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Travel time distribution studies are fundamental for supporting transportation system reliability studies, particularly for urban
road networks. However, such studies are generally based on travel time data sets with limited sample sizes, which provide
inconsistent findings. In this paper, a large amount of travel time data collected from the emerging radio frequency identification
(RFID) technique are used to conduct empirical investigations and estimations of travel time distributions, and three major findings
are determined. First, travel time data are shown to have a complex statistical structure: the travel time distribution is in general
peaky, multi-modal, and skewed to the right, which cross validates findings shown in previous publications. Second, unimodal
distribution models are shown to be unable to capture the complex statistical dynamics embedded in the travel time data; therefore,
a multistate distribution model is more appropriate for modeling travel time distributions. In this respect, a three-component
gaussian mixture model (GMM) is tested and results consistently outperform those of unimodal distribution models. Finally, the
aggregation time interval is shown to have a trivial effect on the shape of travel time distributions: the travel time distribution is
stable under different aggregation time intervals. Future work is recommended to investigate further travel time variabilities and
travel time distribution estimations.
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1 Introduction

Travel time distribution (TTD) is a stochastic characteristic of
travel time that plays a fundamental role in evaluating the re-
liability of transportation systems; particularly for urban net-
works where traffic conditions are more complex because of
a multitude of influencing factors. In this regard, many TTD
studies have been proposed [1–9], and a variety of indices
have been put forward to measure the reliability of transport
systems using TTD models (such as plan time, buffer time,
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standard deviation, coefficient of variation, and skewness).
However, such studies have, in general, focused on the re-
action of traveler behavior to different TTD models [10–12],
whereas scarce investigations have been conducted into the
nature of the TTD model in support of TTD-based transporta-
tion system reliability studies [13].

TTD studies require data-intensive effort and demand the
use of extensive travel time data. In this regard, TTD stud-
ies are heavily affected by the data source employed in the
study. However, due to the limitation of commonly used traf-
fic condition sensing techniques, it is not possible to directly
collect large amounts of travel time data, and a limited sam-
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ple size is generally employed. In addition, travel time data
are usually estimated from inductive loop detectors embed-
ded underneath the pavement or derived using floating cars
equipped with GPS (Global Positioning System), and bias
can be introduced into the data if the vehicle used in the
floating car approach is of particular type, such as a bus or
taxi. Consequently, literature currently provides inconsistent
results with respect to TTD studies, and multiple statistical
TTD models have been identified, such as the normal distri-
bution [14], skewed distribution [15], or Gaussian mixture
distribution [16]. Nevertheless, due to the rapid develop-
ment of advanced traffic sensing techniques in recent years,
such as the mobile-phone based sensing technique, automatic
license plate identification technique, or RFID (Radio Fre-
quency Identification Technology) based sensing technique
[17–21], travel time data are being increasingly accumulated,
which thus facilitates TTD studies.

The aim of this paper is to empirically investigate TTDs
using large amounts of travel time data collected via the Ra-
dio Frequency Identification (RFID) technique in real world
urban transportation systems. A variety of commonly used
statistical distribution models are tested to unravel the na-
ture of TTDs. The aggregation time interval is an important
factor determining the characteristics of traffic variables, and
limited studies have researched the effect of the time inter-
val on TTD. Therefore, in this paper, multiple time intervals
are applied to travel time data to demonstrate the effect of
the time interval on TTD. The remainder of the paper is or-
ganized as follows: Sect. 2 summarizes and analyzes related
state-of-the-art of TTD studies; Sect. 3 provides commonly
used statistical distributions in TTD studies; Sect. 4 presents
the method used to collect and process RFID data to obtain
travel time data in large quantities; Sect. 5 introduces the out-
line of experiments conducted in this paper; Sect. 6 presents
results of empirical experiments; and conclusions and discus-
sions are presented in Sect. 7.

2 Literature review

In this section, related travel time studies are reviewed, in-
cluding those related to TTD and the effect of the time inter-
val on TTD.

