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A study of indentation scaling relationships of elastic-perfectly
plastic solids with an inclusion near the conical indenter tip
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Indentation hardness is found to be related to indentation depth when indentation test is applied on homogeneous materials under
small indentation depth, which shows strong size effect in the indentation. While in contrast, indentation hardness has a very
limited relationship with indentation depth when it is large, showing distinct scaling relationships between hardness and material
properties. Previous studies on scaling relationships under deep indentation condition of elastic-perfectly plastic homogeneous
materials have been carried out systematically by finite element analysis. In this paper, a heterogeneous material, particle-
reinforced matrix composite is detailed studied to investigate its scaling relationships under deep indentation with different
particle positions and material properties by finite element analysis.
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1 Introduction

Indentation tests have taken important positions of me-
chanical tests of materials for more than a hundred years.
Comparing with other test methods, indentation test has an
advantage of convenient procedure and fast response, espe-
cially at small length scales. The quasi-static and dynamic
indentation tests are able to collect the message of load-
displacement curve, indentation contact morphology and the
recovery of the indentation residual, which helps to obtain
the elastic modulus, indentation hardness and other me-
chanical properties of materials. Stilwell and Tabor [1]
suggested to calculate material mechanical properties from
the elastic recovery of the indentation test very early, which
was soon applied experimentally [2,3]. Oliver and Pharr [4]
proposed a well-known method to determined hardness and
other material properties by indentation test, thus indentation
test became one of the most used methods in material testing.

For metal materials, indentation tests are considered as
deep ones while indentation depth is larger than submicrons,
otherwise are deemed to be shallow ones. Many re-
presentative researches have been applied about deep in-
dentation tests, one of which was to obtain material
properties by fitting the loading and unloading load-dis-
placement curve with finite element analysis [5]. The scaling
relationships of elastic-perfectly plastic materials in in-
dentation were found by comparison with Oliver-Pharr
method and Johnson’s spherical cavity model [5–7]. In-
dentation method was also widely used to find material
properties of heterogeneous materials [8–10]. And for in-
dentation with small depth, many cross-scale models are
brought forward to explain the intensive size effect in micro-
and nano-indentation tests. Strain gradient theory and surface
energy model are two typical models depicting the cross-
scale feature of mechanical properties in micro- and nano-
indentation tests [11–21].
In recent years, micro- and nano-indentation tests are ex-

tensively used together with the relevant numerical simula-
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tions in characterizing materials. Sun et al. [22] calculated
the fracture toughness of ceramics obtained from finite ele-
ment method by virtual crack closure technology (VCCT),
showing high accuracy comparing with experiments. Finite
element method has relatively low cost and high stability,
which makes it a useful method in indentation tests. Mean-
while, many simulation models and calculation methods
were studied and developed correspondingly [23,24]. Me-
chanical properties of new materials [25–32] and their me-
chanical response under multi-physics fields [33–35] were
systematically researched.
The validity of indentation tests is of much significance;

many studies have been carried out on the system error and
the validity of indentation tests. The convenience and pre-
ciseness of indentation tests were widely accepted under
deep indentation [5–7,36]. However, there is still much that
is not clear. For instance, whether the scaling relationships of
homogeneous materials are sensitive to the inclusion, im-
purity or defect. This paper aims at the deep indentation of
the particle-reinforced matrix composite to find the hetero-
geneity’s influence on the scaling relationships of homo-
geneous elastic-perfectly plastic materials by dimensional
analysis and finite element analysis, studying the hard par-
ticle-soft matrix composite and the spherical hole-matrix
circumstances. By focusing on the particle or defect posi-
tion’s and size’s influence on the indentation response, the
scaling relationships of heterogeneous materials are studied
and the relations between indentation hardness, contact area,
load-displacement curve and indentation depth are also
considered.

2 Dimensional analysis

For indentation experiment, the general parameters needed to
be controlled are the indenter and the mechanical properties
of the test base, namely, the half angle of the conical indenter
(θ), Young’s modulus (E), yield strength (Y) and Poisson’s
ratio (v) of the elastic-perfectly plastic matrix. With the
consideration of grain impurity, Young’s modulus (Eg) and
Poisson’s ratio (vg) of the grain are needed. Since the particle
is taken to be elastic for simplicity, the plastic parameters are
not considered. Along with the mechanical properties,
parameters for geometric appearance of the particle-re-
inforced matrix composite are also needed, namely, the
diameter of the spherical particle (d) and the depth form the
upper surface of the particle to the surface of the matrix (D).
The distribution of the inclusions in the matrix could be
unpredictable, to simplify the simulation model, the influ-
ence of all particles but the closest is neglected. The ra-
tionality of this simplification is also discussed in later
calculation. The simplified model is shown in Figure 1.
The conical indenter is supposed to be rigid, the position of

