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In this paper, a class of electromagnetic field frequency domain reliability problem is first defined. The frequency domain
reliability refers to the probability that an electromagnetic performance indicator can meet the intended requirements within a
specific frequency band, considering the uncertainty of structural parameters and frequency-variant electromagnetic parameters.
And then a frequency domain reliability analysis method based on univariate dimension reduction method is proposed, which
provides an effective calculation tool for electromagnetic frequency domain reliability. In electromagnetic problems, perfor-
mance indicators usually vary with frequency. The method firstly discretizes the frequency-variant performance indicator
function into a series of frequency points’ functions, and then transforms the frequency domain reliability problem into a series
system reliability problem of discrete frequency points’ functions. Secondly, the univariate dimension reduction method is
introduced to solve the probability distribution functions and correlation coefficients of discrete frequency points’ functions in
the system. Finally, according to the above calculation results, the series system reliability can be solved to obtain the frequency
domain reliability, and the cumulative distribution function of the performance indicator can also be obtained. In this study,
Monte Carlo simulation is adopted to demonstrate the validity of the frequency domain reliability analysis method. Three
examples are investigated to demonstrate the accuracy and efficiency of the proposed method.
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1 Introduction

In electromagnetic problems, the antenna system is a com-
plex system integrating electromagnetic transmission and
electromagnetic radiation, and it is an important application
of electromagnetic theory. Its frequency domain perfor-
mance indicators are the main goal of design and optimiza-
tion. At present, there have been a lot of researches on the
design and optimization for the frequency-variant perfor-

mance indicators of broadband antenna and array antenna.
In terms of broadband antenna design, Jung [1] designed

an L-type microstrip monopole antenna with a reflection
coefficient less than –10 dB in the frequency band of
3.05–10.9 GHz, which reduces the reflection loss of the
antenna and improves radiation pattern characteristics. Ab-
bas-Azimi et al. [2] proposed a design method for broadband
horn antenna, so that its beamwidth and maximum gain in the
given frequency band meet the requirements. Yang et al. [3]
proposed a novel circularly polarized microstrip antenna that
effectively increases the axial ratio bandwidth and gain
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compared to conventional microstrip antennas while redu-
cing reverse radiation. Klymyshyn et al. [4] studied the im-
pact of TML parameters on the antenna performance when
low-loss and lossy substrates are used and proposed two
different TML-DRA structures, increasing the impedance
bandwidth of the antenna and improving the radiation effi-
ciency. As for the optimization of antenna frequency domain
performances, Choo et al. [5] used genetic algorithm to op-
timize the patch shape of broadband and dual-band micro-
strip antennas to improve their impedance bandwidth.
Mohamadi Monavar et al. [6] used the invasive weed opti-
mization (IWO) algorithm to design the geometric para-
meters of the microstrip patch antenna, and reduced the
return loss in the frequency band while maintaining the gain
and radiation pattern. Abbas-Azimi et al. [7] found the main
parameters affecting the gain of the main lobe by analyzing
the sensitivity of the traditional broadband double-ridge horn
antenna structure parameters, and it was optimized using the
quasi-Newton method to obtain a better radiation pattern in
high frequency and VSWR in the frequency band. In the
design and optimization of the array antenna frequency do-
main performances, Pourahmadazar et al. [8] proposed a
broadband circularly-polarized monopole antenna, and en-
hanced the frequency domain performance on impedance
matching and circular polarization by adjusting the location
of the monopole microstrip-feed. El-makadema et al. [9]
used genetic algorithm and pattern search technology to
optimize the array geometry, achieving the enhancement of
its performances such as directivity, sidelobe characteristics
and beamwidth in frequency band. Wang et al. [10] focused
on the maximization of the system effective multiplexing
gain in the frequency band, by optimizing the individual
antenna positions in the transmit/receive non-uniform linear
antenna arrays.
In the frequency domain performance study of compo-

nents, Okabe et al. [11] designed a new type of hybrid ring,
and optimized its characteristic impedance and transmission
loss in the high frequency range, while reducing the structure
size. Kim et al. [12] proposed a simple parametric modeling
method for frequency-variant transmission lines. The effects
of frequency-dependent parameters such as dielectric con-
stant, propagation constant and characteristic impedance on
the reflection coefficient were analyzed in a broad frequency
range from 40 MHz to 50 GHz, and experimental verifica-
tion was carried out. You et al. [13] proposed a method to
find the optimum source and load impedances that make the
device perform well in efficiency and flat gain within the
required bandwidth.
The above electromagnetic problems are only for the effect

of deterministic input parameters on the performance in-
dicators in the design frequency band. While in practical
problems, the uncertainty of structural parameters and fre-
quency-variant electromagnetic parameters will affect the

frequency-variant performance indicators (such as im-
pedance, gain, reflection coefficient), so the performance
indicators will be changed from determined value to un-
certainty. Furthermore their uncertainty varies with fre-
quency, causing their reliability to vary with frequency.
Considering the probability that a performance indicator
meets specific design requirement within a specific fre-
quency band, it constitutes a frequency domain reliability
problem. Aiming at those above problems, we propose a
frequency domain reliability analysis method based on uni-
variate dimension reduction method (FRDR), which pro-
vides an effective calculation tool for frequency domain
reliability of electromagnetic problems. Based on the idea of
random process discretization [14], we discretize the fre-
quency domain into frequency points, thus producing a series
of discrete frequency points’ functions.
Then FRDR is employed to convert the frequency domain

