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It is of great importance to decode motion dynamics of the human limbs such as the joint angle and torque in order to improve the
functionality and provide more intuitive control in human-machine collaborative systems. In order to achieve feasible prediction,
both the surface electromyography (sEMG) and A-mode ultrasound were applied to detect muscle deformation and motor intent.
Six abled subjects were recruited to perform five trails elbow isokinetic flexion and extension, and each trail contained five
repetitions, with muscle deformation and sEMG signals recorded simultaneously. The experimental datasets were categorized as:
the ultrasound-EMG combined datasets, ultrasound-only datasets and EMG-only datasets. The support vector machine (SVM)
regression model was developed for both elbow joint angle and torque prediction, based on the above three kinds of datasets. The
root-mean-square error (RMSE) and the correlation coefficients (R) were applied to evaluate the prediction accuracy. The results
across all the subjects for different datasets indicated that the combined datasets and the ultrasound datasets were superior to the
sEMG datasets both on elbow joint angle and torque prediction, and there were no significant differences between the combined
datasets and the ultrasound datasets. It turns out that elbow angle and torque can be reconstructed by A-mode ultrasound, and the
significant findings pave the way towards the application of musculature-driven human-machine collaborative systems.

angle, torque, surface electromyography (sEMG), ultrasound, support vector machine (SVM), regression, isokinetic
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1 Introduction

Understanding the characteristics of human physiological
signals and proposing corresponding autonomous and
adaptive learning methods for accurate perception of human
behaviour play an essential role in realizing the tri-co robot
natural interactions [1]. One of the bottleneck problems is
how to adapt human motion, such as torque etc., for human-
machine collaborative systems, covering a wide spectrum of
human-centred applications primarily on prosthesis control

and rehabilitation systems. The study gives priority to the
challenging problem, that is to say, simultaneous prediction
of human elbow joint angle and torque for musculature-
driven human-machine systems.
The dominant biomedical signal employed in musculature-

driven systems is electromyography (EMG) though very
recently emergent biomedical signals also are considered.
EMG is generally recorded in two protocols: invasive elec-
tromyography (iEMG) and surface electromyography
(sEMG). iEMG, with a needle or fine-wire inserted to the
muscle of interest, shows high spatial selectivity and can be
applied to identify individual motor unit (MU) electrical
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activities. However, the risk of infection and pain caused by
iEMG acquisition make it rejective across users. Hence,
sEMG, detected by the non-invasive surface electrodes on
skin, can overcome some of the limitations of iEMG and has
been more widely applied in prostheses control [2], robots
control [3] and human-machine interfaces [4]. The motor
intent can be detected from sEMG signals during muscle
contraction to control external equipment [5]. Researches
have focused on pattern classification-based techniques, in
which the sEMG patterns are classified into several discrete
classes of motor intents, to improve the functionality and
provide more intuitive control of myoelectric prostheses and
other devices [6–8]. To provide simultaneous control, recent
work has investigated the use of regression techniques to
relate sEMG to a continuous motor variable such as force or
position [9,10].
Sonomyography (SMG), representing the muscle de-

formation detected by ultrasound with high spatial and
temporal resolution, is one of the most commonly used di-
agnostic tools to assess the functions of skeletal muscles in
both research studies and clinical applications [11–13]. Some
studies focused on the application of extracting features of
SMG. Castellini et al. [14,15] extracted the spatial gradient
features based on the uniformly-spaced grid of interest points
among the ultrasound images to predict the finger positions
and found a clear linear relationship between the features and
the finger positions as well as the fingertip forces. Feature-
based discrete finger movements or hand motions classifi-
cation using A-mode ultrasound [16–20] or B-mode ultra-
sound [21] showed very good results. The B-mode
ultrasound is expensive and bulky in general, while the A-
mode transducers can be made into smaller size and be easier
attached to the skin during dynamic movements. So, the A-
mode ultrasound can be a more portable human-machine
interface solution, compared with B-mode ultrasound.
Isokinetic dynamometry is a well-accepted tool for as-