the indentation is right above the particle, the axis of the
conical indenter is collinear with the normal of the matrix
surface and particle’s diameter. Friction between indenter
and matrix is supposed to be zero. Though there is no ana-
lytic solution to this problem, the dimensional analysis could
help to obtain some useful scaling relationships.
As in Figure 1, parameters in indentation needed to be

considered are the load (F) and displacement (h) of the in-
denter and the morphology of the indentation area, namely,
the contact depth (hc) and the contact radius (r). With the
contact depth (hc) and the half angle of the indenter (θ), the
contact radius (r) can be calculated by

r h= tan , (1)c

thus the indentation hardness (H) is defined as

H F
r= . (2)2

In all variables and parameters mentioned above, the load
of indenter (F) and the contact depth (hc) are taken to be
functions of other variables as

F f E Y E d D h= ( , , , , , , , , ), (3)l g g
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In eqs. (3) and (4), the variables are composed with only
dimension of modulus and length. Taking Young’s modulus
of the matrix (E) and the displacement of the indenter (h) as
two independent variables, other variables can be expressed
as
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With the application of Π theory, the load of indenter (F)
and the contact depth (hc) could be written as
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Substituting eq. (2) into eqs. (6) and (7), the indentation
hardness (H) could be non-dimensionalized as
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these three functions are all dimensionless. It’s worth noting
that for the circumstances of grain-matrix composite, there
are 7 independent variables in the dimensionless functions,
but for the homogeneous situation the number of in-
dependent variables shrinks to 3, which is the same with the
situation of the composite with all inclusions at an infinite
distance away from the surface, then eqs. (6)–(8) could then
be written as follows [5–7]:

F Eh E
Y

h h E
Y

H Y E
Y

= , , ,

= , , ,

= , , .

(9)
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c 5

6

In eq. (9), Π4, Π5 and Π6 are irrelevant with indenter dis-
placement h. Hence in this homogeneous situation, when
E
Y , , are token to be constant, the load of the indenter (F) is

proportional to the square of h, the contact depth (hc) is
proportional to h and the indentation hardness (H) is pro-
portional to the yield strength of the matrix (Y). However, for
the grain composite, these relations would be influenced by
other parameters.
In addition, to find the relationship in the load-displace-

ment curve and the calculation of Young’s modulus from the
curve, the derivative of eq. (6) is non-dimensionalized as
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where hm is an arbitrary indenter displacement. From eq. (10)
the corresponding Young’s modulus could be estimated from
the value of the dimensionless function Π7.
Dimensionless functions help to reveal laws between dif-

ferent variables and reduce parameter dependency of ex-
periments, thus a reasonable selection of dimensionless
functions could give much instruction to experiments and
simulations.

3 Finite element analysis

In this paper, the commercial finite element software
ABAQUS is used to simulate the indentation test, from
which the scaling relationships of indentation is acquired
together with the inspirations from dimensional analysis.
A conical indenter with a half angle of 68° is chosen as

Bhattacharya et al. [3] did. The Poisson’s ratio of 0.2 for both
the particle (vg) and matrix (v) is chosen and Young’s mod-
ulus of hard grain (Eg) is 100 times that of the matrix (E),
namely Eg=100E. Unless otherwise stated, the above re-
lationships of parameters remain unchanged in this paper.
Due to the application of dimensionless functions, some
parameters could be fixed with no influence to the scaling
relationships, in this paper, the diameter of spherical grain
(d) and the yield strength of the matrix (Y) are fixed, thus

related variables E
Y
, D

d
and h

d
are all controlled by only one

parameter.
The simplified model is axisymmetric about the collinear

lines of the axis of the conical indenter and the spherical
grain. Such that an axisymmetric simulation model is used to
substitute the 3D entity to reduce the calculation cost. The
length of the whole analysis area is 100 times the radius of
the grain, hence this finite size model could be considered as
an infinite half space. Each different geometry of the com-
posite corresponds with one different model and a different
set of mesh. For each model, the number of the mesh is in the
range from 8000 to 10000, and these meshes of all models
pass the mesh convergence test to minimize the divergence
from different meshes. All meshes are chosen to be 4-node
bilinear axisymmetric quadrilateral meshes. The general
mesh distribution and the refined area near the indenter and
the grain are shown in Figure 2.
The indenter load (F) and displacement (h) are extracted

from the reaction force and the vertical displacement of the
reference point on the indenter. The contact depth (hc) is

Figure 1 The particle-reinforced matrix composite and simplified axisymmetric model.
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obtained from the total contact area of ABAQUS(CAREA)
and the half angle of the indenter (θ), and by eqs. (1) and (2),
the indentation hardness (H) could be calculated. The si-
mulation and result are carried out by ABAQUS CAE/
Standard, version 6.14.

