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The main purpose of the paper is to present an approach to account for the mechanism of bursting oscillations occurring in the
systems with multiple periodic excitations. Since the traditional slow-fast analysis method can be used only for the systems with
two scales in time domain, when there exists an order gap between the exciting frequencies and the natural frequency, how to
explore the mechanism of the complicated dynamics remains an open problem, especially for the case when two exciting terms
exist. To explain our approach, a relative simple Duffing’s oscillator with two external periodic excitations is introduced as an
example. For the case when one exciting frequency is integer times of the other exciting frequency, by employing Moivre’s
equation, the two exciting terms can be transformed into the functions of one basic periodic exciting term. Regarding the basic
periodic exciting term as a slow-varying parameter, the two exciting terms can be changed into the functions of the slow-varying
parameter, based on which the whole model can be transformed into a generalized autonomous system with one slow-varying
parameter. Equilibrium branches as well as the related bifurcations of the generalized autonomous system can be derived with the
variations of the amplitudes of the two excitations, which describes the relationship between the state variables of the generalized
autonomous system and the slow-varying parameter. Considering the slow-varying parameter as a generalized state variable, one
may obtain the so-called transformed phase portraits, which present the relationship between the state variable and the slow-
varying parameter. The bifurcation mechanism of the mixed oscillations can be obtained by overlapping the equilibrium
branches and the transformed phase portraits. Upon the approach, different types of bursting oscillations are presented. It is
pointed that when the trajectory moves almost strictly along the segments of the stable equilibrium branches to the fold
bifurcation points, jumping phenomena to other stable equilibrium segments can be observed, leading to the repetitive spiking
oscillations, which can be approximated by the transient procedure from the bifurcation points to the stable equilibrium
segments. Furthermore, because of the distributions of stable segments on the equilibrium branches of the generalized auton-
omous system may vary with the exciting amplitudes, the forms of bursting oscillations may change. When more fold bi-
furcations involve in the bursting attractors, more forms of quiescent states as well as spiking states exist in the oscillations,
leading to different types of bursting oscillations.
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1 Introduction

Since the relatively simple slow-fast H-H model was estab-
lished, which may describe the behaviors of neuron activ-

ities, the dynamics of systems with multiple scales receives a
lot of attentions [1–5], which often behaves in the combi-
nations of relatively large-amplitude oscillations, called
spiking states (SPs), and small-amplitude oscillations or at
rest, known as quiescent states (QSs) [6]. The alternations
between SPs and QSs form the special mixed-mode oscil-
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lations, called the bursting oscillations [7]. Because there
exists no valid analytical method, most of the related reports
were focused on the numerical simulations as well as the
approximated solutions [8,9]. It was until the slow-fast
analysis method was presented that researchers turn to the
mechanism of the bursting oscillations [10,11]. The main
idea of the method is to divide the slow-fast system into two
subsystems, in which the fast subsystem dominates the states
of QSs and SPs as well as the related bifurcations, while the
slow subsystem moderates the associated movements
[12,13]. Upon the method many types of bursting oscilla-
tions as well as the bifurcation mechanism were presented
[1,14–16].
For a typical slow-fast dynamical system, described by

x f x y µ y g x y µ= ( , , ), = ( , , ), (1)

where x RM , y RN , µ RK , when 0<ε<<1, implying the
state variables y changes on a much smaller time scales
comparing with the state variables x, implying two scales
exist in time domain.
Note that the slow-fast analysis method is valid only for

the system with two scales in time domain and only one slow
variable [17–19]. The bursting mechanism of the coupled
system with two scales in frequency domain, implying an
order gap exists between two frequencies related to the
system, still remains a challenge [20]. Furthermore, the co-
existences of multiple exciting terms with different fre-
quencies may cause more complicated bursting behaviors
[21].
In this paper, we try to present a new approach to in-

vestigate the bifurcation mechanism of the system. A relative
simple Duffing’s oscillator with two periodic external ex-
citing terms is used as an example to show how to explore the
bifurcation mechanism of the bursting oscillations when an
order gap exists between the exciting frequencies and the
natural frequency. By introducing Moivre’s equation, it is
pointed out that the two external exciting terms can be ex-
pressed in terms of one slow-varying parameter. Bifurcations
of the generalized autonomous system with the variation of
the slow-varying parameter can be used to account for dif-
ferent types of bursting oscillations appearing in the oscil-
lator.