sessing strength of the upper and lower extremities, and
isokinetic testing is an useful approach to assess limb ex-
tension and flexion [22,23]. The peak torque can be detected
continuously by the isokinetic device during isokinetic

movement, when the related muscles are on maximum vo-
luntary contraction (MVC). Thus, the muscle-contraction
degree differences among people can be eliminated.
In the aspect of utilized machine-learning algorithms, the

support vector machine (SVM) has been widely used in
EMG-related pattern recognition [24] and it showed good
performance. It also has been applied using B-model ultra-
sound to predict wrist angle [25] and joint angle [26]. Be-
sides, Guo et al. [27] has proved that SVM models show
better performance in predicting wrist angle based on A-
mode ultrasound than ANN models. Ameri et al. [9] has
verified that SVM-based regression outperformed ANN-
based method in real-time and simultaneous myoelectric
control. Therefore, we applied SVM regression model to
decode the elbow angle and torque from the upper arm bio-
signals.
Based on the understandings above all, we hypothesized

that the upper arm muscle deformation and sEMG can be
used to decode the elbow angle and elbow torque for pros-
thesis and robotic arm control. The system frame for the
application is shown in Figure 1. The aims of this pilot study
are: 1) examining the feasibility of applying the bio-signals
to elbow angle as well as torque simultaneous decoding and
prediction; 2) exploring the optimal bio-signals datasets for
elbow torque decoding and prediction. The rest paper is or-
ganized as follow. The Section 2 presents the methods and
experiments. The experimental results are presented in
Section 3. Finally, Section 4 concludes this study with dis-
cussions and future work.

2 Material and methods

2.1 Subjects

Six healthy male subjects (aged 22–27; referenced as S1–S6)
were invited to participate to the experiment. None of them
has any history of neuromuscular disorder and each has been
given a written informed consent prior to the experiment. It
should be noted that all the experiment procedures in this
study have been approved by the Shanghai Jiao Tong Uni-

Figure 1 Framework of human-machine interface based on the positon and torque decoding.
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versity’s Mechanical Engineering Ethics Committee.

2.2 Experimental protocols

The experimental protocols are described as follow: the
subjects seat comfortably in the adjustable chair of the Iso-
med2000 isokinetic device (D&R Ferstl GmbH, Hemau,
Germany) as shown in Figure 2. One’s body was fixed by a
belt and one’s shoulders fixed by two girdles onto the chair
back to stabilize the posture during the experiments. The
right upper arm was placed and fixed on the holder. The
wireless multi-channel sEMG acquisition device (Jiaopu
Tech Ltd, China) was applied to capture the sEMG signals.
The signals were processed with band-pass filtered (pass
band 20–500 Hz), sampled at 1000 Hz, and A/D converted
with 12-bit resolution. The commercial multi-channel A-
mode transducer driver board (Zhongxu Tech Ltd, China)
was applied to drive the 5 MHz single element ultrasound
transducers (diameter: 14 mm, height: 18 mm), and to am-
plify and digitized the received signals. Correlative study in
ref. [28] had proved that 5 MHz was the optimum frequency
with a good SNR in both low and high frequency domains.
The frame rate and sampling rate were set as 20 Hz and
100 MHz respectively. In each frame, 8192 data dots were
sampled and stored. Since the sound velocity in human tis-
sues is around 1540 m/s, the detection depth of the system
through human tissue can reach about 63.1 mm. Thus, the
related deep muscles’ deformation in upper arm can be de-
tected. The two channels bipolar electrodes (diameter:
25 mm) of EMG acquisition device were placed on the belly
of musculus biceps brachii muscle parallel to the muscle
fiber direction, and another two channels bipolar electrodes
were placed on the belly of musculus triceps brachii muscle.
One channel A-mode ultrasound transducer was placed on
musculus biceps brachii muscle belly, with standard ultra-
sound gel applied between the transducer and the skin.