reliability problem into a series system reliability problem
concerning discrete frequency points. To solve the reliability
at each discrete frequency point, there are many traditional
methods such as FORM [15–17], SORM [18,19], etc.
However, when those above methods meeting engineering
problems, we have to use the surrogate model, or directly
calculate the derivative of the finite element function, and
that may have a bad effect on the computing efficiency and
accuracy. Furthermore, it will cause more computing efforts
for solving the correlation coefficients of all the discrete
frequency points’ functions.
Therefore, this paper uses the univariate dimension re-

duction method (UDRM) [20–22] to solve the probability
distribution functions (PDFs) of the discrete frequency
points’ functions in the system. Thus when solving the cor-
relation coefficient matrix, we can reuse the calculation re-
sults of the functions which have been solved when
calculating the PDFs. In this way, FRDR simplifies the
analysis process, resulting in higher efficiency and much
better practicability.

2 Frequency domain reliability problem

Performance indicators usually vary with frequency in
electromagnetic problems. Considering the influence of un-
certain parameters on it, the frequency domain reliability of
the electromagnetic problems is defined as: considering the
uncertainty of structural parameters and frequency-variant
electromagnetic parameters, the probability that a perfor-
mance indicator can meet the intended requirements within a
specific frequency band. According to the definition of re-
liability, the failure probability ( )P f f,L U of an electro-
magnetic performance indicator in the frequency band
[ ]f f,L U is [23]
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( ) { }P f f P g f f f f fX Y, = ( ( ), , ) < 0, [ , ] , (1)L U L U

where f is frequency, P{ } represents probability calcula-
tion, g( ) is the performance indicator function, fX( )=

[ ]X f X f X f= ( ), ( ), ..., ( )m1 2 is a m-dimensional random pro-
cess vector, Y Y YY = ( , , ..., )n1 2 is a n-dimensional random
vector.
The reliability analysis method based on Monte Carlo si-

mulation (MCS) is the most basic method for calculating the
reliability problem, and can also be used in the frequency
domain reliability analysis. First, MCS is used to sample
random process vector fX( ) and random vector Y to obtain
N groups of samples [ ]f i NX Y( ), , = 1, 2, ...,i i . Take these
samples into fX( ) and Y of the function g f fX Y( ( ), , ), we
can obtain N deterministic frequency functions

( )g f f i NX Y( ), , , = 1, 2, ...,i i . The function corresponding to

the i-th group of samples is expressed as ( )g f fX Y( ), ,i i .
Then, find the minimum value in the design frequency band
[ ]f f,L U of each deterministic frequency function. And if it is
less than 0, the corresponding group of samples is considered
to be failure. Finally, count the number of failed groups nf ,
the failure probability equals the number of failed groups
divided by the total number of groups, i.e. ( )P f f n N, = /fL U .

3 Frequency domain reliability analysis method
based on univariate dimensional reduction
method

The above MCS requires a large number of function eva-
luations, which often causes excessive computational cost in
engineering problems. In this paper, with reference to ran-
dom process discretization and based on UDRM, we propose
FRDR, which not only avoids the expensive computational
cost of MCS, but also is an accurate calculation tool for
frequency domain reliability analysis.
The flow chart of FRDR is shown in Figure 1. By dis-

cretizing the frequency domain function into discrete fre-
quency points’ functions, we first convert the frequency
domain reliability problem into a series system reliability
problem of the discrete functions. Then UDRM is employed
to solve the PDFs of the discrete functions and the correla-
tion coefficient matrix in the system. Finally, corresponding
to the PDFs and the correlation coefficient matrix, frequency
domain reliability can be obtained by calculating the system
reliability and the cumulative distribution function (CDF) of
the frequency domain function can also be obtained. In this
way, after solving the PDFs, it is not necessary to call the
function again to calculate the correlation coefficients, but to
establish a corresponding method to directly obtain the

correlation coefficient matrix by using the previous calcu-
lation results, thus improving the efficiency of the method.
While for solving the CDF of the frequency domain function,
we only need to repeatedly calculate the system reliability of
different failure thresholds, without increasing the number of
calls to the function.

3.1 Transformation and calculation of the system re-
liability

Discretizing the frequency domain function over [ fL, fU] in
eq. (1) at p+1 frequency points, we can get a series system
reliability problem with p+1 functions, which can be ex-
pressed as follows [17]:

{ ( )
( )

( )

P f f

P g f f f i f f f f
pX Y

,

= 1 , , > 0, = , = , (2)
i

p

i i i i

L U

=0
U L

where ( )( )g f fX Y, ,i i i is the function at the i-th frequency

point f i, ( ) [ ]f X f X f X fX = ( ), ( ), ..., ( )i i i m i1 2 is the random vector

of fX( ) at f i, the correlation coefficient matrix ( )fXCOV( )i

can be obtained by the cross-correlation function matrix of
fX( ).