2 Mathematical model

The relatively simple Duffing’s oscillator with two periodic
exciting terms is introduced as an example. When the ex-
citing frequencies are not far from the natural frequency,
complicated phenomena may appear, such as chaotic oscil-
lations and the time delay effect caused by the external ex-
citations. In order to show more complicated behaviors,
nonlinear terms up to fifth order are included in the oscil-

lator, which can be written as

x µx x x x w w¨ + + + + = + , (2)3 5
1 2

where w1=A1cos(ω1t) and w2=A2cos(kω1t) represent the two
periodic exciting terms. For ω1<<1, k∈N>>1, while the
other parameters are fixed at regular values, three scales in
frequency domain can be found in the system, in which the
largest scale correspond to the natural frequency ΩN,
ΩN∈O(1.0).
Note that the state variables oscillate mainly according to

the natural frequency, while in an arbitrary period related to
the natural frequency, both the two exciting terms keeps al-
most constants, implying that all the two exciting terms can
be regarded as slow-varying variables, denoted by w1 and w2.
It should be pointed out that for the case when only one

exciting term corresponding to one slow-varying variable
exist, our group developed a method to explore the me-
chanism of the oscillations with two scales in frequency
domain, the results of which can be found in the series of
publications [22,23]. The main contributions of the research
work related to systems with two scales extend the traditional
slow-fast method from time domain to frequency domain
[24]. However, all the results are obtained with only one
periodic external excitation.
A challenge arises that how to cope with the dynamics

when two slowing varying variables exist in the oscillator,
since the traditional slow-fast analysis method can be em-
ployed only for the case with one slow-varying variable.
Here we introduce a new scheme, the main idea of which is

to express the two slowing varying variables in terms of one
slow-varying variable by employing Moivre’s equation. By
regarding the slow-varying variable as a parameter, the ori-
ginal system can be considered as a generalized autonomous
system. Based on the equilibrium branches as well as the
related bifurcations of the generalized autonomous system,
by employing the associated transformed phase portrait,
different types of bursting oscillations as well as the me-
chanism are presented.

3 Description of the method

From Moivre’s equation, which can be expressed as

x x nx nx(cos + isin ) = cos( ) + isin( ), (3)n

where i= 1 , one may obtain the following formula by
balancing the real parts of two sides in eq. (3), written as

nx C x C x x
C x x
C x x

cos( ) = cos + cos (isin )
+ cos (isin ) +

+ cos (isin ) , (4)
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where 2m<n. For example, when k=10, one may obtain
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t w w w
w w

cos(10 ) = 512 1280 + 1120
400 + 50 1, (5)

1
10 8 6

4 2

where w=cos(ω1t). The two exciting terms in eq. (2) can be
expressed in terms of one slow-varying parameter w, which
implies that the only one slow-varying variable exists in the
oscillator.
Regarding w as a parameter, one may derive the bifurca-

tion details of the generalized autonomous system with the
variation of w. In order to investigate the influence of the
bifurcations on the dynamics, here we turn to the so-called
transformed phase portrait.
For a traditional phase portrait, expressed as

x t x t t R: {[ ( ), ( )] }, which can show the relationships
between different real state variables with the variation of t.
However, the effect of the bifurcations related to w on the
behaviors cannot be observed based on the traditional phase
portrait. Therefore, the concept of transformed phase por-
trait, defined as

{ x t x t w x t x t t t R: [ ( ), ( ), ] [ ( ), ( ), cos( )] }G 1 ,
is introduced, which can describe the relationships between
the real state variables and the slow-varying parameter w.
The mechanism of different types of oscillations may be
obtained via the combination of the transformed phase por-
traits with the bifurcations analysis associated.

4 Bifurcation of the generalized autonomous
system

Regarding w=cos(ω1t) as a bifurcation parameter, for high
order external resonance with k=10, eq. (2) can be rewritten
in the autonomous form with one slow-varying parameter as

x y y µy x x x F= , = + , (6)3 5

whereF=A1w+A2(512w
10–1280w8+1120w6–400w4+50w2–1).