After all the sensors configuration, the Isomed2000 were
set to isokinetic-test mode and the subjects held the iso-
kinetic dynamometer to perform elbow extension and flexion
at a speed of 60°/s, and the elbow extension and flexion
movements were repeated for five times continuously for
one trial, with sEMG, A-mode ultrasound, elbow angle and
elbow joint torque synchronized and recorded simulta-
neously. Five trials were performed in total in the same
subject with 1 min for rest between each trial to avoid muscle
fatigue. It should be noted that the experiment would be
stopped once subjects report any uncomfortable feeling.

2.3 sEMG feature extraction

The classical EMG time domain (TD) features were ex-
tracted and made up the four-dimensional EMG feature set
corresponding to one channel. The TD features were namely,
mean absolute value (MAV), zero crossings (ZC), slope sign
changes (SSC), and waveform length (WL), which were
calculated by the eqs. (1)–(4) respectively. The raw EMG
data were segmented into a series of 300 ms windows with
an overlap of 250 ms, and features were extracted from these
windows. The multi-channel sEMG feature extraction
method is shown in Figure 3(a).
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where n is the window size and xi is the EMG signals.

2.4 Ultrasound feature extraction

The feature extraction method for A-mode ultrasound signals
has been used in our previous study [17,18] and is similar to
the mean image gradient feature extraction applied in B-
mode ultrasound to predict finger positions [14]. As shown
in Figure 3(b), the raw A-mode ultrasound signal of each
frame was processed by time gain compensation, Gaussian
filtering, envelop and log compression to improve the signal-
to-noise rate [29]. Then the processed data was segmented by
a fixed window. In this study, there were 8192 data dots
sampled by the driver board in each frame, in which the first
292 data dots and the last 100 data dots were discarded; and
the window length was set as 100 data dots. Thus, there were
78 segments corresponding to each frame for further pro-
cessing. The linear fitting was applied to each segment to get
the slope “k” and intercept “b”. All the slopes and intercepts

Figure 2 (Color online) Experimental setup for the measurement of
muscle isokinetic contraction with A-mode ultrasound and sEMG.
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detected from the 78 segments were combined together to
make up the feature vector for each frame. Finally, the elbow
angle/torque and the corresponding A-mode ultrasound
feature vectors were combined together to form the data sets
for SVM regression and prediction.

2.5 The regression model

In this study, the SVM regression model was developed and
trained to predict the forearm position and elbow torque with
different datasets as inputs. The basic SVM is to map the
input data x from the inseparable low dimensional feature
space to a high linearly separable dimensional feature space:

y x b= ( ) + , (5)T

where φ is a nonlinear mapping function, and ω and b are the
weight vector and bias term respectively. The SVM regres-
sion can be described as the equality constraint:
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where γ is the weight in determining the balance between
minimizing the training errors and finding the optimal hy-
perplane and ek is the slack variables. The Lagrange multi-
plier method was used to solve the optimization problem
above:
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derivatives forω, b, ek and αk to zero, an linear equation set is
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where 1v is the N-dimensional vector [1, …, 1]T, I is a N-
dimensional unit vector and α=[α1, …, αN]. K(xk, xl) is the
Kernel function. The SVM regression model is defined as
follows:
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where K(x, xk) is the Gaussian radial basis Kernel function
(RBF-Kernel) [30]. The offline estimation accuracy was
determined using a five-fold estimation cross validation,
where four out of five trails of experimental data for every
subject were included in the training set and the remaining
one trial data were used in the test set (80% training, 20%
testing).
Accuracy evaluation of the elbow angle and torque pre-

dictions from different datasets was made by calculating the
root- mean-square error (RMSE) and the correlation coeffi-
cients (R) of the measured and predicted values. Generally
speaking, if relative RMSE (%) < 15% and R > 0.9, the
prediction is regarded as excellent [31]. The RMSE and R are
defined by eqs. (12) and (13).
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where X(n) is the true value, Y(n) is the predicted value. X n( )

Figure 3 (Color online) The flowchart of feature extraction for sEMG and ultrasound. (a) Multi-channel sEMG feature extraction at time tn, m denotes the
channel number; (b) ultrasound signal feature extraction at time tn, m denotes the window number. Featuren denotes the generated feature sets at time tn.
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andY n( ) are the means of X(n) and Y(n) respectively. N is the
number of data points.