4 Results and discussion

Figure 3 shows the relationship of dimensionless functions
F

Eh=1 2 and
h
h=2

c with the indenter displacement (h) in

a grain composite indentation with the matrix material of
E
Y
=20 and are compared with Cheng et al. [5–7] result of

homogeneous materials with same matrix property. Since Π1

and Π2 are related with the dimensionless indentation depth
h
d
, these two dimensionless functions are still depth related

and the value of Π1 and Π2 ascend with the dimensionless
indentation depth. This relationship will be discussed de-
tailedly in the following part.
The influence of heterogeneity is mostly concentrated near

the indenter and the impurity, so the grain depth and the
indenter displacement are most relating variables of di-
mensionless functions Π1, Π2 and Π3. Figure 4 gives the
figures of Π1, Π2 and Π3 against the dimensionless indenta-
tion depth with different geometric morphology, namely the

dimensionless grain depth (D
d
=0.02, 0.05, 0.1, 0.5, 1, 2, inf),

with matrix property fixed at E
Y
=20. It is clear that in the

homogeneous model the dimensionless grain depth does not
affect Π1, Π2 or Π3. While with the dimensionless depth of
hard grain descending from infinity to 0.02, values of these
three dimensionless functions ascend correspondingly. The

dimensionless load, Π1, ascends most monotonically and
shows very clear laws, and the changing of Π1 is also larger

than Π2 and Π3. In the situation of D
d
=0.02 and E

Y
=20, this

largest change rate reaches 200%. Meanwhile, Π3 only
changes slightly around 30%. Furthermore, the dimension-
less load of indenter indenting into the original position of
the upper surface of the hard grain varies rapidly, showing
intensive size effect.
Figure 5 shows different matrix properties’ influence

(E
Y
=20, 50, 100, 200, 500, 1000, 2000) on dimensionless

functions Π1, Π2 and Π3 against dimensionless indentation

depth of fixed composite geometry D
d
=0.02. Hard grain in-

creases the dimensionless indentation contact depth Π2 and
load Π1 with the increase of dimensionless indentation depth
h
d
, besides, this increment is also monotonous with the

Figure 2 (Color online) Mesh of the axisymmetric model and the refined zone. (a) Refined mesh near the indenter and the inclusion; (b) global mesh.

Figure 3 Influence of heterogeneous structure on dimensionless load and
contact depth.
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change of dimensionless matrix modulus. Meanwhile, the
dimensionless hardness Π3 does not have a monotonous with
either indentation depth or material modulus, for the case of
E
Y
=20, an apparent increase could be found with the increase

of dimensionless indentation depth, for cases of other mod-
ulus, Π3 does not change much, and for all cases of modulus,
it seems that the dimensionless indentation hardness tends to
a value around 2.6 with the increase of dimensionless in-
dentation depth.
In addition to the study on hard grain’s reinforcement of

the matrix, the influence of soft grain on the matrix is also
discussed. By processing the same procedure of a soft grain
which has smaller elastic modulus than the matrix, a porous
problem or the softening effect could be understood and
might help to compare with the hard grain’s cases. Figure 6
shows the same variables and dimensionless functions with
Figure 5, the only difference is that the elastic modulus of the
grain, changes from 100 times that of the matrix to one-tenth
of the modulus of the matrix. After altering the hard-soft
relation of grain-matrix, the dimensionless load Π1 and
contact depth Π2 show nearly completely opposite relation-

Figure 4 Dimensionless functions, Π2 (a), Π3 (b) and Π1 (c), against the
dimensionless indentation depth of different heterogeneities. Figures
without legend share the legend of previous ones.

Figure 5 Dimensionless functions, Π2 (a), Π3 (b) and Π1 (c), against the
dimensionless indentation depth of different dimensionless matrix modulus.
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ships with the dimensionless indentation depth. The di-
mensionless indentation hardness Π3 still shows no mono-
tonous laws. From the result of Π3 of both hard and soft grain
cases, it is deduced that the indentation hardness is mostly a
parameter of the contact surface, now that the indenter does
not pierce the matrix to reach the grain, the hardness would
not be affected by the impurity significantly. In contrast to
this local property of the contact area, the dimensionless load

and contact depth are overall properties. The hard grain in-
creases the resistance of deformation, hence the indentation
load needed increases correspondingly, due to no significant
change is shown in indentation hardness, the contact area
must increase to keep such increasing load, which finally
reflected as the increase of the indenter contact depth. This
interpretation is also verified in the case of soft grain com-
posite, which shows opposite laws against cases of hard
grain.
Combining the result from both hard and soft grain com-

posite, Table 1 is derived to reveal the dimensionless deri-

vative of indentation load, Eh
F
h= 1 d

dm h h
7

= m

. Π7 changes

with not only dimensionless indentation depth but also the
material modulus and geometry morphology, here the most

characteristic geometry D
d
=0.02 is chosen and other di-

mensionless modulus is considered but not listed in the table.
A post-processed result of that of other modulus is plotted in

Figure 7, among which only E
Y
=20 case is listed in Table 1.