Define ( ) ( )( ) ( )g f g f f i pX Y X Y, = , , , = 1, 2, ...,i i i i . Due to
the correlation among the functions at discrete frequency
points, the functions g i p, = 1, 2, ...,i , can be regarded as a set
of correlated random variables, of which the marginal
probability density function fg i

and correlation coefficient
matrix can be solved by UDRM and maximum entropy
method (MEM) [24]. According to the method of series
system reliability analysis [25], the eq. (2) can be calculated
by the follows:

{ }

( )
( ) ( )

P g f g g

F F

F

> 0 = ... d ...d

= (0) , ..., (0) , ...,

    (0) , , (3)

i

p

i g g p

p g g

g

=0 0

+

0

+
,... 0

+1
1 1

1

p

i

p

0

0

where fg g,..., p0
is the joint probability density function of

g g, ..., p0 , ( )p +1 is the p + 1-dimensional standard gaussian

distribution function, Fgi
is the marginal cumulative dis-

tribution function of gi, is the new correlation coefficient
matrix converted from after Nataf transformation.
In system reliability problem, when two random variables

are identically distributed and the correlation between them
is close to 1, the two correlated variables can be regarded as
one variable, which has little effect on the calculation ac-
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curacy. This characteristic can be used to define the con-
vergence condition of the quantity of discrete frequency
points. In eq. (3), the quantity of discrete frequency points is
iterated until the correlation of arbitrarily adjacent two
functions reaches a certain value (less than 1), which is the
convergence index set by us. For engineering problems, this
convergence index will be used to balance the calculation
efficiency and calculation accuracy.
It is worth noting that, there is a difference between the

problem above and the conventional series system reliability
problem, because all the components of the latter usually
share the same input random variables, while the compo-
nents of the former do not. For example, ( )( )g fX Y,i i has an

input random vector ( )fX i while ( )( )g f j iX Y, ( )j j has an-

other input random vector ( )fX j which is correlated to ( )fX i .
As a consequence of that, the calculation of in this study is
different from that in the conventional series system relia-
bility problem. The following two subsections will detail the
calculation of the above mentioned fg i

and separately.

3.2 Uncertainty analysis of the discrete frequency
point’s function

For simplicity, hereinafter all the random processes in fX( )
are assumed to be mutually independent and so are the

random variables in Y. In the uncertainty analysis of the i-th
frequency point’s function ( )( )g fX Y,i i , UDRM is adopted to
solve the first n-th statistical moments, from which the PDF
fg i

can be obtained by MEM. So we calculate the moments

first. The k-th moment about zero of ( )( )g f YX ,i i is expressed
as

( )( ) ( )( )µ g f g f f fX Y X Y= E , = d d , (4)k i
k

i i
k

X f iYi

in which E represents the expectation operator, is the in-
tegral domain, ( )f X fi

is the joint PDF of the random vector

( ) [ ]f X f X f X fX = ( ), ( ), ..., ( )i i i m i1 2 , fY is the joint PDF of the
random vector Y Y YY=[ , , ..., ]n1 2 .

There are m n+ variables in ( )( )g fX Y,i i , which may cause
the integral in eq. (4) cannot be evaluated analytically.
UDRM [20–22] involves an additive decomposition of a
multi-dimensional response function into multiple one-di-
mensional functions, and approximate the response moments
by the moments of one-dimensional functions. By UDRM,

( )( )g fX Y,i i can be expressed as

( )( ) ( )g f g X f X f X f Y Y Y

m n g g g

X Y, = ( ), ( ), ..., ( ), , , ...,

( + 1) + + , (5)

i i i i i m i n

i
u

m

i X
v

n

i Y

1 2 1 2

,0
=1

,
=1

,u v

Figure 1 The flow chart of FRDR.
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in which gi,0 represents ( )( )g µ µ,i X f Yi
, gi X, u

represents

( )g µ µ X f µ µ µ, ..., , ( ), , ..., ,i X f X f u i X f X f Y( ) ( ) ( ) ( )i u i u i m i1 1 +1
, gi Y, v

re-

presents ( )( )g µ µ Y µ µµ , , ..., , , , ...,i X f Y Y v Y Yi v v n1 1 + 1
, ( )µX fi

is the

mean of ( ) [ ]f X f X f X fX = ( ), ( ), ..., ( )i i i m i1 2 , µY is the mean of
Y Y YY=[ , , ..., ]n1 2 . Bring eq. (5) into eq. (4), the k-th moment

about zero of ( )( )g fX Y,i i can be approximated as

( )( )µ g f

m n g

X Y= E ,

E ( + 1) + g + g . (6)

k i
k

i

i
u

m

i X
v

n

i Y

k

,0
=1

,
=1

,u v

Applying the binomial formula on the right-hand side of
eq. (6) gives

µ k
l

m n g

k
l

l
q

m n g

E g + g ( + 1)

= E g E g

× ( + 1) . (7)

k
l

k

u

m

i X
v

n

i Y

l

i
k l

l

k

q

l

u

m

i X

q

v

n

i Y

l q l

i
k l

=0 =1
,

=1
, ,0

=0 =0 =1
,

=1
,

,0

u v

u v

Define

S = E g , (8)u
q

j

u

i X

q

=1
, j

R = E g , (9)v
l q

j

v

i Y

l q

=1
, j

in which u m= 1, , , v n= 1, , , q l= 1, , , l k= 1, , .
Using the recursive formula gives

