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Mean-field homogenization of elasto-viscoplastic composites based
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In this work, a new homogenization method of elasto-viscoplastic composites is developed. Using the fully implicit backward
Euler’s integration algorithm, the nonlinear ordinary differential equations in the constitutive laws of the matrix and inclusion
phases are discretized. Three classical incremental linearization approaches, i.e., direct, secant and tangent ones are adopted and
an affine relationship between the stress and strain increments is deduced. In order to reduce the interaction between the inclusion
and matrix phases, a second-ordered mapping tensor is introduced and a new mapping-tangent linearization approach is
proposed. Different linearization approaches are implemented by the incremental self-consistent scheme to predict the overall
stress-strain response of particle-reinforced composites. It is shown that the predicted stress-strain curves given by the proposed
mapping-tangent linearization approach are softer than that by other three classical ones, and are much closer to that from a full-
field finite element simulation. Moreover, the linearized elasto-viscoplastic constitutive equation based on the proposed map-
ping-tangent approach has the same mathematical structure as the rate-independent elasto-plastic constitutive law. In this sense,
the homogenization problems faced in the elasto-plastic and elasto-viscoplastic heterogeneous materials can be unified.
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1 Introduction

Owing to low computational cost, mean-field homogeniza-
tion approaches based on the Eshelby’s inclusion theory [1]
have been widely used to obtain the effective behaviors of
heterogeneous materials (including composites and poly-
crystalline aggregates) within the framework of micro-
mechanics. Two well-known mean-field homogenization
approaches are the self-consistent [2] and Mori-Tanaka’s [3]
ones, firstly constructed to obtain the overall elastic property
and further extended to describe the elasto-plastic and vis-

coplastic deformations of heterogeneous materials [4–12]. It
should be noted that elasto-plastic constitutive law can be
linearized as a rate form, i.e., M= :tan , where and are
the strain and stress rate tensors, respectively, and M tan is the
tangent compliance tensor. However, in the case of viscoe-
lasticity or elasto-viscoplasticity, the problems faced in the
process of homogenization become more complex, since the
strain rate depends on the stress and stress rate, simulta-
neously.
In the last few decades, much effort had been done to

develop efficient homogenization method for modelling the
viscoelastic and elasto-viscoplastic deformations of hetero-
geneous materials. The existing works can be classified into
three groups: (1) the approach based on Laplace transfor-
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mation [13–15]. In this approach, the linearized elasto-vis-
coplastic constitutive laws were firstly transformed into the
Laplace-Carson space and a fictitious linear thermo-elastic
relationship between stress and strain could be obtained.
Then, the classical homogenization schemes (e.g., the self-
consistent or Mori-Tanaka’s ones) were adopted to estimate
the interactions among different phases in the Laplace-Car-
son space. Finally, an inverse Laplace transformation was
performed to obtain the macroscopic overall responses in the
real time space. Although this approach reasonably con-
sidered the interactions among different phases in the het-
erogeneous materials, high computational time cost during
the reverse Laplace transformation limits its further appli-
cations, especially for the long-time creep or cyclic de-
formation. (2) The approach based on the additive interaction
law [16–22]. In this approach, the elasto-viscoplastic
Eshelby’s problem was viewed as an additive combination of
two sub-problems, i.e., an elastic inclusion embedded in an
elastic equivalent medium and a viscoplastic inclusion em-
bedded in a viscoplastic equivalent medium. The Eshelby’s
tensors in the elastic and viscoplastic parts were determined
by the elastic modulus and viscoplastic secant or tangent
modulus, respectively. The interaction law could be regarded
as a simple sum of interaction laws for elasticity [4] and
viscoplasticity [8]. Thus, such an interaction law is an ap-
proximate method. Although the interactions among the
different phases caused by elasticity and viscoplasticity were
separately considered, such an approach overcome the
shortcoming of high computational time cost faced during
the reverse Laplace transformation, and has been widely
used to describe the time-dependent deformation of hetero-
geneous materials. (3) The approach proposed by Doghri et
al. [23–25] which coupled with numerical algorithms. Here,
the elasto-viscoplastic constitutive laws were discretized by
adopting the fully implicit backward Euler’s integration al-
gorithm. Then, the evolution equations of inelastic strain and
internal variables at the beginning of each time interval were
linearized around the ending time of the same interval [23].
After linearization, a tangent operator and an affine re-
lationship between the stress and strain increments could be
obtained. This affine relationship has the same mathematical
structure with the linear thermo-elastic problem and can be
easily implemented by the classical incremental homo-
genization schemes (e.g., self-consistent or Mori-Tanka’s
ones) without introducing new interaction law. Besides the
low computational cost, such an approach has a solid phy-
sical background since the interactions among different
phases caused by elastic and viscoplastic deformations are
considered, simultaneously. It should be noted that although
a new proposed tangent operator is adopted to derive the
interaction law, the predicted stress-strain responses are still
stiffer than that given by the mean-field homogenization
approach based on the Laplace transformation and full-field

