffusivity and the
stress-dependent chemical potential. Yang et al. [76] mod-
ified the classical oxidation parabolic kinetics by introducing
the stress effect on diffusion. Yue et al. [77] studied the
stress-oxidation coupling effect by stress-dependent diffu-
sivity and stress-dependent chemical reaction rate constant.
Krishnamurthy et al. [78,79] and Zhou et al. [80–82] aban-
doned the Clarke’s model. By treating the formed oxide as a
new species, they gave the composition change strain. Using
the elastic model, the stress distribution in the oxide layer
was calculated. The mechanism of stress distribution here is
due to the inhomogeneous distribution of the composition
along the oxide thickness direction in the oxide layer. Even if
the oxide layer is very thin, there still exists large stress
gradient, which is quite different from the mechanism of
stress distribution in refs. [53,57]. However, they only gave
the elastic solution. For the stress relaxation mechanism in
the oxide layer, such as plastic deformation and creep etc.,
Krishnamurthy et al. [78,79] and Zhou et al. [80–82] did not
analyze. Loeffel and Anand [83] proposed a chemo-thermo-
mechanically coupled theory accounting for elastic-visco-
plastic deformation, diffusion and chemical reaction.
Based on the irreversible thermodynamics, Hu et al. [84]

proposed the chemical Gibbs function variational principle,
Helmholtz function variational principle and internal energy
variational principle for the thermal-chemical-mechanical
fully coupling problems. The evolving equations (or called
the second constitutive equations) describing the interaction
of the irreversible flows and irreversible forces were pro-
posed as

t A
t A

w t A
t A

L X L X L L
L X L X L L
L X L X L L
L X L X L L

d / d = + + + ,

d / d = + + + ,
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where td / d , td / dN , w td / dr and td / di( ) are the entropy
flow vector, diffusion mass flow vector of the species N, rth
reaction rate and irreversible strain, respectively. XT , XN

µ , Ar

and are the negative temperature gradient, negative che-
mical potential gradient of the species N, affinity of the rth
reaction and stress. Due to the Onsager reciprocal relations,
the coupling coefficients satisfy
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If the coupling effects are not considered, the first and
second equations of eq. (8) can be reduced to Fourier law and
Fick law, respectively. The third equation is the chemical
reaction rate containing the influence of stress on the reac-
tion, which was verified by Craig [85]. The last equation is
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the irreversible strain including the growth strain and creep
strain, etc. Eq. (8) has been successfully applied in the study
of the interfacial reactions between γ-TiAl alloy and glass-
ceramic coating [86]. In addition, Yu et al. [87] further took
the electrical effect into account and proposed a thermo-
mechano-electro-chemical fully coupling theory.
Suo et al. [88] proposed a modified growth strain formula

based the evolving equations as

t a D h
t

d
d = + d

d , (10)
g

ox
ox

ox

where a is the proportional coefficient, Dox and hox are the
lateral growth coefficient and oxide thickness, respectively.
The modified growth strain includes the effect of stress on it.
If the effect of stress on the growth strain is neglected, eq.
(10) is reduced to the Clarke’s model [50].
Based on the evolving equation, Wang et al. [89,90] de-

rived the location-dependent growth strain and analyzed the
mechanics-diffusion-chemical fully coupling effect in in-
elastic and viscoplastic oxide layer during oxidation process.
Since the growth strain is location-dependent, the stress is
naturally location-dependent. The stress distribution with
viscoplastic model is shown in Figure 6. It can be seen that
the stress distribution in short oxidation time is quite dif-
ferent from that in long oxidation time. In short oxidation
time, the stress in the oxide scale is dominated by the growth
strain. The stress is maximum at the oxide-substrate inter-
face, and then decreases gradually along the oxide thickness
direction. At the oxygen-oxide interface, the stress reaches
the minimum value. In long oxidation time, the stress dis-
tribution is the competition result of growth strain and vis-
coplastic strain.
The theory hinted by eq. (8) fully couples diffusion-ther-

mo-chemo-mechanical effects. Such theory may find wide
applications in revealing the comprehensive properties of
materials in the complex service conditions. However, the
analytical solution of problems described by eq. (8) is
usually impossible. To obtain the numerical solutions may

resort to the finite element method [86]. Such can be more
easily achieved by incorporating the fully coupled theory
into the commercial software such as ABAQUS [91,92].

6 Conclusions

This paper mainly reviews the chemo-mechanical coupling
effects in the oxidation of metal materials. The coupling
effects during the oxidation can be summarized as follows:
(1) Effect of chemical reaction on the stress field by the

growth strain;
(2) Effect of chemical reaction on the diffusion by altering

the diffusing species concentration;
(3) Effect of stress on chemical reaction by changing the

chemical reaction rate;
(4) Effect of stress on diffusion in two aspects, i.e., stress-

dependent diffusion coefficient (thermodynamics effect) and
stress-dependent chemical potential (kinetics effect);
(5) Effect of diffusion on chemical reaction by altering the

reactants concentration;
(6) Effect of diffusion on stress by chemical expansion

strain.
The intrinsic origin of stress (not caused by geometry) in

the oxide layer mainly includes:
(1) Various anisotropic-strain derived from PBR;
(2) Growth strain predicted by Clarke’s model;
(3) Composition change strain by treating freshly formed

oxide as a new species;
(4) Location-dependent growth strain derived from evol-

ving equations (fully coupled model).
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