( )

( )

( )

S q l

S
q
p S q l

S
q
p S q l

S
q
p S q l

= E (g ) ; = 1, , ,

= E (g ) ; = 1, , ,

= E (g ) ; = 1, , ,

= E (g ) ; = 1, , ,

(10)

q
i X

q

q

p

q
p

i X
q p

u
q

p

q

u
p

i X
q p

m
q

p

q

m
p

i X
q p

1 ,

2
=0

1 ,

=0
1 ,

=0
1 ,

u

m

1

2

R l q l

R l q
p S l q l

R l q
p S l q l

R l q
p S l q l

= E (g ) ; = 1, , ,

= E (g ) ; = 1, , ,

= E (g ) ; = 1, , ,

= E (g ) ; = 1, , .

(11)

l q
i Y

l q

l q

p

l q
p

i Y
l q p

v
l q

p

l q

v
p

i Y
l q p

n
l q

p

l q

n
p

i Y
l q p

1 ,

2
=0

1 ,

=0
1 ,

=0
1 ,

v

n

1

2

Hence, eq. (7) becomes

µ k
l

l
q S R m n g( + 1) . (12)k

l

k

q

l

m
q

n
l q

i
k l

=0 =0
,0

In eqs. (10) and (11), one needs to compute E (g )i X
q

, u
and

E (g )i Y
q

, v
, q l= 1, , . According to the definition of ex-

pectation

( )f x xE (g ) = (g ) ( )d , (13)i X
q

i X
q

X f u u,
+

,u u u i

f y yE (g ) = (g ) ( )d , (14)i Y
q

i Y
q

Y v v,
+

,v v v

where ( )f X fu i
is the PDF of ( )X fu i , fYv

is the PDF of Yv. The
numerical integration method is used to solve the above
series of univariate integrals, and then bring the result into
eq. (12) to obtain the k-th moment about zero of ( )( )g fX Y,i i .
MEM [26] can be used for estimating the PDF of a random

variable based on its statistical moments. The principle of
maximum entropy can be described as follows: under given
statistical moments, there exist a lot of possible probability
distributions, one of which can maximize the information
entropy is the least biased, and that is the maximum entropy
probability distribution. Now we take the statistical moments
of ( )( )g fX Y,i i as constraints, and use MEM to find the PDF

of ( )( )g fX Y,i i .

Define f g( )ig i
as the PDF of g i, then its information en-

tropy H is

H f g f g g= ( )ln ( )d , (15)i i ig gi i

in which is the integral domain.
Take the first k-th moments about zero µ r k, = 0, 1, ...,r , as

constraints, maximizing the eq. (15) gives

( )
H
µ g g f g g r k

max
s.t. = E = ( )d , = 0, 1, ..., . (16)

r i
r

i
r

g i ii

Based on the Lagrange multiplier method [27] and by in-
troducing modified function, the maximum entropy prob-
ability density function is obtained as
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f g a g( ) = exp , (17)i
r

k

r i
r

g
=0i

in which ar is the undefined parameter. Taking eq. (17) into
eq. (16), there yields a set of nonlinear equations

µ g a g g r k= exp d , = 0, 1, ..., . (18)r i
r

r

k

r i
r

i
=0

Usually, we use the first four-order statistical moments as
constraints. According to the statistical moments, the coef-
ficients a r k, = 0, 1, ...,r , can be obtained by solving eq. (18),
then bringing them into eq. (17) can obtain the maximum
entropy probability density function fg i

of gi.

3.3 Calculation of the correlation coefficient matrix

In the subsection, we will give an approach to calculate the
correlation coefficient matrix for solving eq. (3). i j, is an
component of which represents the correlation coefficient
between gi and gj, and it can be expressed as

g g µ µ
=

E( )
, (19)i j

i j g g

g g,
i j

i j

in which µ µ,g gi j
are the means of gi, gj respectively, ,g gi j

are the standard deviations of gi, gj respectively, and they all
can be solved by the uncertainty analysis in Sect. 3.2. g gE( )i j

can be calculated by

( )( )
( )

( )( )

( ) ( )( )

g g g g f g g

g X f Y g X f Y

f f X f X f Y

E( ) = d d

= , ,

× d d d , (20)

i j i j g g i j

i i j j

X f X f i jY

,

,

i j

i j

where ( )( )X f X f,i j are the random vector of fX( ) at i-th and

j-th frequency point respectively, ( )( )f X f X f,i j
is the joint PDF.