finite element simulation, especially in the case at high strain
rate [23].
The aim of this work is to develop a new mean-field

homogenization approach coupled with numerical algo-
rithms, which can reasonably reduce the interaction between
inclusion and matrix phases and describe the nonlinear
elasto-viscoplastic deformation of composites more reason-
ably. Following the idea of Doghri et al. [23], the nonlinear
ordinary differential equations in the constitutive laws of
matrix and inclusion phases are discretized by adopting the
fully implicit backward Euler’s integration algorithm. Then,
three classical linearization approaches, i.e., direct, secant
and tangent ones are adopted and affine relationships be-
tween the stress and strain increments are deduced. Incre-
mental self-consistent scheme is used to estimate the
interaction between the inclusion and matrix phases. It is
shown that the predicted macroscopic stress-strain curves
given by different linearization approaches almost coincide
with each other but stiffer than that by the full-field finite
element simulations. In order to obtain a softer response, a
second-ordered mapping tensor is introduced and a new
mapping-tangent linearization approach is proposed. The
macroscopic stress-strain responses predicted by the new
proposed linearization approach is much closer to that from
the full-field finite element simulations.

2 Linearization of nonlinear constitutive equa-
tions

As discussed by Hill [4], the nonlinear ordinary differential
equations in the elasto-plastic constitutive law can be line-
arized as a unified form, i.e., M= :tan . However, in the
case of elasto-viscoplasticity, the linearization approaches
are not unique, and strongly influence the predicted overall
stress-strain responses of the composites. Thus, in this sec-
tion, the elasto-viscoplastic constitutive equations are line-
arized based on three classical (i.e., direct, secant and tangent
ones) and a new proposed mapping-tangent linearization
approaches, respectively.
The elasto-viscoplastic constitutive equations can be

written as the following general form:
= + , (1a)e p

M= : , (1b)e e

R= ( , ), (1c)p

R R R= ( , ), (1d)p

where e and p are the elastic and plastic strain rate tensors,
respectively. Me is the elastic compliance tensor, R is the
resistance of plastic deformation and is used to describe the
isotropic hardening, and R are given functions defining the
evolutions of p and R with respect to time t. It should be
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pointed out that in this work, the back stress which is used to
describe the kinematic hardening of plastic deformation is
not considered for simplicity.
Now, consider a time interval [tn, tn+1]. It is assumed that at

time tn, all the variables are known. In this work, the incre-
ments are denoted as the symbol , e.g., t=tn+1–tn. Eqs. (1a)
to (1d) can be discretized by using a fully implicit backward
Euler integration algorithm, i.e.,

= + , (2a)e p

M= : , (2b)e e

R t= ( , ) , (2c)n n
p

+1 +1

R R t R t= , . (2d)n

p

+1

The following notations are introduced:
R= ( , ), (3a)n n n+1 +1 +1

R R t R= , , (3b)n n+1

p

+1

R= ( , ), (3c)n n n

R R R0= ( , ), (3d)n n

where three classical linearization approaches, i.e., direct,
secant tangent ones are adopted.
Direct approach

M= : + . (4)e p

Secant approach

( )
( )