2.6 Statistical analysis

The one-way ANOVA was applied in IBM SPSS Statistics
(IBM Inc., USA) to compare the average regression accuracy
based on the data of all subjects and to compare the single-
subject regression accuracy based on the data of every sub-
ject, resulting from EMG-only, ultrasound-only and com-
bined EMG-ultrasound on RMSE and R. The level of
statistical significance was set at p < 0.05 for all statistics.

3 Experimental results

3.1 Root-mean-square error

The results of the RMSE as shown in Figure 4(a) and (b) are
for the angle prediction and torque prediction based on dif-
ferent datasets. As for the elbow angle prediction, the RMSE
ranged from 8.25%±1.23% (S3) to 13.03%±4.43% (S4) for
the ultrasound-EMG combined datasets, 8.94%±1.30% (S3)
to 14.74%±1.44% (S5) for the ultrasound datasets and
14.92%±2.75% (S6) to 24.66%±4.05% (S2) for the EMG
datasets, as inputs respectively; the mean values were
10.35%±2.10%, 11.52%±2.47% and 19.07%±3.41% corre-
sponding to the above three kinds of datasets in order across
all subjects. As for the elbow torque prediction, the corre-
sponding RMSE ranged from 7.92%±1.31% (S5) to 11.54%
±3.35% (S2), 8.73%±1.79% (S6) to 14.38%±2.18% (S4) and
10.08%±2.02% (S5) to 15.97%±3.05% (S2), and the mean
values were 9.60%±1.62% for the ultrasound-EMG com-
bined datasets, 11.70%±2.05% for the ultrasound datasets
and 13.64%±1.94% for the EMG datasets, as inputs re-
spectively. It was found that the combined datasets showed
the best performance both on elbow angle prediction and

elbow torque prediction. The ultrasound datasets showed
excellent performance because the mean RMSE<15% for
angle prediction and torque prediction. The EMG datasets
were of the worst performance among the three datasets,
especially for the angle prediction (the mean RMSE>15%).
The ANOVA analysis of average results indicated that

there were significant improvements in average angle pre-
diction accuracy when using the ultrasound-EMG combined
datasets or the ultrasound datasets as inputs, compared with
the EMG inputs; the differences were not significant between
the combined datasets and ultrasound datasets for the angle
prediction (p=0.466). As for the torque prediction, the sig-
nificant improvements took place when using combined
datasets, compared with the EMG datasets, as regression
model inputs; however, there were no significant differences
between the combined datasets and the ultrasound datasets
(p=0.072), and between the ultrasound datasets and the EMG
datasets (p=0.093). The one-way ANOVA statistical analysis
was also applied to the datasets of each subject on RMSE to
evaluate the effect of datasets factor on every single subject.
For S4 on angle prediction, no significant differences were
found between the EMG datasets and combined datasets
(p=0.054), or between the EMG datasets and ultrasound
datasets (p=0.089), and the results for other subjects were in
line with the average analysis results; as for the torque pre-
diction, no significant differences were found between EMG
datasets and combined datasets for S2 (p=0.608) and for S4
(p=0.065), and the results for other subjects were in line with
the average analysis results.