Because of the independence of the components in X f( ), we

can obtain ( ) ( ) ( ) ( )( ) ( ) ( ) ( )f f f f=X f X f X f X f X f X f X f X f, , , ,i j i j i j m i m j1 1 2 2
,

any one of them ( )( )f k m, = 1, 2, ..., ,X f X f,k i k j
can be fitted by

gaussian copula function [28]:

{
}

( )

( )

( )

( )

( )

( )

( )

( )

f

f f

f f

f f

I

=

exp ( ), ( )

× ( ); ( ) , (21)

X f X f

X f X f k

X f X f k

X f X f

,

1/2

1

k i k j

k i k j

k i k j

k i k j

1 1

1 1

where ( )( )f f,X f X fk i k j
are the marginal PDF of ( )X fk i and ( )X fk j

respectively, k is the correlation coefficient matrix of ( )X fk i

and ( )X fk j , I represents unit matrix. Expand gi and gj re-
spectively using UDRM described above

( )g X Y f m n g, , ( + 1) + g + g , (22)i i i i
u

m

i X
v

n

i Y,0
=1

,
=1

,u v

( )g X Y f m n g, , ( + 1) + g + g . (23)j j j j
u

m

j X
v

n

j Y,0
=1

,
=1

,u v

Take eq. (22) and (23) into eq. (20)

( )

( )

( )

( )

( )

( )

g g g g f g g

m n g g m n g

f x x f y y

m n g

f x x f y y

f x x x x

f x f y x y

f x f y x y

f y f y y y

E( ) = d d

=( + 1) ( + 1)

× g ( )d + g ( )d

( + 1)

× g ( )d + g ( )d

+ g g ( , )d d

+ g g ( ) ( )d d

+ g g ( ) ( )d d

+ g g ( ) ( )d d . (24)

i j i j g g i j

i j i

u

m

j X X f u u
v

n

j Y Y v v

j

u

m

i X X f u u
v

n

i Y Y v v

u

m

u

m

i X j X X f X f u u u u

u

m

v

n

i X j Y X f u Y v u v

v

n

u

m

j X i Y X f u Y v u v

v

n

v

n

i Y j Y Y v Y v v v

,

2
,0 ,0 ,0

=1
,

=1
,

,0

=1
,

=1
,

=1 =1
, , ,

=1 =1
, ,

=1 =1
, ,

=1 =1
, ,

i j

u u j v v

u u i v v

u u u i u j

u v u i v

u v u j v

v v v v

1 2
1 2 1 2 1 2 1 2

1 2
1 2 1 1 2 2 1 2

It can be found that the high dimensional integral in
eq. (24) becomes a linear superposition of a plurality of one-
dimensional and two-dimensional integrals, wherein every
two-dimensional integral function is the product of two
univariate functions. When performing numerical integration
method to solveeq. (24), we adopt the same integral nodes as
which are used for calculating the statistical moments in
Sect. 3.2, so that avoid calling the function again, so as to
improve the computational efficiency.
Taking solution of eq. (24) into eq. (19), the correlation

coefficient of any two discrete frequency points’ functions
can be calculated. Then the correlation coefficient matrix
can be constructed. Finally, the correlation coefficient matrix

corresponding to the standard normal distribution will be
obtained by Nataf transformation. Combined with the PDF
f i p, = 0, 1, ..., ,g i

of each discrete frequency point function

obtained in Sect. 3.2, the failure probability ( )P f f,L U of
frequency domain function can be obtained by solving
eq. (3). We can also obtain the CDF of the frequency domain
function by solving the eq. (3) at different thresholds, and
this process does not need additional computational effort.
Otherwise, the calculation of the multidimensional Gaussian
distribution function in eq. (3) can refer to the refs. [29–33].
It is worth noting that, in the above analysis, all random
processes in X f( ) are assumed to be mutually independent
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and so are all random variables in Y . If they are not in-
dependent, the Nataf transformation and the orthogonal
transformation can be applied to transform them into mu-
tually independent ones so that the above analysis works as
well.

4 Examples and discussion

In this section, three examples are used to demonstrate the
accuracy and efficiency of FRDR. As a comparison, MCS
are adopted in these examples, in which random process
samples are generated by the expansion optimal linear esti-
mation method (EOLE) [34].

4.1 Frequency domain reliability analysis of a numer-
ical example

Construct the frequency domain function as follows:

g x x p f f
x x f x f p f

( , , ( ), )

= 3e 1.8e 0.5 ( ) + 2.01, (25)
1 2

4
1 2

7
2

2

in which x x,1 2 are random variables,P f( ) is random process,
f represents frequency. The distributions of all random
parameters are listed in Table 1. It is stipulated that the fre-
quency band is [ ]f f,L U , and the allowable minimum isG, then
the failure probability of the frequency domain function is
given by

( )
{ }

P f f G
P g p f f G f f f

x x x x
x

x

, ,

= 1 ( , ( ), ) , [ , ] ,
= [ , , , ]. (26)

L U

L U

1 2 3 4

When the threshold G = 0, and taking 40 Hz as the center
frequency, the frequency domain reliability in different fre-
quency bandwidths is analyzed. Three different Cases 1–3
are considered, where the number of discrete frequency
points N is 15, 29 and 43 respectively. The reliability ana-
lysis results obtained by FRDR and MCS, and relative error
between the two methods are listed in Table 2. In MCS, the
number of samples is set to be 1.4 × 109. Figure 2 shows that
the failure probability obtained by FRDR and MCS changes
with the frequency bandwidth. Firstly, the results indicate
that, the reliability does not remain constant but gradually
decreases with the increase of frequency bandwidth. Sec-
ondly, it shows the stability of FRDR, of which the results
gradually approach that of MCS as N increases. In the case
of N =43, the minimum correlation coefficient of arbitrary
adjacent discrete frequency points’ functions is above 0.95,
and the curve of this case is very close to that of MCS. In
Cases 1–3, the maximum deviations of the failure probability
obtained by FRDR are 33%, 10% and 1.5% respectively.
That shows a good convergence and accuracy of the method.