( )

t

t

t

t

M

M

M

= : +

= : + :

= + :

+ : . (5)

n

n n n

n n

n n n

e
+1

e
+1 +1

1
+1

e
+1 +1

1

+1 +1
1

Tangent approach: it is much more complex than the direct
and secant ones. The evolution equations of p and R (eqs.
(1c) and (1d)) can be linearized at time tn around time tn+1
through the Taylor’s series expansion. Neglecting the sec-
ond-ordered small quantity, it yields

R R= : , (6a)n n
n

n

n

n
+1

+1

+1

+1

+1

R R R R
R R= : . (6b)n n

n n

n
+1

+1
p

p +1

+1

By eqs. (6a) and (6b), it yields

R t
R
R R R= 1 + : , (7a)n

n
n

n+1

+1

1
+1
p

p

R t
R
R R R

= + :

+ 1 + : . (7b)

n n
n

n

n

n

n

n
n

n

+1
+1

+1

+1

+1

+1

+1

1
+1
p

p

Combining eqs. (7b) with (2a), the linearized constitutive
equation can be obtained:

R t
R
R R

M A

A

= + : :

+ : + 1 , (8)

n

n

n
n

n

n

n
n

e 1 +1

+1

1 +1

+1

+1

+1

1

where

t R t
R
R

RA I= 1 , (9)n

n

n

n

n+1

+1

+1

+1

1
+1
p

where I is the fourth-ordered unit tensor.
By eqs. (4), (5) and (9), it is seen that the relationships

between the stress and strain increments given by different
linearization approaches can be written as a uniform affine
form:

M= : + . (10a)b

For direct approach

M M= ,
= .

(10b)
dir e

dir
b p

For secant approach

( )
( )

t

t

M M= + ,

= : .
(10c)

n n

n n n

sec e
+1 +1

1

sec
b

+1 +1
1

For tangent approach

R t
R
R R

M M A

A

= + : ,

= : + 1 ,
(10d)

n

n

n
n

n

n

n
n

tan e 1 +1

+1

tan
b 1 +1

+1

+1

+1

1

whereM is the effective compliance tensor (e.g., elasticMdir,
secant Msec and tangent M tan), b is a back-extrapolated
term, named as affine strain increment.
In Sect. 4, the predictive capabilities of different linear-

ization approaches will be discussed. However, it is shown
that the predicted macroscopic stress-strain responses given
by three classical linearization approaches almost coincide
with each other but stiffer than that obtained from the full-
field finite element simulation. In fact, the calculations per-
formed in Sect. 4 show that in each loading step, the term

Eb is much larger than the term M : when the plastic
deformation is large. In other words, the classical lineariza-
tion approaches result in that the strain increment E is
dominated by Eb, rather than M : . Thus, the interaction
between the matrix and inclusion phases is overestimated.
This will be explained in details at the end of Sect. 3.
In order to overcome the aforementioned problems, a new

mapping-tangent linearization approach is proposed in this
work. The basic idea of such an approach is to eliminate the
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back-extrapolated term through the introduction of a second-
ordered mapping tensor.
The strain increment tensor can be written as

t

t

t

M

M

= + = : +

= + :

+ : , (11)

n

n

n

n
n

n

e p e
+1

e +1

+1

+1
+1

+1

where a new second-ordered mapping tensor is introduced.
From eq. (11), it is seen that the relationship between the
stress and strain increments given by the new proposed lin-
earization approach can also be written as a uniform affine
form, like eq. (10a), i.e., mapping-tangent approach:

t

t

M M= + ,

= : .
(12)

n

n

n
n

n

mtan e +1

+1

mtan
b

+1
+1

+1

To ensure 0=b (eliminate the back-extrapolated term),
it requires

0: = . (13)n
n

n
+1

+1

+1

Then, the mapping tensor can be determined by eq. (13)