2.1 Travel time distribution

Knowledge of travel time is important for transportation sys-
tems, and many studies have been conducted to investigate
the nature of TTDs. In general, investigations have been con-
ducted by fitting travel time data with statistical distributions
[15]. It was initially believed that the symmetric distribution
characterized vehicle travel time well. For example, Tay-

lor [3] analyzed bus running time data over 15 consecutive
days and demonstrated that bus travel time followed a nor-
mal distribution. However, statistical analysis has identified
that TTD is asymmetric and significantly skewed to the right
[22], and Fosgerau and Karlström [23] found the distribution
of normalized travel time in a single section was asymmetric
and fat right-tailed, and that the normal distribution did not
provide a good fit. Some studies have considered the log-
normal distribution to be the most appropriate model because
of its simplicity and good fit [2, 24]. Kieu et al. [25] an-
alyzed the distribution of public transport day-to-day travel
time using transit signal priority data, developed a compre-
hensive approach for estimating the bus route TTD, and rec-
ommended the lognormal distribution as the best descriptor
of bus travel time on urban corridors. In addition, Uno et al.
[26] used a lognormal distribution to fit bus running time on
different routes. Polus [27] analyzed vehicle travel time data
for Chicago, USA, and determined that travel time data on
the city arterial approximately followed a gamma distribution
under specific assumptions. Furthermore, Jordan and Turn-
quist [28] showed that the skewed distribution fitted bus travel
time well in the morning peak period and recommended the
gamma distribution as the best model. Al-Deek and Emam
[29] modeled travel time variability with the Weibull distri-
bution. In the insurance actuarial field, the Burr distribution
has been widely applied to model the distribution of insur-
ance claims. This distribution was developed by Burr [30]
for fitting a cumulative distribution function (cdf) . Zimmer
et al. [31] noted the advantage of the Burr distribution in
modeling observed lifetime data. In addition, Susilawati et al.
[8] tested various statistical distributions for travel time data,
with the Burr distribution emerging as an appropriate model.
Fosgerau and Fukuda [32] found that stable distributions de-
scribe the distribution of travel times well and that the family
of stable distributions allows distributions with skewness and
heavy tails, as observed in empirical data. In ref. [33], a
multistate model was employed to fit a mixture of Gaussian
distributions into travel time observations in an expressway
corridor; each Gaussian distribution was associated with an
underlying traffic state, thereby providing a quantitative un-
certainty evaluation. These studies show that many distribu-
tions have been used to model travel time data, which has
resulted in inconsistent results with respect to TTD models.

2.2 Effect of time interval on travel time distribution

The travel time aggregation time interval is an important fac-
tor determining the characteristics of TTDs. For example,
Vlahogianm and Karlaftis [34] verified that the aggregation
level of traffic data can alter its underlying stochastic charac-
teristics, and Li et al. [5] demonstrated that the TTD tends
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to follow a normal distribution when the aggregation time
interval is reduced. In addition, the TTD of passenger cars
follows a lognormal distribution when the travel time aggre-
gation level is large, but the distribution tends to be normal
when the aggregation time interval is narrower. Mazloumi et
al. [35] showed that the normal distribution can adequately
fit the travel time data when a short aggregation time interval
is used, but that the TTD becomes increasingly skewed for
the off-peak period with an increase in the aggregation time
interval. Therefore, it has been considered that the lognormal
distribution provides a better fit than normal distributions, al-
though distributions for peak periods are still normal. How-
ever, recent studies have shown that TTDs are still skewed,
even in short aggregation time intervals (e.g., 5 min) [35].
With such inconsistent results in relation to TTDs, it is ev-
ident that the time interval has a significant effect on TTDs
and that it requires further investigation.

2.3 Summary

In summary, although TTD is an important component sup-
porting transportation system reliability study, investigations
on TTD models have provided inconsistent results and mul-
tiple statistical distributions have been identified when fitting
travel time data collected using various traffic condition sens-
ing techniques. Therefore, the nature of TTDs requires fur-
ther investigation. However, as conventional travel time data
collection techniques are not capable of directly obtaining
large amount of travel time data, related investigations into
the nature of TTDs have been consequently hampered. How-
ever, in this paper, the recent and rapid development of traf-
fic condition sensing techniques has enabled the collection of
large quantities of travel time data using RFID traffic sens-
ing technology, and a detailed investigation into TTDs is thus
conducted and presented. In addition, the effect of time inter-
vals on TTDs is also investigated in this paper.

3 Commonly used statistical distributions

This section presents an overview of commonly used statis-
tical distributions that have been applied or adopted in liter-
ature to describe travel time data distributions. These com-
monly used statistical distribution models include unimodal
models and multistate models.