The equilibrium of eq. (6) can be expressed as E0(x0,0),
where x0 satisfies

x x x F+ = 0, (7)0 0
3

0
5

the stabilities of which can be determined by the associated
characteristic equation, written in the form:

µ x x+ + + 3 + 5 = 0. (8)2
0
2

0
4

The equilibrium point E0 is stable for x+ 3 0
2

d x+5 > 00
4 , which may lose the stability via fold bifurcation

at

FB x x: + 3 + 5 = 0, (9)0
2

0
4

leading to jumping phenomenon between different equili-
brium points, while no Hopf bifurcation can be observed
since the damping coefficient μ>0.

To reveal the fold bifurcation properties, we turn to the
perturbation method. Assuming a fold bifurcation occurs at
w=w0, the following conditions are satisfied

x x x F
x x

+ = 0,

+ 3 + 5 = 0.
(10)0 0

3
0
5

0

0
2

0
4

A small perturbation occurs on the slow-varying parameter
w0, implying w=w0+κ, with 0<κ<<1, resulting inF F +0 0 ,
which cause x0 to change to x0+δ, where F0=F(w0).
The first order approximation of ε can be expressed as

ε=κdF0(w0)/dw, while δ can be written in the form:

x x= / ( + 3 + 5 ). (11)0
2

0
4

The first order approximation of the characteristic eq. (8)
can be derived in the form:

µ x x+ + 6 + 20 ) = 0. (12)2
0 0

3

Therefore, if ( )x x6 + 20 > 00 0
3 , the equilibrium point is

a node, while for ( )x x6 + 20 < 00 0
3 , it is a saddle point.

The fold bifurcation at w=w0 is saddle-node bifurcation, re-
sulting in the jumping phenomenon between different equi-
librium points.
For the parameters fixed at μ=0.18, α=1.0, β=−2.0, γ=0.6,

ω1=0.001, one may obtain four special values of x0 corre-
sponding to the fold bifurcation from eq. (9), denoted by
X±1=±0.4284 and X±2=±1.3478. Figure 1 gives the equili-
brium branches as well as the related bifurcations with dif-
ferent values of exciting amplitudes at A1=A2=1.0, 2.0, 5.0,
respectively.
Remark. Though the two exciting terms appear in linear

forms in the oscillator, when the coupling of the two exciting
terms is transformed in terms of one slow-varying parameter,
denoted by F, it is nonlinear dependent on the slow-varying
parameter w, which leads to different distribution of the
equilibrium branches for different exciting amplitudes taken.
From Figure 1, one may find that with the increase of the

exciting amplitude, the distribution of the equilibrium
branches may change. For example, when A1=A2=1.0, shown
in Figure 1(a), seven independent equilibrium branches,
denoted by EBi (i=1,2,...,7), can be observed with the var-
iation of w. With the increase of the exciting amplitudes, they
may interact with each other. When both the two exciting
amplitudes increase to A1=A2=2.0, shown in Figure 1(b), the
interaction between EB2 and EB3 in Figure 1(a) lead to a new
EB2 in Figure 1(b). Furthermore, EB1 may interact with EB4

in Figure 1(a), leading to a new form of EB1 in Figure 1(b).
Further increase of the two exciting amplitudes may cause

more equilibrium branches to combine together. When
A1=A2=5.0, EB1 merges not only with EB2 but also with EB3

in Figure 1(b), leading to a new equilibrium branch EB1,
which implies the equilibrium branches EBi (i=1,2,...,5) in
Figure 1(a) combines together, while only EB6 and EB7 keep
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the original forms, denoted by EB2 and EB3 in Figure 1(c).
Remark. With the increase of the exciting amplitude, the

equilibrium branches may change to pass across the lines
x0=X±i (i=1,2), corresponding to fold bifurcation values of x,
which may lead to the combination between different equi-
librium branches.

5 Evolution of the bursting oscillations

In the following, we focus on the influence of the equilibrium
branches as well as the related bifurcations on the structures
of attractors of the system with different values of exciting
amplitudes.