= : . (14)n
n

n
n+1

+1

+1
+1

1

It should be noted that a second-ordered tensor is in-

troduced in this work. In fact, the directions of :n

n

+1

+1

and n +1 are not identical. Thus, cannot be replaced by a
scalar. Surely, higher ordered tensors (third or fourth) can
also be adopted as the mapping tensor. However, eq. (13)
only contains six independent algebraic equations. Once the
higher ordered tensor is introduced, the number of unknowns
is larger than that of the equations. In this case, additional
assumptions for the direction of are needed.
Once the back-extrapolated term is eliminated, the line-

arized stress-strain relationship can be written as
M= :mtan (M mtan represents the ratio of the strain

increment to the stress increment in each loading step),
which has a same mathematical structure as the rate-in-
dependent elasto-plastic constitutive law. In this sense, the
homogenization problems faced in the elasto-plastic and
elasto-viscoplastic heterogeneous materials can be unified.
Figure 1 shows the effective compliance tensors and the

affine strain increments given by the four different linear-
ization methods. The relationships among the four com-
pliance tensors and affine strain increments are

M M M M> > >mtan tan sec dir and < <mtan
b

tan
b

<sec
b

dir
b .

3 Self-consistent homogenization scheme

In this section, the incremental self-consistent homogeniza-
tion scheme will be adopted to estimate the interaction be-
tween the inclusion and matrix phases. For simplicity, only
the two-phase composites are considered in this work. It is
assumed that each phase in the composites obeys an elasto-
viscoplastic constitutive law. After linearization, their con-
stitutive equations can be written as

M= : + , (15a)M M M M
b

M= : + , (15b)I I I I
b

where M, M, M M and M
b are the average strain and

stress increments, effective compliance tensor (including
elastic, secant, tangent and mapping-tangent ones) and affine
strain increment of matrix phase, respectively; while the
terms I, I, M I and I

b represent the corresponding
variables of inclusion phase.
The macroscopic constitutive relationship of the compo-

sites can also be written as the following affine form:

E M E= : + , (16)b

where E, , M and Eb are the macroscopic overall strain
and stress increments, effective compliance tensor and affine
strain increment tensor of the composites, respectively.
Figure 2(a) shows a schematic view of a real composite

made of inclusions embedded into the matrix phase. The
composite is subjected to a macroscopic stress increment .
In order to consider the interaction between the inclusion and
matrix phases, the self-consistent homogenization scheme
assumes that the real composite can be represented by an
inclusion embedded in a homogeneous equivalent medium
with an infinite volume. The homogeneous equivalent
medium is subjected to the same stress increment and its
property is the same as the unknown macroscopic property of
the composite, as shown in Figure 2(b).

Figure 1 (Color online) Illustration of the four different linearization
methods.
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According to the Eshelby’s equivalent inclusion theory [1],
the effective compliance tensor and the affine strain incre-
ment tensor of inclusion phase (i.e., M I and I

b) can be
replaced by those of homogeneous equivalent medium (i.e.,
M and Eb) once an artificially eigenstrain increment is
introduced (as shown in Figure 2(c)). Then, the constitutive
relationship of inclusion phase can be rewritten in the fol-
lowing equivalent form:

M E= : + + , (17)I I
b

I
*

where I
* is the introduced eigenstrain increment tensor.

By eqs. (16) and (17), it yields

M= : + , (18)I I I
*

where I and I are the disturbance strain and stress in-
crement tensors, respectively, i.e.,

E= , (19a)I I

= . (19b)I I

The disturbance strain and eigenstrain increment tensors
can be linked by the Eshelby’s tensor , i.e.,

= : . (20)I I
*

In general, the effective compliance tensor is not isotropic.
In this case, the Eshelby’s tensor can only be obtained by the
numerical method which is very time consuming. As dis-
cussed by Doghri and Ouaar [9], Chaboche et al. [26] and
Peng et al. [27], in the elastoplastic problem, a too stiff
stress-strain response will be obtained once the anisotropic
Eshelby’s tensor is adopted. To soften the stress-strain re-
sponse, Doghri and Ouaar [9] and Chaboche et al. [26]
proposed some isotropization methods to obtain the isotropic
Eshelby’s tensor. Recently, Peng et al. [27] proposed a new
and rational approach to determine the Eshelby’s tensor of
the elastoplastic medium, which has a solid physical back-
ground. The “too stiff” problem face in the elastoplastic
composites have been solved by the works of Doghri and
Ouaar [9], Chaboche et al. [26] and Peng et al. [27]. In this
work, the isotropization method proposed by Doghri and