3.2 Correlation coefficients

The results of the R value comparison for angle prediction
and torque prediction is shown in Figure 5(a) and (b). As for
the elbow angle prediction, the R value ranged from 0.901
±0.064 (S4) to 0.965±0.011 (S1), 0.885±0.063 (S4) to 0.957

Figure 4 The regression accuracy comparison of RMSE between actual and predicted value on elbow angle and torque. (a) The result of angle prediction;
(b) the result of torque prediction. Ave denotes the average value of all subjects, error bars represents the stand deviation. One asterisk “∗” denotes p< 0.05,
and two asterisks “∗∗” denote p< 0.001.
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±0.010 (S1) and 0.677±0.099 (S2) to 0.881±0.035 (S6) when
using the ultrasound-EMG combined datasets, ultrasound
datasets and EMG datasets as inputs respectively; the cor-
responding mean values were, namely, 0.942±0.025, 0.927
±0.032 and 0.793±0.070. As for the elbow torque prediction,
the R value ranged from 0.922±0.046 (S2) to 0.963±0.012
(S5), 0.892±0.043 (S4) to 0.958±0.022 (S6) and 0.857±0.056
(S2) to 0.936±0.027 (S5), and the mean values were 0.945
±0.020 for the ultrasound-EMG combined datasets, 0.920
±0.027 for the ultrasound datasets and 0.889±0.029 corre-
sponding to the EMG datasets across all the subjects, re-
spectively. The results further verified that the combined
datasets outperformed the ultrasound datasets and the EMG
datasets. The ultrasound datasets also showed excellent
performance with mean R > 0.9 for angle prediction as well
as torque prediction. The EMG datasets were of the worst
performance among the three datasets, especially for the
angle prediction (the mean R < 0.8).
The ANOVA analysis of average prediction accuracy

based on R showed the consistent results as in RMSE ana-
lysis. The significant improvements took place in the average
angle prediction accuracy when using the ultrasound-EMG
combined datasets or the ultrasound datasets as inputs,
compared with the EMG inputs; the differences were not
significant between the combined datasets and ultrasound
datasets (p=0.586). As for the torque prediction, the sig-
nificant improvements only happened between the combined
datasets and the EMG datasets; the differences were not
significant between the combined datasets and ultrasound
datasets (p=0.111), and between the ultrasound datasets and
EMG datasets (p=0.051). The one-way ANOVA statistical
analysis was also applied to the datasets of each subject on R
values to evaluate the effect of datasets factor on every single
subject. For the angle prediction, no significant differences
existed between EMG datasets and combined datasets for S4
(p=0.170), and significant differences were found between

combined datasets and ultrasound datasets for S5 (p=0.006),
the results for other subjects were in line with the average
analysis results; as for the torque prediction, the combined
datasets and the EMG datasets showed equivalent perfor-
mance for S2 (p=0.891) and S4 (p=0.061). Besides, the
combined datasets increased the accuracy significantly
compared with the ultrasound datasets (p=0.028), while it
showed equivalent performance with EMG datasets
(p=0.062) for S5.

4 Discussion and conclusion

In this study, we captured the sEMG signals and ultrasound
signals from the upper arm during the elbow isokinetic
flexion and extension, which excluded the muscle force
differences during dynamic muscle contraction among peo-
ple, making the regression and prediction of elbow angle and
torque evaluation more objective. The muscle deformation
was detected by one channel A-mode ultrasound and the
electrophysiological information was represented by four
channels sEMG signals. The EMG datasets, ultrasound da-
tasets and EMG-ultrasound combined datasets were applied
to train the SVM regression model respectively to predict the
elbow angle and torque simultaneously. The combined da-
tasets outperformed the other two datasets across all subjects
(RMSE=10.35% and R=0.942 for elbow angle prediction;
RMSE=9.60% and R=0.945 for elbow torque prediction).
Besides, the ultrasound datasets (RMSE=11.52% and
R=0.927 for elbow angle prediction; RMSE=11.70% and
R=0.920 for elbow torque prediction) were superior to the
EMG datasets (RMSE=19.07% and R=0.793 for elbow angle
prediction; RMSE=13.64% and R=0.889 for elbow torque
prediction). The results clearly suggested that the upper arm
muscle deformation could be used to reconstruct the elbow
angle and torque simultaneously based on the SVM model,

Figure 5 (Color online) The regression accuracy comparison of R value between actual and predicted value on elbow angle and torque. (a) The result of
angle prediction; (b) the result of torque prediction. Ave denotes the average value of all subjects, error bars represents the stand deviation. One asterisk “∗”
denotes p< 0.05, and two asterisks “∗∗” denote p< 0.001.
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showing potential for force and position control in human-
machine collaborative systems, such as robot operation,
prosthesis operation, virtual reality, human motion analysis
and athletes’ performances evaluation.