Values in Table 1 are the value of Π7. In contrast with
homogeneity, the same procedure is also applied to the
homogeneous material with same dimensionless modulus
and this result is listed in the first row in Table 1. It is found
that Π7 increases with dimensionless indentation depth of a
hard grain composite, while an opposite law of Π7 is shown
in a soft grain composite.
For different material modulus, values of Π7 of each in-

dentation depth are divided by the corresponding homo-
genous material’s value of Π7 and plotted according to the
material modulus. Π7 is a value related to the elastic modulus
of pure materials, so it is also a value describing the overall
stiffness of the composite. Thus that the less the di-
mensionless modulus is, the smaller the stiffness is, hence
the reinforcement of the hard grain would be more intensive.
And for the soft grain case, Π7 shows opposite laws which
also confirms the interpretation made from hard grain case.
Π7 is a value representing the stiffness of the overall material
properties and geometry of composite.
In the above analyses, all results are based on the situation

that the axis of the conical indenter is collinear with the
diameter of the particle. The influence of the grain beneath
the indenter collinearly is very obvious, though this extreme
condition is most representative, it is not the most common
situation. To determine the influence of different indenter
positions, several geometries are carried out with a series of
the offset distance r0, indicating the horizontal distance be-
tween the indenter axis and the centroid of the inclusion. r0=0
indicates that the indenter axis is collinear with grain dia-
meter. This issue is modeled by using an axisymmetric
model, here the offset inclusion is actually a ring-like par-
ticle, obviously, due to the strong constraint, the influence on

Figure 6 Dimensionless functions, Π2 (a), Π3 (b) and Π1 (c), against the
dimensionless indentation depth of different dimensionless matrix modulus
(soft grain with Eg=0.1E).
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hardness in this case should be much larger than that the
indenter axis is collinear with the spherical grain diameter.
Figure 8(a) shows the offset geometry in the axisymmetric

model, and (b) shows that the dimensionless load decreases
with larger offset distance rapidly, despite that the larger
offset distance corresponds to the higher volume of the in-
clusion.
This phenomenon indicates that the discussion of the in-

fluence of inclusion on composite hardness is only sig-
nificant for the case of having no offset distance or very little
offset distance between indenter and the grain. This also
validated the simplification of this paper that only the closest
grain and conical indenter axis collinear with particle dia-
meter are worthy of attention.

5 Summary

Through a deep conical indentation test analysis, we per-
formed systematical research on a particle-reinforced matrix
composite to investigate the scaling relationships of hetero-
geneous elastic-perfectly plastic material under indentation
by dimensional analysis and finite element analysis based on
predecessors’ researches. This paper took detailed research
about the influence of different particle positions and mate-
rials on the indentation response, clearly revealing the scal-
ing relationships between heterogeneity, the indentation
hardness and indentation contact area. The simplification
from a complex composite to single grain composite is also
validated.

Figure 7 Ratio of Π7 of heterogeneity to that of homogeneity. (a) Hard
grain case; (b) soft grain case.

Table 1 Π7 of different grain composites and dimensionless indentation depth, with
D
d
=0.02 and E

Y
=20

Π7 Homogeneous
hm/d

0.005 0.01 0.015 0.02

With hard grain 2.51 3.18 4.18 5.16 6.01

With soft grain 2.510 1.180 0.778 0.651 0.588

Figure 8 Geometry of indentation with offset (a) and dimensionless load
with material property of E/Y=50, D/d=0.05 (b).
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Our indentation test result shows that for homogenous
materials or composite with an impurity of a large distance

from the surface (D
d 0.1, h

d 0.05), the indentation load is

proportional to the square of the indenter displacement and
the indentation contact depth is proportional to the indenter
displacement. However, when the inclusion position is gra-
dually approaching the indenter tip, the obtained results
gradually deviate from the above relationships. The in-
dentation response, namely, the indentation hardness, in-
dentation contact area and load-displacement curve are
sensitive with indentation parameters, e.g., the indentation
depth, the stiffness of the particle, mechanical properties of
the matrix, etc.
Figuring out the mechanism and basic mechanical re-

lationships of indentation tests is of great significance in
helping to reveal the indentation mechanical response and
indentation size effect under small size scales.
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