Ouaar [9] is adopted, as

( )
k µ
k µ

= 3 2
2 3 +

, (21a)

k I M= 1
3( :: ), (21b)vol 1

µ I M= 1
10 ( :: ), (21c)dev 1

I 1 1= 1
3( ), (21d)vol

I I I= , (21e)dev vol

where , k and µ are the effective Poisson’s ratio, bulk and
shear moduli, respectively, and they are determined by the
macroscopic effective compliance tensor M; I vol and Idev are
the fourth-ordered unit spherical and deviatoric tensors, re-
spectively, 1 is the second-ordered unit tensor, :: is an op-
erator, i.e., A BA B:: = ijkl lk ji (A and B are two fourth-ordered
tensors). Then, the Eshelby’s tensor can be determined by the
effective Poisson’s ratio .
Substituting eq. (20) into eq. (18), the interaction law can

be given as
M= : , (22)I I

where

M I M= ( ) : : , (23)1

is the interaction tensor.
Substituting eqs. (15b) and (16) into eq. (22), the following

localization equation for the inclusion phase is obtained:

( )B N E= : + : , (24)I I I
b

I
b

where the localization tensors B I and NI are defined as

( )B M M M M= + : ( + ), (25a)I I
1

( )N M M= + . (25b)I I
1

It is noted that the macroscopic strain and stress rates of
two-phase composites can be written as the following rules
of mixture:

Figure 2 (Color online) Illustration of the incremental self-consistent homogenization approach. (a) The representative volume element (RVE) of the
composite; (b) self-consistent homogenization; (c) the differences of the mechanical properties between the inclusion and matrix are simulated by the
introduced eigenstrain.
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f f+ (1 ) = , (26a)I M

f f E+ (1 ) = , (26b)I M

or the equivalent form

f f 0+ (1 ) = , (27a)I M

f f 0+ (1 ) = . (27b)I M

Combining eq. (22) with eqs. (27a) and (27b) , it yields

M= : . (28)M M

Then, substituting eqs. (15a) and (16) into eq. (28), the
following localization equation for the matrix phase is ob-
tained:

( )B N E= : + : , (29)M M M
b

M
b

where the localization tensors BM and NM are defined as

( )B M M M M= + : ( + ), (30a)M M
1

( )N M M= + . (30b)M M
1

Substituting eqs. (15a), (15b), (24) and (29) into eq. (26b),
the macroscopic strain tensor can be written as

[ ]
[ ]
f f

f f

f f

E M B M B

M N M N E

I M N

I M N

= : + (1 ) : :

+ : + (1 ) : :

+ ( : ) : + (1 )

×( : ) : . (31)

I I M M

I I M M
b

I I I
b

M M M
b

Comparing eq. (31) with eq. (16), the macroscopic effec-
tive compliance tensor and affine strain increment tensor can
be obtained as

f fM M B M B= : + (1 ) : , (32a)I I M M

[ ]f f

f

f

E I M N M N

I M N

I M N

= : + (1 ) :

: ( : ) :

+(1 )( : ) : . (32b)

b
I I M M

1

I I I
b

M M M
b

By eqs. (23) and (32a), it is seen that the interaction tensor M
is determined by the effective compliance tensors of the
matrix and inclusion (M M and M I). Let’s consider two ex-
treme situations, when M 0M and M 0I , then M 0,
by the interaction laws (eqs. (22) and (28)) it can be obtained
that 0I and 0M . That means the strain field in
the composite tends to be uniform, i.e., the interaction be-
tween matrix and inclusion is overestimated and the pre-
dicted stress-strain response is much stiffer than the real one.
When M M and M I , then M , it can be
obtained that 0I and 0M . That means the stress
field in the composite tends to be uniform, i.e., the interac-

tion between matrix and inclusion is underestimated and the
predicted stress-strain response is much softer than the real
one. Thus, an effective way to weaken the interaction be-
tween matrix and inclusion is to chosen a larger compliance
tensor in a rational way.
As shown in Figure 1, since the mapping tangent com-

pliance tensor M mtan is much larger than the other com-
pliance tensors, i.e., Mdir, Msec and M tan, the interaction
between the matrix and inclusion can be weakened when
M mtan is adopted.