5.1 Periodic 2-fold bursting oscillations

For A1=A2=1.0, the phase portraits of the oscillator on the (x,
y) plane is presented in Figure 2(a), while the related time
history of x is plotted in Figure 2(b), the local enlarged parts
of which are shown in Figure 2(c) and 2(d), respectively.
From the phase portrait in Figure 2(a), one may find that

the trajectory moves alternatively around two equilibrium
points of the generalized autonomous system, while jumping
phenomena occur at the two fold bifurcation points related to

x=X±2. Three obvious scales, corresponding to three fre-
quencies associated with Ti (i=0,1,2), respectively, which can
be approximated at Ω0=2π/T0=0.001=ω1, Ω1=2π/T1=0.01=
10ω1, Ω2=2π/T2=3.239 with T0=6283.18, T1=628.32, T2=
1.940.
To reveal the mechanism of the oscillations, we turn to

transformed phase portrait, which is plotted in Figure 3(a) on
the (w,x) plane, while the overlap of transformed phase
portrait and the corresponding equilibrium branches as well
as the related bifurcations is shown in Figure 3(b)–(d).
From the portrait on the (w,x) plane in Figure 3(a), one

may find that the trajectory can be divided into four seg-
ments, corresponding to two quiescent states, denoted by
QS±, and two spiking states, represented by SP±, respectively.
Assuming the trajectory starts at the point M−1, at which

the slow-varying variable w takes its minimum w=−1.0, it
moves almost strictly along the stable equilibrium branch
EB1 in region E−2, appearing in quiescent state QS−. When
the trajectory reaches the point M−2, located on the line
x=X−2, fold bifurcation occurs, causing the trajectory to jump
to the sole stable equilibrium branch EB1 in region E+2.
Repetitive spiking oscillations SP+ with relatively large
amplitude take place. With further increase of w, the am-
plitudes of the oscillations decrease gradually and finally
settle down to EB1 at the point M+3. The trajectory then

Figure 1 (Color online) Equilibrium branches as well as the bifurcations. (a) A1=A2=1.0; (b) A1=A2=2.0; (c) A1=A2=5.0; (d) The locally enlarged part of the
equilibrium branch in (c) for A1=A2=5.0.
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moves almost strictly along the stable EB1 in quiescent state
QS+ until it reaches the point M+1, at which w takes its

maximum value w=+1.0. Half period of the symmetric
movement finishes.

Figure 2 (Color online) Phase portrait on the (x,y) plane in (a) and related time history of x in (b) as well as the locally enlarged parts in (c) and (d).

Figure 3 (Color online) Transformed phase portrait on the (w,x) plane in (a), the overlap of the phase portrait and equilibrium branches of the generalized
autonomous system in (b), and the locally enlarged parts in (c) and (d).
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With further increase of time, the trajectory turns to the left
to begin the other half period of the movement, since the
slow-varying variablew may decrease. The trajectory moves
almost strictly along the stable equilibrium branch EB1 in
region E+2 until it reaches the point M+2, at which fold bi-
furcation occurs, causing the trajectory to jump to the stable
equilibrium branch EB1 in region E−2, leading to repetitive
spiking state SP−. The amplitudes of the oscillations decrease
gradually and finally the trajectory settles down to the stable
equilibrium branch EB1 in region E−2 to begin the quiescent
state QS−. The trajectory moves almost strictly along EB1

until it reaches the starting point M−1, which finishes one
period of the movement.
It can be found that the trajectory moves along the stable

equilibrium branch EB1 located in E±2, respectively, while
two fold bifurcations cause the jumping phenomena between
the equilibrium branch in the two different regions, leading
to the alternation between quiescent states and spiking states.
Therefore, it can be called symmetric periodic 2-fold burst-
ing.
Remark. Note that the fold bifurcations cause the jumping

phenomena between the two parts of the equilibrium branch,
leading to spiking states. Therefore, the repetitive spiking
oscillations can be approximated by the transient procedure
from the bifurcation point to the associated equilibrium
point. For example, the pair of complex conjugate eigenva-
lues of the equilibrium point A(0.233, 1.755) (shown in
Figure 3(c)) can be computed at λ±=−0.090±3.312i, leading

to that the transient procedure can be approximated by
X=B0exp(−0.090+3.312i)t, with B0=0.465. The oscillating
frequency can be obtained at ΩS=3.312, which agrees very
well with Ω2, while the enveloping of the maximum ampli-
tudes of the oscillations also agrees very well with the curve
S, computed by X=B0exp(−0.090)t in Figure 2(d).