From the perspective of computational efficiency, when the
frequency band is [ fL, fU]=[12,68], MCS called the frequency
domain function 1.4 × 109 times, while FRDR called the
frequency domain function 360 times, 696 times and 1032
times in Cases 1–3 respectively. So it can be found that
FRDR is far more efficient than MCS. In addition, Figure 3
shows the CDF curve of the frequency domain function
obtained by MCS and FRDR in Case 3 within the frequency
band of [ fL, fU]=[12,68].

4.2 Frequency domain reliability analysis of power
amplifier link

The power amplifier link is an important part of the transmit/
receive (T/R) module of active phased array radar [35–37].
The frequency domain characteristics of the power amplifier
link are the key indicators to measure its performance. And
the frequency domain reliability analysis of the power am-
plifier link can provide an important reference for its design
and optimization to improve its performance. The finite
element model of the power amplifier link is shown in Figure
4 [38], which is mainly composed of two parts: microstrip
lines and printed boards. The printed boards are divided into
two types: FR4 printed board and microwave printed board.
The material and size parameters are different of them, and
so are the microstrip lines’ size.
Consider signal transmission process of the power ampli-

fier link. Let the input electromagnetic signal in the power
amplifier link be ( )I A f= cos2 +in in , and the output will be

( )I nA f= cos2 +out out , where A denotes the amplitude of
the input signal, n is the amplification factor, f represents
frequency, ,in out represents the input and output phases
respectively. In practical application, we are more concerned
about the uncertainty of the phase shift = out in , and
the phase shift can be expressed as

( )x x x x f f f= , , , , ( ), ( ), , (27)1 2 3 4 1 2

where x1,x3 represent the thickness of FR4 printed board and
microwave printed board respectively, x2, x4 represent the
width of the microstrip line on FR4 printed board and mi-
crowave printed board respectively, and they are all regarded
as random variables. f( )1 , f( )2 represent the permittivity of
FR4 printed board and microwave printed board respec-
tively, and they are random processes. The distributions of all
random parameters are listed in Table 3. The function in-
volved frequency can be expressed as

( )
( )

g x x x x f f f
x x x x f f f µ f

, , , , ( ), ( ),

= , , , , ( ), ( ), ( ). (28)
1 2 3 4 1 2

1 2 3 4 1 2

When the frequency band is [ ]f f,L U , and the allowable
minimum phase shift radius is r, the failure probability of
the power amplifier link is given by
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( )

[ ]

P f f

P
g f f

g f f f f f

x x x x f f f

x
x

x

, , [ , + ]

= 1
( , ( ), ) >

( , ( ), ) < + , [ , ]
,

= [ , , , ], ( ) = ( ), ( ) . (29)

r r

r

r

L U

L U

1 2 3 4 1 2

Perform frequency domain reliability analysis to this
problem. In the case of the center frequency is 3 GHz and

= 5r , the frequency domain reliability in different fre-
quency bandwidths is analyzed. Three different Cases 1–3
are considered, where the number of discrete frequency
points N is 15, 29 and 43, respectively. The reliability ana-
lysis results obtained by FRDR and MCS, and relative error
between the two methods are listed in Table 4. In MCS, the
number of samples is set to be 7×106. Figure 5 shows that the

failure probability obtained by FRDR and MCS changes
with the frequency bandwidth. Firstly, the results indicate
that, the reliability does not remain constant but gradually
decreases with the increase of frequency bandwidth. Sec-
ondly, it shows the stability of FRDR, of which the results
gradually approach that of MCS as N increases. In the case of
N=43, the minimum correlation coefficient of arbitrary ad-
jacent discrete frequency points’ functions is above 0.96, and
the curve of this case is very close to that of MCS. In Cases
1–3, the maximum deviations of the failure probability ob-
tained by FRDR are 4.3%, 2.3% and 1.2%, respectively. That
shows a good convergence and accuracy of the method.
From the perspective of computational efficiency, when the
frequency band is [fL, fU]=[2.3,3.7], MCS called the fre-
quency domain function 7×106 times, while FRDR called the

Table 1 Distributions of the random parameters for numerical example

Parameter Type of distribution Mean Coefficient of variation Autocorrelation coefficient function

x1 Normal 1.3 0.01 NA

x2 Normal 1.3 0.05 NA

p( f ) Stationary Gaussian process 3 0.3 exp[–(0.16Δ f )2]

Figure 2 (Color online) The curves indicating the failure probability for
the frequency domain function.

Figure 3 (Color online) The CDF curves of the frequency domain

function in the frequency band of f f, = [12, 68]
L U

.