4 Numerical simulations

In this section, the predicted stress-strain responses given by
the self-consistent homogenization scheme based on differ-
ent linearization approaches are compared with the full-field
finite element simulations performed by Pierard et al. [15].
Thus, the constitutive equations used in this work are kept as
the same as those in Pierard et al. [15]. The main equations
are listed as follows:

= + , (33a)e p

M= : , (33b)e e

f Rs= 3 / 2 , (33c)

f
R f

f

R kp

p

s
s

0
=

3
2 , > 0,

, 0,

= + ,

= 2
3 : ,

(33d)

m

Y
d

p 0

p p

where s is the deviatoric stress tensor, f is the yield surface,

0, k and d are three material parameters, m is the viscosity
coefficient, when m is small/large, it represents for the
strong/weak viscosity, p is the accumulated plastic strain.
Using the linearization approaches discussed above, the

constitutive equations (eq. (33a)–(33d)) can be linearized as

M= : + . (34a)b

Direct approach

M M= ,
= .

(34b)
dir e

dir
b p

Secant approach

f
R

tM M I
s

M

= + 3
2 ,

= : .
(34c)

n
n

m

n

n

sec e
0

+1

+1

dev

+1

sec
b p

Tangent approach
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t R t
R
R

R

R t
R
R R

R
m
R

f
R

R
R
R dkp

M M A

A I

A

s
s

= + : ,

= 1 ,

= : + 1 ,

= 3
2 ,

= 0,

= 2
3 .

(34d)

n

n

n

n

n

n

n

n
n

n

n

n
n

n

n n

n

n

m
n

n

n

n

n
n
d

tan e 1 +1

+1

+1

+1

+1

+1

1
+1
p

tan
b 1 +1

+1

+1

+1

1

+1

+1

0

+1

+1

+1

+1

+1

+1

+1

+1
p

1 p

p

Mapping-tangent approach

( )

m t
R

f
R

t f
R

t

M M N N

I N N
s

N s
s

= + 3
2

+ 3
2 ,

= ,

= : .

(34e)

n

n

n

m

n n

n

n

m n n

n

n
n

n

n
n

n

mtan e 0

+1

+1

+1

1

+1 +1

0
+1

+1

dev
+1 +1

+1

+1
+1

+1

mtan
b

+1
+1

+1

The shape of inclusion phase in Pierard et al. [15] is
spherical. For comparison, the material parameters are kept
as the same as those in Pierard et al. [15], and they are listed
in Table 1. Figures 3 and 4 show the stress-strain responses
of the composites under uniaxial tension with 15% and 30%
volume fractions of inclusion phase, respectively. Curves
obtained at four different strain rates, i.e., 1×10–6, 1×10–5,
1×10–4 and 1×10–3 s–1 are included in each figure. Figure 5(a)
and (b) shows the cyclic stress-strain responses of the com-
posite with 30% volume fraction of inclusion phase at the
strain rates of 1×10–3 and 1×10–6, respectively. It is seen that
the predicted macroscopic stress-strain responses given by
three classical linearization approaches (i.e., direct, secant
and tangent ones) almost coincide with each other and are
stiffer than that from the full-field finite element simulation.
Although the tangent approach is much more complex, it
does not give a better prediction. The reason can be ex-
plained from Figure 6, which shows the evolutions of the
ratio E M/ ( : )11

b
11 (noted that the 1-1 direction is the

loading direction) during the tensile deformation at a strain
rate of 1×10–3 s–1. It is seen that at the beginning of de-
formation, the ratio is equal to zero since only elastic de-