3.1 Unimodal distribution

The most widely used unimodal models in TTD studies are
the normal distribution, lognormal distribution, gamma dis-
tribution, Weibull distribution, and Burr distribution. The
lognormal, gamma, and Burr distributions are asymmetrical

and superior to the use of symmetrical distributions for fitting
skewed data. The probability density function (PDF), cumu-
lative density function (CDF), and parameter ranges of these
unimodal models are given in Table 1.

3.2 Multistate model

The multistate model is a mixture of a finite number of
component distributions, where each component distribution
represents the distribution of collected data under different
states. A mixture coefficient is associated with each com-
ponent distribution, thereby representing the probability of
each specific state occurring in the multistate model. A fi-
nite multistate model with K-component distributions has the
following density function:

f (T |λ, θ) =
K∑

k=1

λk fk(T |θk), (1)

where T represents the collected data; f (T |λ, θ) is the den-
sity function of the distribution model of T ; λ = (λ1, ..., λK)
is the vector of mixture coefficients, with

∑K
k=1 λk = 1;

θ = (θ1, ..., θK) is the matrix of model parameters for each
component distribution; θk = (θk1, ..., θKI) is vector of model
parameters for the kth component distribution; fk(T |θk) is the
density function for the kth component distribution.

Specifically, the density function of a three-component
model based on normal distribution is defined as follows:

f (T |λ1, λ2, λ3, µ1, µ2, µ3, σ1, σ2, σ3)

= λ1
1
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e
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2σ2
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e
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2σ2
2
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e
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2σ2
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where λ1 is the mixture coefficient for the first component
distribution with mean µ1 and standard deviation σ1; λ2 is
the mixture coefficient for the second component distribution
with mean µ2 and standard deviation σ2; λ3 is the mixture
coefficient for the third component distribution with mean µ3

and standard deviation σ3.

4 Travel time calculation using RFID tech-
nique

As mentioned previously, large quantities of travel time data
were collected using the RFID technique and are used in the
TTD study presented in this paper. Therefore, in this section,
travel time calculations and the general principle of the RFID
technique, RFID data preprocessing, are described in detail
to support an understanding of subsequent investigations.
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Table 1 Unimodal models

Unimodal model Probability density function Cumulative distribution function Parameter range

Normal f (t) = 1
σ
√
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exp
[
− 1

2

(
t−µ
σ

)2]
F(t) = 1

σ
√

2π

∫ t
0 exp

[
− 1

2

(
t−µ
σ

)2]
dt t > 0, −∞ < µ < +∞, σ > 0

Lognormal f (t) = 1
σ
√
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[
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2

(
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)2]
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λαΓ(α) tα−1 exp

(
− t
λ

)
F(t) = 1

λαΓ(α)

∫ t
−∞ tα−1 exp

(
− t
λ

)
dt t > 0, α > 0, λ > 0

Burr f (t) = ατλ
xτ−1(

1+ xτ
λ

)α+1 F(t) = 1 −
(
1 + xτ

λ

)−α
t > 0, α > 0,λ > 0,τ > 0

Weibull f (t) = λα

(
t
λ

)α−1
exp
[
−
(
− t
λ

)α]
F(t) = 1 − exp

[
−
(
− t
λ

)α]
t > 0, α > 0, λ > 0

4.1 General principle of RFID technique

Radio frequency identification (RFID) is an automatic identi-
fication technology that enables non-contact communication
between a transmitter and a receiver so that an intended target
can be automatically identified. Since its inception, the RFID
technique has been applied in many fields, and one of its most
recent applications is within the transportation field for de-
tecting vehicles operating within the road network. To enable
this, a fully deployed RFID-based traffic condition sensing
system is deployed, which primarily includes an RFID base
station, electronic tags, central processing system, and sup-
porting systems. The RFID base station is installed next to
the road, and it remotely reads the electronic tags installed in
vehicles as they pass within a certain range. Note that iden-
tification information is preloaded into electronic tags; this
primarily includes an electronic tag number, vehicle license
plate number, and vehicle license plate color. When the elec-
tronic tag is read, a combination of the identification informa-
tion, the current time stamp, and the base station information
generate a so-called “vehicle passing record” (VPR), which
is the fundamental output of the RFID-based traffic condition
sensing system. Every vehicle that passes the RFID base sta-
tion generates a passing record; therefore, a huge number of
VPRs can be generated in heavy traffic; all of these are stored
in a central system with the assistance of supporting systems,
such as communication systems.