4.1 Comparison with previous work

Some previous studies had focused on the elbow angle or
torque evaluation. Pau et al. [32] reported the 22.4% average
RMSE of random cycles of movement of the elbow joint
evaluation based on the physiological elbow model. Huang
et al. [33] estimated the biceps brachii contraction force
during isometric elbow flexion based on the high-density
sEMG signals and NMF algorithm, and the correlation
coefficient was above 0.9 with the optimal electrode con-
figuration. Shi et al. [34] reported the linear relationships
between elbow torque and biceps brachii muscle thickness
during isometric contraction based on B-mode ultrasound,
and the overall regression results were approximately 0.9 for
the mean correlation coefficient and smaller than 15% for
mean RMSE. Guo et al. [27] and Xie et al. [25] used A-mode
ultrasound and B-mode ultrasound respectively to map the
relationship between forearm muscle thickness and wrist
joint angle, the evaluation results of their studies achieved
10%<RMSE<15% averaged across all subjects using SVM
regression. However, none of the studies mentioned above
focused on the isokinetic contraction, during which the

muscle deformation changed drastically under strong muscle
contraction. In this paper, we first applied A-mode ultra-
sound to decode the elbow angle and torque simultaneously
during isokinetic muscle contraction and compared it with
sEMG signals. It turned out that the proposed method drove
the dynamic elbow kinematics parameters evaluation re-
searches forward with lower computation, being more
wearable with excellent evaluation accuracy, compared with
the previous studies.

4.2 Optimal bio-signal datasets

Figure 6 shows the typical comparisons between true and
predicted elbow angle/torque based on the data of subject S6,
which demonstrates the effect of different datasets vividly.
Obviously, the four channels EMG signal datasets were not
qualified for the prediction, especially for the elbow angle
evaluation. And to improve the performance, more channels
EMG signals should be involved.
Both the ultrasound-EMG combined datasets and the ul-

trasound datasets performed excellently, and the combined
datasets outperformed the ultrasound datasets according to
Figures 4 and 5. However, the differences were not sig-
nificant between the combined datasets and the ultrasound-
only datasets according to the ANOVA analysis. Besides, the
EMG signals can be easily contaminated by ambient noise,
which would decrease the performance of the combined

Figure 6 (Color online) Typical demonstrations of comparisons between true and predicted elbow angle and torque for subject S6. (a) Angle prediction
based on the combined dataset; (b) angle prediction based on the ultrasound dataset; (c) angle prediction based on the EMG dataset; (d) torque prediction
based on the combined dataset; (e) torque prediction based on the ultrasound dataset; (f) torque prediction based on the EMG dataset.
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datasets. Hence, considering the system complexity and
wearability, the one channel A-mode ultrasound is more
acceptable for potential prosthetics or robot control appli-
cation. On the one hand, the study in ref. [14] had verified the
B-mode ultrasound features can be used to decode joint
position, this study further verified that the force information
can also be decoded by the A-mode ultrasound features. On
the other hand, this study demonstrates that A-mode ultra-
sound is a perfect alternative for EMG signals in human-
machine collaboration.
Furthermore, the A-mode ultrasound signals are able to

predict the same joint angle in different joint torque, and to
predict the same joint torque in different joint angle. The two
same joint angles in different joint torque appeared in elbow
flexion and elbow extension respectively (e.g. Figure 6). The
biceps brachii muscle played the leading role during elbow
flexion while the triceps brachii muscle played the leading
role during elbow extension, which resulted in the de-
formation differences of biceps brachii muscle between the
two process. Thus, the ultrasound signals corresponding to
the biceps brachii muscle deformation could be different,
though the joint angles were the same. So, the regression
model was capable to predict the same joint angle if the
elbow flexion and extension were involved in the training
data. The two same joint torques in different joint angle
appeared only in elbow flexion process or elbow extension

process (e.g. Figure 6). The biceps brachii muscle de-
formation could be different, because the joint angles were
different. Thus, the ultrasound signals were different, though
the joint torques were the same. In a similar way, the re-
gression model was capable to predict the same joint torque
when the elbow flexion and extension were involved in the
training data.