formation occurs, i.e., E 0=11
b . However, the ratio increases

with the increasing strain and beyond 1 when the strain
reaches about 3.2%. In the subsequent deformation, the
macroscopic strain increment E is dominated by Eb, ra-
ther than M : . In other words, the effective compliance
tensors derived by the secant and tangent approaches, i.e.,
Msec and M tan are very close to the elastic compliance tensor
Me and the interaction between the matrix and inclusion
phases is overestimated. From Figures 3(d), 4(d), 5(a) and
(b), it is seen that the predicted results given by the new
proposed mapping-tangent linearization approach is softer
than those given by three classical approaches, and is much
closer to that from the full-field finite element simulation.
The ratio E M/ ( : )11

b
11 keeps as zero during the de-

formation since the mapping tensor is determined by as-
suming that the back-extrapolated term in the affine
relationship equals to zero. Under this condition, the over-
estimated interaction between the matrix and inclusion
phases is reasonably reduced.
It should be noted that in Pierard et al. [15], the viscosity of

the composite is very strong since the viscosity coefficient is
set as a very small value (i.e., m=1.5). In this work, the
predictive capabilities of different linearization approaches
in the case of weak viscosity are also discussed. The mate-
rials parameters for the composite with a weak viscosity are
listed in Table 2. However, owing to the lack of full-field
results, some new finite element simulations are performed
here. The inclusion repartition is assumed isotropic, as
shown in Figure 7(a). Then, the composite can be char-
acterized by the representative volume element (RVE), as
shown in Figure 7(b). The finite element code ABAQUS is
employed with the choice of 65472 hexahedron solid ele-
ments (C3D8). The finite element model of the RVE with
elements is shown in Figure 7(c) (noted that in Figure 7(c)
part of the matrix is removed to show the inclusion), where a
spherical inclusion is assumed to be surrounded by a cubic
matrix and the volume fraction of the inclusion is 30%.
Meanwhile, the periodic boundary conditions are imposed on
the cube surface of the finite element model in order to obtain
more reasonable results:

x x x x L
x x x L x

x x L x x

u u u
u u u
u u u

( , , 0) = ( , , ),
( , 0, ) = ( , , ),
(0, , ) = ( , , ),

(35)
1 2 3 1 2

1 3 2 1 3

1 2 1 1 2

where u is the displacement vector, L is the length of the
RVE. In the finite element simulations, tensile loading is

Table 1 Material parameters used for the matrix and inclusion phases with a strong viscosity

E (GPa) ν σY (MPa) k (GPa) d γ0 (s
–1) m

Matrix 70 0.330 70 4 0.40 3×10–4 1.5

Inclusion 400 0.286 400 8 0.40 2×10–4 1.5
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Figure 3 (Color online) Tensile stress-strain curves given by finite-element method [15] and self-consistent homogenization scheme based on different
linearization approaches (the volume fraction of inclusion phase is 15%, the strain rates are 1×10–6, 1×10–5, 1×10–4 and 1×10–3 s–1). (a) Direct approach; (b)
secant approach; (c) tangent approach; (d) new proposed mapping-tangent approach.

Figure 4 (Color online) Tensile stress-strain curves given by finite-element method [15] and self-consistent homogenization scheme based on different
linearization approaches (the volume fraction of inclusion phase is 30%, the strain rates are 1×10–6, 1×10–5, 1×10–4 and 1×10–3 s–1). (a) Direct approach;
(b) secant approach; (c) tangent approach; (d) new proposed mapping-tangent approach.
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applied along the x3 direction of the RVE. In this case,
Lu = (0, 0, )3 , uu = ( , 0, 0)1 1 and uu = (0, , 0)2 2 , where is

the applied engineering strain and u1 and u 2 are computed
from the condition that the total force acting on the cube
surface has normal vectors perpendicular to x3 is zero. The
overall stress and strain are obtained by performing a volume

average of the stress and strain fields in the RVE.
Figures 8(a) and 9(a) show the stress-strain responses of

the composite under the uniaxial tension with 30% volume
fraction of inclusion phase. The loading rates are 1×10–6 and
1×10–3 s–1, respectively. It is seen that no noticeable differ-
ence between the results obtained by the direct and secant
approaches. The direct and secant approaches provide very
stiff predictions, but the mapping-tangent approach provides
a soft one. The tangent approach gives the prediction be-
tween that by the direct/secant and mapping-tangent ap-
proaches. Comparing with the full-field finite element
results, it can be concluded that the predicted results given by
the new proposed linearization method is more reasonable
than the three classical approaches. Figures 8(b) and 9(b)
show the evolutions of the ratio E M/ ( : )11

b
11 under two

different loading rates.