4.2 Vehicle passing record (VPR) screening

As with all traffic condition sensing systems, the VPR can
sometimes contain anomalies, such as erroneous or redun-
dant data, that need to be processed to increase data qual-
ity. Erroneous data are mainly related to vehicle license plate
numbers that have been wrongly preloaded in the electronic
tag, or which have been read mistakenly when the vehicle
passes a station. Redundant data mainly relate to the vehi-
cle detection process, for example where duplicate or similar

VPRs are generated for the same vehicle passing the same
station, and are usually identified as two or more VPRs with
the same vehicle license plate number within a very short
range of time. It is clear that vehicle license plate numbers
are the major source or such anomalies; therefore, to remove
abnormal VPRs, a screening procedure based on the vehicle
license plate naming rule is developed in this study.

4.3 Travel time calculation

The VPR represents the fundamental data collected from the
RFID-based traffic condition sensing system, and travel time
data are then derived from processing the VPRs. In this re-
spect, for the RFID-based traffic condition sensing system,
a RFID station pair is defined as Origin Station, Destination
Station. The difference between the time stamps for one vehi-
cle passing the origin station and then the destination station,
consecutively, is defined as the travel time of this vehicle for
the RFID station pair. A procedure was developed in this
study, whereby the VPRs for the origin station and the des-
tination station were matched together using a combination
of the license plate number and the license plate color as the
key index. To enable use of the RFID-based traffic condition
sensing system in this study, each vehicle requires a unique
vehicle license plate number and vehicle plate license color
combination, to conduct the matching process. The proce-
dure used is shown in Figure 1.

Note that in Figure 1, a set of VPRs is obtained at the ori-
gin station for each VPR, and these then determine the set of
VPRs for the destination station. These data include all the
VPRs with timestamps falling within a predefined interval,
starting with the timestamp of the selected VPR for the origin
station. Clearly, the length of the predefined interval depends
on the distance between the origin station and the destination
station, and longer intervals are required for station pairs situ-
ated at greater distances. In this paper, the predefined interval
is defined as 10 min, as the distance between station pairs
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Figure 1 Calculation of travel time for arterial between RFID base station
pair.

used in this study is in general around 1 km in the urban en-
vironment, which translates into a vehicle link travel speed
of 6 km/h. This means that travel speeds of less than 6 km/h
are regarded as suspicious, and in such instances the com-
puted travel time is then be removed from investigation. In
addition, due to potential possibility of a vehicle passing the
destination station multiple times, the minimum travel time
is selected when multiple vehicle passing records were found
based on a single set of license plate number and color.

4.4 Travel time aggregation

In real world applications, travel time data are generally ag-
gregated under different time intervals. In this regard, given a
specific time interval, travel time data records can be divided
into groups that are determined by a selected time interval
according to the timestamp of the travel time record passing
the origin RFID station. After dividing the travel time data
records into different groups, the average of the travel time
data records within each group can be used as the aggregated
travel time for this group. For example, given a 5-minute
time interval, a single day is divided into 288 time-groups,
and travel time data records for each day are divided into
these 288 time-groups, which generates 288 aggregated travel
times for this day. Although it may appear to be simple and
straightforward, travel time aggregation is an important step
in making travel time data usable in real world applications.

5 Experimental design

In this paper, three investigations are conducted: empirical
investigations into travel time variability, empirical investi-
gations into TTDs, and estimations of TTDs, as described in
the section below.

5.1 Empirical travel time investigation

The aim of this investigation is to show variability in col-
lected travel time data. Three types of travel time variability
have been previously defined in literature. The first type is
vehicle-to-vehicle variability; this is the variability in travel
time within a specific period of time that reflects the dif-
ferences between travel times experienced by different vehi-
cles traveling the same trip within the same period of time.
Factors contributing to vehicle-to-vehicle variability relate
to signal timing, driver behavior, or impedances from bikes
or pedestrians. The second type is day-to-day variability,
which is the variability in travel time for the same trip and
same time-period across different days; this reflects day-to-
day fluctuations in traffic demand, weather, driver behavior,
and/or incidents. The third type is period-to-period variabil-
ity, which is the variability in aggregated travel times across
time; this reflects the continuous evolution of aggregated
travel times with respect to different times of the day. Factors
contributing to period-to-period variability include temporal
variations in traffic demand, incidents, weather conditions, or
the level of daylight.