5.2 Periodic 6-fold bursting oscillations

Now we increase the amplitudes of the two excitations to
A1=A2=2.0, the equilibrium branches as well as the bifurca-
tions of the corresponding generalized autonomous system
can be observed in Figure 1(b). The related phase portrait on
the (x,y) plane as well as the associated time history of x is
presented in Figure 4, from which one may find that the
trajectory also moves around two equilibrium point E±2 al-
ternatively, connected by the jumping phenomena via fold
bifurcations at x=X±2.
Three frequencies, corresponding to Ti (i=0,1,2) in Figure

4, involve the oscillations, which can also be computed at
Ω0=2π/T0=0.001=ω1, Ω1=2π/T1=0.01=10ω1, Ω2=2π/T2=
3.1765, where Ω0 and Ω1 exactly equate to the two exciting
frequency, while Ω2 can be approximated by the imaginary
parts of the pair of the complex conjugate eigenvalues related
to equilibrium point E±2, computed at 3.1642.
We also use the transformed phase portrait on the (w,x)

plane and the equilibrium branches as well as the related
bifurcations of the generalized autonomous system to account

Figure 4 (Color online) Phase portrait on the (x,y) plane in (a) and related time history of x in (b) as well as the locally enlarged parts in (c) and (d).
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for the mechanism of the oscillations, shown in Figure 5.
Unlike the bursting form in Figure 3, more quiescent states

and spiking states as well as the connecting bifurcations
appear in the attractor. The trajectory, starting from the point
M−1, shown in Figure 5(a), in quiescent state QS−1, along the
stable equilibrium branch EB1 in E−2 region jump to the EB1

in E+2 region at the fold bifurcation point M−2 with x=X−2,
leading to repetitive spiking state SP+1. The trajectory finally
settle down to the stable EB1 in E+2 to start the quiescent state
QS+1, shown in Figure 5(c), which may jump to the stable
equilibrium branch EB1 in E−2 at the fold bifurcation point
M+2, leading to spiking state SP−2. The trajectory finally
settle down to stable EB1 in E−2, resulting in quiescent state
QS−2, shown in Figure 5(d), which jumps to the stable EB1 in
E+2, yielding spiking state SP+3. The trajectory finally settles
down to EB1 in E+2 to begin quiescent state QS+3.
When the trajectory moves almost strictly along EB1 in E+2

to the point M+1, half period of the movement is finished.
Further increase of time may cause the trajectory to begin the
left half period of the movement, which is omitted here for
simplicity, since the procedure is symmetric to the first half
period of the movement.
It can be found that there exist six fold bifurcations, which

cause the alternations between the quiescent states and
spiking states. Therefore, the movement can be called sym-
metric periodic 6-fold bursting.

5.3 Periodic 14-fold bursting oscillations

Further increase of the exciting amplitudes may lead to more
complicated structure of the bursting oscillations. Figure 6
gives the transformed phase portrait, and its overlap with the
equilibrium branches for A1=A2=5.0, while the phase portrait
on the (x,y) plane and the related time history is omitted here
for simplicity.
Further investigation of the transformed phase portrait in

Figure 6 reveals that the trajectory oscillates around the two
parts of equilibrium branch EB1, which are located in regions
E±2, respectively. Fold bifurcations cause the trajectory
moving almost strictly along the stable EB1 in one region to
jump to stable EB1 in another region via repetitive spiking
oscillations approximated by the transient procedure from
the bifurcation point to the stable equilibrium branch.
For example, the trajectory starting from the point M−1,

shown in Figure 6(b), moves strictly along the stable equi-
librium branch EB1 in E−2 region, until it arrives at the point
M−2, at which fold bifurcation occurs, causing the trajectory
to jump to the stable equilibrium branch EB1 in E+2 region,
leading to the repetitive spiking oscillations SP+1, shown in
Figure 7(a). The amplitudes of the oscillations gradually
decrease with the evolution of time until the trajectory settles
down to E+2 to start the quiescent state QS+1. Then the tra-
jectory moves almost strictly along E+2 until it reaches the