5 Summary and conclusions

Using the fully implicit backward Euler’s integration algo-

Figure 5 (Color online) Cyclic stress-strain responses given by finite-element method [15] and self-consistent homogenization scheme based on different
linearization approaches (the volume fraction of inclusion phase is 30%). (a) At a strain rate of 1×10–3; (b) at a strain rate of 1×10–6.

Figure 6 (Color online) Evolutions of the ratio E M/ ( : )11
b

11
for the

composite with 30% volume fraction of inclusion phase during the tensile
deformation at a strain rate of 1×10–3.

Table 2 Material parameters used for the matrix and inclusion phases with a weak viscosity

E (GPa) ν σY (MPa) k (GPa) d γ0 (s
–1) m

Matrix 70 0.330 70 1.5 0.40 3×10–4 50

Inclusion 400 0.286 400 8 0.40 2×10–4 50

Figure 7 (Color online) (a) A square periodic array of inclusions to represent an isotropic spatial repartition; (b) representative volume element (RVE); (c)
finite element mesh of the RVE.
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rithm, the nonlinear constitutive equations of the matrix and
inclusion phases in the composites are discretized. Three
classical incremental linearization approaches, i.e., direct,
secant and tangent ones are adopted and affine relationships
between the stress and strain increments are deduced. A new
mapping-tangent linearization approach is proposed in order
to weaken the interaction between the matrix and inclusion
phases. Different linearization approaches are implemented
by the incremental self-consistent scheme to predict the
overall responses of particle-reinforced composites. The
main conclusions are listed as follows.
(1) Numerical results show that when the viscosity of the

composites is strong, the predicted stress-strain curves given
by three classical linearization approaches are much stiffer
than that from the full-field finite element simulation; but the
new proposed mapping-tangent linearization approach pro-
vides a softer prediction, which is much closer to that from
the full-field simulations.
(2) When the viscosity of the composites is weak, the di-

rect and secant approaches provide very stiff predictions, but
the mapping-tangent approach gives a soft prediction, and

the tangent approach provides a prediction between that by
the direct/secant and mapping-tangent approaches.
(3) In the classical linearization approaches (i.e., direct,

secant and tangent ones), the macroscopic strain increment
E is dominated by Eb rather than M : when the de-

formation is large, which results in a strong interaction be-
tween the matrix and inclusion phases. Thus, the basic idea
of this work is to eliminate the back-extrapolated term in the
affine relationship of stress and strain increments by in-
troducing a new mapping tensor.
(4) The linearized constitutive equation based on the pro-

posed mapping-tangent approach has the same mathematical
structure as the rate-independent elasto-plastic constitutive
law. So, the homogenization problems faced in the elasto-
plastic and elasto-viscoplastic heterogeneous materials can
be unified.
In the future work, the proposed mapping-tangent linear-

ization approach will be extended to describe the cyclic
deformation of the composites and polycrystalline ag-
gregates by introducing the back stress into the constitutive
equations.

Figure 8 (Color online) Tensile stress-strain curves given by the finite element method and self-consistent homogenization scheme based on different
linearization approaches for the composite with a weak viscosity (the volume fraction of inclusion phase is 30%, the strain rate is 1×10–6). (a) Stress-strain
curves; (b) evolutions of the ratio E M/ ( : )11

b
11
.

Figure 9 (Color online) Tensile stress-strain curves given by the finite element method and self-consistent homogenization scheme based on different
linearization approaches for the composite with a weak viscosity (the volume fraction of inclusion phase is 30%, the strain rate is 1×10–3). (a) Stress-strain
curves; (b) evolutions of the ratio E M/ ( : )11

b
11
.
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