A comparison between the definitions of these three types
of variability shows that the first two types are helpful for
gaining an understanding of the nature of travel time, whereas
the final one is useful for developing transportation applica-
tions, as most transportation applications run in a continu-
ous time fashion. Therefore, this study focuses on period-
to-period variability, which can be demonstrated by showing
the aggregated travel time for each time interval across time.
Note that in this paper, the time intervals are selected as 5-
min, 10-min, 30-min, and 60-min, respectively, to show the
effect of time interval aggregation on the aggregated travel
time.

5.2 Empirical travel time distribution investigation

The aim of this investigation is to show empirical TTDs.
Three measures of central tendency are used in this paper:
the mean, median, and mode of empirical travel time data.
In addition, four measures of variability are selected: stan-
dard deviation (SD), skewness, kurtosis, and coefficient of
variance (COV). Note that time intervals of 5-min, 10-min,
30-min, and 60-min are also selected to show the effect of
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aggregation of the time interval on TTDs. Of these measures,
the mean, median, mode, and SD are widely used, therefore
these are not defined here, but definitions of skewness, kurto-
sis, and COV are provided below.

Skewness is defined as the third-order central moment of a
distribution, and it describes the degree of distribution sym-
metry; kurtosis is defined as the fourth-order central moment
of a distribution, and it describes the degree of distribution
flatness. Larger skewness and kurtosis indicate that the dis-
tribution is asymmetric: the peak of the distribution is shifted
to one side and a long tail extends to the other side. Kur-
tosis can also be used to show the origin of the variance of
data: a non-peaky distribution shows that the variance origi-
nates from throughout the whole value range, while a peaky
distribution shows that the variance mainly originates from
tails. Computationally, given a series sample of sample data,
xt, t = 1, ...T , skewness and kurtosis can be calculated as fol-
lows:

Kurtosis =
1
T

T∑
t=1

( xt − x
σ̂

)4
, (3)

Skewness =
1
T

T∑
t=1

( xt − x
σ̂

)3
. (4)

The coefficient of variation (COV) is defined as the ratio
of the standard deviation to the mean. COV is usually used
to show the distributions degree of dispersion. As COV is a
dimensionless quantity, objective comparisons between dif-
ferent travel time data sets can be conducted. The COV is
calculated using the following formula:

COV =
SDTT

ETT
, (5)

where SDTT is the SD of the TTD, and ETT is the mean of the
TTD.

5.3 Travel time distribution (TTD) estimation

The purpose of this investigation is to fit travel time data with
the statistical models presented in Sect. 3, with the aim of
identifying the most suitable statistical distribution model for
modeling travel time data. Note that time intervals of 5-min,
10-min, 30-min, and 60-min are also applied in this investi-
gation.

During this estimation or fitting process, three measures of
goodness-of-fit are selected. The first is the Akaike informa-
tion criterion (AIC), which measures the relative quality of
a statistical model by trading off the model complexity (by
considering the number of parameters) and the goodness-of-
fit of the fitted model (by considering the maximized value

of the log-likelihood). In general, complex models will fit
the data better than simple models. However, the benefits in
model fitting may not outweigh the extra model complexity.
We assume a kth order model that specifies a probability den-
sity function f (x|θk) of n observations with a free parameter
vector θk, and we then find the Maximum Likelihood Esti-
mator θ̂k of θk with θk ∈ Rk (the K-dimensional Euclidean
space) by maximizing the likelihood function with respect to
θk. Hence, the likelihood is computed as

L(θ̂k|x̂) = L(x1, x2, . . . , xn) =
n∏

i=1

f (xi|θk). (6)

The AIC can then be computed as follows:

AIC(k) = −2log f (xi|θ̂k) + 2k = −2logL(θ̂k) + 2k. (7)

In addition to the AIC, the sum of squares for error (SSE)
and the coefficient of determination (R2) are also used for de-
termining the effect of model fitting. The SSE reflects the dif-
ference between observed and fitted values, with SSE equals
0 indicating no difference between observed and fitted val-
ues. R2 has a range between 0 and 1 and is used to explain
the variability of dependent variables in fitting equations: if
R2 is close to 1, the variability of dependent variable is al-
most completely caused by the independent variable. These
two measures are computed below as

SSE =
n∑

i=1

(yi − ŷl)2,

SSR =
n∑

i=1

(ŷl − ȳ)2,

SST =
n∑

i=1

(yi − ȳ) =
n∑

i=1

(yi − ŷl) +
n∑

i=1

(ŷl − ȳ)

= SSE + SSR,

R2 =
SSR
SST

= 1 − SSE
SST
,

(8)

where yi is the observed data; ŷl is the fitted or estimated data;
ȳ is the mean of the observed data; n is the total sample size
of the data; SSR is the sum of squares for regression; and
SST is the total sum of squares for regression.