4.3 Feature space analysis

Figure 7 shows the first principal component distributions of
the ultrasound/sEMG features in terms of elbow angle or
torque. The features corresponding to elbow flexion and
extension processes were represented in different labels. It
clearly indicated that the ultrasound signal features showed
more stable mapping relation to angle as well as torque than
the sEMG features. For example, as shown in Figure 7(a) and
(b), considering the extension process, the features of EMG
were in the obviously centralized distribution in the range
from −300 to −200 when the normalized angle < 0.7, while
the ultrasound features were more widely distributed among
the whole first principal component range. That resulted in
the EMG-based angle prediction with lower accuracy and
higher deviation after regression, compared with the ultra-
sound-based angle prediction. Besides, the features for
flexion were separated from the features for extension, which

Figure 7 (Color online) The feature distribution of ultrasound and sEMG signals, corresponding to the first principal component and elbow angle/torque.
To make it clear, the features are presented in different label, in terms of randomly selected five cycles continuous flexion and extension processes of subject
S6. (a) Utrasound signal feature distribution respect to elbow angle; (b) sEMG signal feature distribution respect to elbow angle; (c) ultrasound signal feature
distribution respect to torque; (d) sEMG signal feature distribution respect to torque.
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means the angle and torque corresponding to flexion and
extension can be distinguishable by the regression model
considering all the other principal components.
The sEMG signals are non-stationary signals reflecting

muscular activation driven by the motor neuron, which
means that EMG signal intensity is related to the muscle
volunteer contraction degree and insensitive to joint angle.
To be specific, during the elbow isokinetic movement, the
upper arm muscles were working on maximum voluntary
contraction (MVC) at different elbow angle. The patterns for
different elbow joint angles were easily confused because of
the small differences of sEMG during MVC (e.g.
Figure 7(b)), which led to the low regression accuracy in
angle prediction (Figures 5(a) and 4(a)). The angle of the
elbow together with the MVC during isokinetic movement
resulted in the elbow torque, thus, the EMG-related torque
prediction accuracy could be higher than the EMG-related
angle prediction accuracy (Figures 5(b) and 4(b)), since the
angle differences made the torque patterns be more distin-
guishable (e.g. Figure 7 (d)). That’s why the researches in
refs. [35,36] applied the high-density sEMG (more than 16
channels) to increase the sEMG spatial resolution to capture
more information in purpose of increasing the angle-related
prediction accuracy.
Compared with EMG signals, the ultrasound signals

showed higher stability and spatial resolution. On the one
hand, studies in ref. [34] had verified the linear relationship
between muscle deformation and normalized elbow torque,
which indicated that the ultrasound features contain muscle
force information; on the other hand, the mapping relation-
ship between elbow angle and upper arm muscle deforma-
tion was stable during MVC, and the muscle deformation
changed significantly and repeatedly during the elbow iso-
kinetic flexion and extension (as shown in Figure 7(a) and
(c)). So, the ultrasound features, containing the muscle force
and deformation information, could better map the angle and
torque patterns than the EMG features and increase the
prediction accuracy.

4.4 Future work

The ultrasound signals are sensitive to the transducer posi-
tion and detecting direction, which means the low robustness
for transducer shift. Besides, only the elbow joint and the
60°/s isokinetic movements were involved in this study. Our
future work will focus on: 1) improving the ultrasound signal
robust against the transducer shift; 2) the bio-signals based
decoding towards wrist and shoulder joint angle and torque;
3) the bio-signal decoding respect to the isokinetic move-
ments in different angular velocities as well as the isometric
contraction in different joint angles.
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