Table 2 The failure probability of frequency domain function

Result
Frequency (Hz)

40 40±4 40±8 40±12 40±16 40±20 40±24 40±28

MC 0.000202 0.000769 0.00136 0.00194 0.00251 0.00308 0.00368 0.00423

FRDR

Case 1
relative error

0.000205
2.0%

0.000581
24%

0.000970
29%

0.00135
30%

0.00172
32%

0.00208
33%

0.00248
33%

0.00290
30%

Case 2
relative error

0.000205
1.5%

0.000706
8.2%

0.00123
10%

0.00179
7.7%

0.00228
9.2%

0.00277
10%

0.00330
12%

0.00392
7.3%

Case 3
relative error

0.000205
1.5%

0.000763
0.78%

0.00134
1.5%

0.00191
1.5%

0.00252
0.40%

0.00312
1.3%

0.00372
1.1%

0.00428
1.2%
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frequency domain function 450 times, 870 times and 1290
times in Cases 1–3 respectively. So it can be found that
FRDR is far more efficient than MCS. In addition, we can

see that the power amplifier link has a good reliability at the
center frequency, and its failure probability is 0.0265.
However, when the frequency bandwidth is up to 1.4 GHz,

Figure 4 (Color online) Finite element model of the power amplifier link [38]. (a) 3D electromagnetic simulation model; (b) top view of the model without
the shell; (c) bottom view of the model without the shell.

Table 3 Distributions of the random parameters for the power amplifier link

Parameter Type of distribution Mean Coefficient of variation Autocorrelation coefficient
function

x1 Lognormal 0.7 mm 0.0014 NA

x2 Lognormal 0.9 mm 0.0019 NA

x3 Normal 1 mm 0.001 NA

x4 Normal 2.2 mm 0.0015 NA

ε1( f ) Stationary Gaussian process 4.8 0.069 exp[–(0.9 f )2]

ε2( f ) Stationary Gaussian process 3.5 0.049 exp[–(0.9 f )2]

Table 4 The failure probability of the power amplifier link

Result
Frequency (Hz)

3 3±0.1 3±0.2 3±0.3 3±0.4 3±0.5 3±0.6 3±0.7

MC 0.0263 0.0322 0.0332 0.0349 0.0372 0.0386 0.0395 0.0404

FRDR

Case 1
relative error

0.0265
0.76%

0.0304
2.25%

0.0318
4.22%

0.0334
4.30%

0.0358
3.76%

0.0374
3.11%

0.0385
2.53%

0.0397
1.73%

Case 2
relative error

0.0265
0.76%

0.0308
0.96%

0.0325
2.11%

0.0341
2.29%

0.0366
1.61%

0.0382
1.04%

0.0390
1.27%

0.0399
1.24%

Case 3
relative error

0.0265
0.76%

0.0309
0.64%

0.0328
1.20%

0.0345
1.15%

0.0369
0.81%

0.0383
0.78%

0.0393
0.51%

0.0400
0.99%
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the failure probability increases to 0.0400, about 1.5 times
the initial value. So its reliability in supposed bandwidth
should be taken into account when the power amplifier link
is in the part of design. When the frequency bandwidth is
1.4 GHz, Figure 6 shows that the failure probability of the
power amplifier link varies with phase shift radius within the
frequency band of [ ]f f, = [2.3, 3.7]L U .

4.3 Frequency domain reliability analysis of phased-
array antenna

Phased-array antenna has been widely used and rapidly de-
veloped in the fields of radar, communication, electronic
warfare, and navigation [8–10]. Its frequency domain per-
formances are the main objectives in design and optimiza-
tion. The reliability analysis of frequency domain
performances can provide an important reference for design
and optimization under uncertainty, and further improve the
performances. Figure 7 shows the finite element model of a
horn phased array antenna, which is consisted of four iden-
tical horn antennas. Each horn antenna has an independent
input current. Focus on the electric field intensity in fre-
quency domain, and it can be influenced by the phase errors
of the input currents and the structural errors of the antenna.
The structural errors are mainly from the heights of the
waveguides z1, z2, z3, z4 and the horns z5, z6, z7, z8, that are all
regarded as random variables. The input currents’ phases are
related to frequency, and are expressed as f f( ), ( ),1 2

f f( ), ( )3 4 , that are regarded as random processes. The
distributions of the random parameters described above are
shown in Table 5. Considering the these variables, the
electric field intensity of the array antenna can be expressed
as

A A

A A

E E E E E

B

( , ) = + + +

= ( , ) e + e

+ e + e , (30)

j f j f

j f j f

1 2 3 4

1
( )

2
( )

3
( )

4
( )

1 2

3 4

where B( , ) is related to antenna structure which can be
seen as the function of z1–z8, , represents the direction
angle of the spherical coordinate system, A i, = 1, 2, 3, 4i is
the current amplitude. In the case of = 0, = 0, the fre-
quency domain function E(0,0) can be expressed as

( )z z z f f f f

A A A AB

g , , ..., , ( ), ( ), ( ), ( )

= (0, 0) e + e + e + e . (31)j f j f j f j f

1 2 8 1 2 3 4

1
( )

2
( )

3
( )

4
( )1 2 3 4

When the frequency band is [ ]f f,L U , and the allowable
minimum electric field intensity is G, the failure probability
of the phased array antenna is given by

( ) { }
[ ]

P f f G P g f G f f f
z z z f f f f f

z
z

, , = 1 ( , ( )) , [ , ] ,

= [ , , ..., ], ( ) = ( ), ( ), ( ), ( ) .
(32)L U L U

1 2 8 1 2 3 4

Perform frequency domain reliability analysis to this
problem. In the case of G=43.8 dB and the center frequency
is 9 GHz, the frequency domain reliability in different fre-
quency bandwidths is analyzed. Three different Cases 1–3

Figure 5 (Color online) The curves indicating the failure probability for
the power amplifier link.