6 Experimental results

6.1 Data collection

As an emerging traffic sensing technique, the RFID-based
traffic condition detection system collects massive RFID data
daily and has been implemented in the City of Nanjing,
China. In this paper, a central region of Nanjing is selected
as the study road network, as shown in Figure 2.
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According to Figure 2, the study road network contains 43
RFID base stations (the numbers of RFID base stations and
road names are shown in the figure). From the roads in the
selected network, the major arterial roads of East Zhongshan
Road, Middle Longpan Road, Zhujiang Road, Ruijin Road,
Changfu Street, and Hubu Street are selected as study roads.
There are 22 RFID base station pairs situated along these ur-
ban roads. As operational failures occurred at some of these

RFID base stations, travel time data from 19 RFID base sta-
tion pairs from April 1, 2014 to April 30, 2014 were selected
for study (listed in Table 2), for time intervals of 5-min, 10-
min, 30-min, and 60-min. It is clear from Table 2 that a large
amount of travel time data were collected for these time in-
tervals and for each station pair, thereby providing a good
chance of unraveling the nature of travel time through inves-
tigating large quantities of travel time samples.

m

Figure 2 (Color online) Study road network.

Table 2 Travel time data overview

Road name Direction Base station pair
Sample size

5-min 10-min 30-min 60-min

Zhujiang Road West bound (6288, 6286) 8600 4318 1440 720

(6286, 6284) 8588 4301 1435 718

East bound (6283, 6285) 8535 4274 1427 715

(6285, 6287) 5561 2798 944 479

East Zhongshan Road West bound (6258, 6256) 8635 4319 1440 720

(6256, 6254) 8627 4318 1440 720

(6254, 6252) 8599 4304 1439 720

East bound (6251, 6253) 7877 3944 1316 658

(6253, 6257) 7677 3891 1311 658

(6257, 6259) 8610 4318 1440 720

Hubu Street-Ruijin Road West bound (6332, 6330) 8558 4318 1440 720

(6330, 6328) 8623 4318 1440 720

(6328, 6326) 8593 4319 1440 720

(6326, 6324) 8637 4320 1440 720

East bound (6323, 6325) 8038 4029 1344 673

(6325, 6327) 8009 4029 1345 673

(6327, 6329) 8529 4313 1440 720

(6329, 6331) 8590 4318 1440 720

Middle Longpan Road North bound (6026, 6028) 5287 2723 924 463
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6.2 Empirical travel time description

As designed previously, this section shows the results of em-
pirical travel time variability, namely, period-to-period vari-
ability. In doing so, four RFID station pairs were selected:
base station pair (6026, 6028) on Middle Longpan Road, base
station pair (6253, 6257) on East Zhongshan Road, base sta-
tion pair (6283, 6285) on Zhujiang Road, and base station
pair (6329, 6331) on Hubu Street-Ruijin Road. The travel
times of these RFID base station pairs on April 12, 2014 were
collected, and the period-to-period travel time variability is
shown in Figure 3.

From an analysis of Figure 3, two observations can be
made. First, all four RFID station pairs show clearly dif-
ferent travel time variability patterns. Specifically, pairs
(6026,6028) and (6253,6257) show a clear peak period pat-
tern during morning peak hours, indicating congested traffic
at this time, whereas the other two pairs, pairs (6329,6331)
and (6283,6285), do not show clear peak hour patterns. How-
ever, it is obvious that different types of roads will show dif-
ferent travel time patterns, and hence travel time variability
will show different patterns across time. Second, regardless
of the RFID station pairs, travel time is gradually smoothed
out with an increase in the aggregation time interval. In other
words, an increase in the time interval reduces the variability
of travel time across time. This is helpful for determining an
appropriate time interval when considering the time interval
required to update traffic management and control systems.

It is also important for use with transportation applications
dealing with the variability of travel time under specific time
intervals.