Figure 5 (Color online) Transformed phase portrait on the (w,x) plane in (a), the overlap of the phase portrait and equilibrium branches of the fast
subsystem in (b), and the locally enlarged parts in (c) and (d).
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fold bifurcation point M+2, at which the trajectory jumps to
the stable equilibrium branch EB1 in E−2 region.
The trajectory may jump between the E+2 and E−2 regions

of the stable equilibrium branch EB1 alternatively via fold
bifurcations, causing the trajectory changes between differ-
ent quiescent states and spiking states. Note that the trajec-
tory in spiking oscillations caused by fold bifurcations may
settle down to the stable equilibrium branch to begin the
quiescent stages, the details can be found in Figure 7(b)–
7(d).
Unlike the bursting oscillations above, there totally exist

14 fold bifurcations in the attractor, combining 7 forms of
quiescent states and 7 types of spiking states, which may be
called symmetric periodic 14-fold bursting.

Remark. (1) The different forms of bursting oscillations
observed with different values of exciting amplitudes can be
also understood from the equilibrium branches as well as the
related bifurcations plotted in Figure 1. Note that all the
bursting attractors may visit the stable equilibrium branch
EB1 in two regions E±2 in turn. With the increase of the
exciting amplitudes, the equilibrium branch EB1 may be
divided into more stable segments, connecting with unstable
segments. For example, when A1=A2=1.0, the stable EB1 in
the region E−2 appears in one segment, which may become
two stable segments for A1=A2=2.0 and evolves to be four
segments for A1=A2=5.0, leading to different number of fold
bifurcations on the attractors.
(2) When the trajectory moves almost strictly along the

Figure 6 (Color online) Transformed phase portrait on the (w,x) plane in (a), together with its overlap with equilibrium branches as well as the bifurcations
in (b).

Figure 7 (Color online) Locally enlarged parts in Figure 6.
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stable EB1 in one region to the fold bifurcation points,
jumping phenomena to the stable EB1 in another region oc-
cur, leading to the repetitive spiking oscillations. Therefore,
all the spiking states can be approximated by the transient
procedures from the bifurcation points down to the related
stable segments of the equilibrium branch EB1, governed by
the generalized autonomous system, from which one may
obtain the evolutions of the amplitudes as well as the fre-
quencies of the spiking oscillations.

6 Discussion and conclusions

An approach to account for the mechanism of bursting me-
chanism in the systems with two slow-varying periodic ex-
citations is presented, the main idea of which is based on the
scheme to transform the two exciting terms into functions of
one basic exciting term. When an order gap between the
exciting frequencies and the natural frequency exists, the
effect of two time scales appears, leading to the bursting
oscillations. By employing the approach described in the
manuscript, a generalized autonomous system can be de-
rived, regarding the basic exciting term as a slow-varying
parameter. Equilibrium branches as well as bifurcations of
the generalized autonomous system can be used to account
for the mechanism of bursting oscillations. With the varia-
tion of the exciting amplitudes, the distributions of the
equilibrium branches may change, resulting in different
forms of bursting oscillations, the mechanism of which can
be obtained based on the overlap of the transformed phase
portraits and equilibrium branches of the generalized au-
tonomous systems.
Unlike the bursting oscillations in the autonomous slow-

fast system, when the frequencies of the exciting terms are
far less than the natural frequency of the system, the exciting
terms can be considered as slow-varying terms, which leads
to the generalized autonomous system as the fast subsystem.
New approaches can be presented based one the schemes to
transform different slow-varying parameters into one slow-
varying parameter, since the traditional slow-fast analysis
method can be used only for the case with one slow-varying
parameter.
Here we should point out that, the approach may be valid

only for the cases when the two exciting frequencies behave
in the exact resonant states. When perturbation occurs in the
exciting frequencies, the time t may be considered as a slow-
varying parameter, leading to another form of generalized
autonomous system. Similarly, the mechanism of the burst-
ing oscillations can be obtained accordingly.

This work was supported by the Key Project of the National Natural Science
Foundation of China (Grant No. 11632008).
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