Figure 6 (Color online) The failure probability of the power amplifier
link varies with phase shift radius.

Figure 7 (Color online) Finite element model of the horn phased array
antenna.
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are considered, where the number of discrete frequency
points N is 21, 41 and 61 respectively. The reliability analysis
results obtained by FRDR and MCS, and relative error be-
tween the two methods are listed in Table 6. In MCS, the
number of samples is set to be 1×107. Figure 8 shows that the
failure probability obtained by FRDR and MCS changes
with the frequency bandwidth. Firstly, the results indicate
that, the reliability does not remain constant but gradually
decreases with the increase of frequency bandwidth. Sec-
ondly, it shows the stability of FRDR, of which the results
gradually approach that of MCS as N increases. In the case of
N=61, the minimum correlation coefficient of arbitrary ad-
jacent discrete frequency points’ functions is above 0.95, and
the curve of this case is very close to that of MCS. In Cases
1–3, the maximum deviations of the failure probability ob-
tained by FRDR are 15%, 5.6% and 2.5%, respectively. That
shows a good convergence and accuracy of the method.
From the perspective of computational efficiency, when the
frequency band is [ fL, fU]=[8.5,9.5], MCS called the fre-
quency domain function 1×107 times, while FRDR called the
frequency domain function 1260 times, 2460 times and 3660
times in Cases 1–3 respectively. So it can be found that
FRDR is far more efficient than MCS. In addition, we can
see that the power amplifier link has a good reliability at the
center frequency, and its failure probability is 0.0139.
However, when the frequency bandwidth is up to 1 GHz, the
failure probability increases to 0.0887, about 6 times the
initial value. So its reliability in supposed bandwidth should
be taken into account when the power amplifier link is in the
part of design. When the frequency bandwidth is 1 GHz,
Figure 9 shows that the failure probability of the array an-
tenna varies with electric field intensity within the frequency

Table 5 Distributions of the random parameters for the horn phased array antenna

Parameter Type of distribution Mean Sigma Autocorrelation coefficient
function

z1–z4 Normal 29 mm 0.29 mm NA

z5–z8 Lognormal 165 mm 0.297 mm NA

α1(f)–α4(f) Stationary Gaussian process 0° 15° exp[–(0.75 f )2]

Table 6 The failure probability of the phased-array antenna

Result
Frequency (Hz)

9 9±0.05 9±0.1 9±0.15 9±0.2 9±0.25 9±0.3 9±0.35 9±0.4 9±0.45 9±0.5

MC 0.0136 0.0259 0.0396 0.0528 0.0611 0.0635 0.0651 0.0677 0.0705 0.0801 0.0898

FRDR

Case 1
relative error

0.0139
2.21%

0.0239
7.72%

0.0356
10.10%

0.0468
11.36%

0.0518
15.22%

0.0537
15.43%

0.0553
15.05%

0.0571
15.66%

0.0603
14.47%

0.0691
13.73%

0.0793
11.69%

Case 2
relative error

0.0139
2.21%

0.0249
3.86%

0.0380
4.04%

0.0512
3.03%

0.0591
3.27%

0.0609
4.09%

0.0622
4.45%

0.0639
5.61%

0.0671
4.82%

0.0758
5.37%

0.0855
4.79%

Case 3
relative error

0.0139
2.21%

0.0256
1.16%

0.0391
1.26%

0.0521
1.33%

0.0602
1.47%

0.0623
1.89%

0.0643
1.23%

0.0660
2.51%

0.0695
1.42%

0.0783
2.25%

0.0887
1.22%

Figure 8 (Color online) The curves indicating the failure probability for
the phased array antenna.

Figure 9 (Color online) The failure probability of the phased array an-
tenna varies with electric field intensity.
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band of [ fL, fU]=[8.5,9.5].

5 Conclusions

In electromagnetic problems, the reliability in frequency
band is usually lower than the reliability of center frequency,
and the wider the bandwidth, the greater the probability of
failure. This paper defines the frequency domain reliability
problem of electromagnetic problems, and proposes a fre-
quency domain reliability method based on UDRM, which
provides an effective calculation tool for practical electro-
magnetic frequency domain problems. The method firstly
discretizes the frequency domain function into a series of
frequency points’ functions, and then transforms the fre-
quency domain reliability problem into a series system re-
liability problem of discrete frequency points’ functions.
And UDRM is introduced to solve the PDFs and correlation
coefficients of discrete frequency points’ functions, leading
to a much higher efficiency. In the future, FRDR can be
extended to frequency domain system reliability analysis,
frequency domain reliability-based design optimization
(FRBDO), and other relevant important issues.
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China (Grant No. 51490662), and the National Science Fund for Dis-
tinguished Young Scholars (Grant No. 51725502).
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