6.3 Empirical travel time distribution investigation

As described in Sect. 5, central tendency and variability mea-
sures are investigated for empirical travel time distributions,
and measures of central tendency are shown in Table 3 for
all the 19 RFID station pairs. From Table 3, it can be seen
that the mean and median values of each selected travel time
data set are generally very close to each other for different
time intervals, which shows that the travel time aggregation
process has a weak effect on the central location of the distri-
butions. In addition, although the mode changes for different
time intervals in several travel time data sets, the aggregation
process does not generally significantly alter the modes for
different time intervals. In summary, the location tendency of
TTDs remains stable during the aggregation process.

Measurements of TTD variability are shown in Table 4 for
all the 19 RFID station pairs. An observation of Table 4
firstly shows that all station pairs have different COVs and
SDs, which indicates that the travel time dispersions are dif-
ferent for different links; this is normal as different links have
different traveling patterns. It also shows that for each spe-
cific RFID station pair, there is a slight decrease in the SD
and COV with an increase in the time interval, which indi-
cates the smoothing effect of using long-time intervals when
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Figure 3 (Color online) Travel Time Variability for different base station pairs. (a) (6026, 6028); (b) (6329, 6331); (c) (6253, 6257); (d) (6283, 6285).
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Table 3 Central tendency of travel time data measurements

Base station pair
5-min 10-min 30-min 60-min

Mean Median Mode Mean Median Mode Mean Median Mode Mean Median Mode

(6288, 6286) 163.21 158 169 163.35 160 167 163.49 160 171 163.57 159 174

(6286, 6284) 87.89 85 86 87.99 86 92 88.08 85 71 88.18 85 84

(6283, 6285) 58.00 56 53 58.03 56 58 57.91 56 54 57.99 57 54

(6285, 6287) 123.87 109 107 123.84 107 72 123.64 109 93 123.65 109 94

(6258, 6256) 75.76 70 75 75.42 70 73 75.01 71 72 74.45 72 74

(6256, 6254) 141.40 126 135 141.83 127 126 141.44 130 132 141.05 132 81

(6254, 6252) 112.09 101 74 111.99 102 76 111.78 105 68 111.80 107 71

(6251, 6253) 119.85 82 61 119.83 81 52 118.62 80 63 117.91 80 60

(6253, 6257) 252.85 241 254 254.08 243 187 256.01 249 257 256.41 252 168

(6257, 6259) 116.70 97 77 116.86 95 77 116.65 93 78 116.38 94 76

(6332, 6330) 142.77 145 143 142.87 146 145 142.86 146 151 143.09 147 154

(6330, 6328) 75.36 71 71 75.52 72 74 75.59 73 77 75.69 74 75

(6328, 6326) 154.30 157 177 154.39 158 157 154.6 160 168 154.86 162 162

(6326, 6324) 142.11 118 113 142.28 119 109 142.60 119 106 142.73 120 108

(6323, 6325) 120.36 111 107 120.71 112 113 121.09 111 115 121.25 112 115

(6325, 6327) 136.99 120 102 136.97 121 98 137.41 120 94 137.33 119 101

(6327, 6329) 125.45 121 127 125.39 122 127 125.22 122 123 124.83 122 95

(6329, 6331) 103.01 88 64 102.97 88 67 103.24 89 71 103.42 88 71

(6026, 6028) 166.47 136 91 154.18 139 143 154.97 141 88 154.85 141 150

aggregating travel time. This result is in alignment with the
findings of previous investigations. Furthermore, an observa-
tion of the skewness and kurtosis shows that all travel time
distributions are asymmetric toward the right and that the
variances of the distributions mainly originate from the tails
of the distributions. This is important, as it shows that sym-
metric distributions, such as the normal distribution, cannot
model real world travel time data, whereas asymmetric dis-
tribution models are more suitable. Finally, an analysis of the
effect of time intervals on these measures shows that they do
not significantly affect the shape of TTDs, which indicates
that the travel time distribution is potentially stable under dif-
ferent aggregation time intervals.

In summary, this study shows that TTDs are peaked and
asymmetrical, and that the aggregation time interval has a
minimal effect on the shape of TTDs. This implies that TTDs
are intrinsically stable across time and space.

6.4 Travel time distribution (TTD) estimation

As mentioned previously in Sect. 5, travel time data collected
using the RFID sensing technique were used to fit selected
distribution models. Note that the multistate model fitted
here is a three-component gaussian mixture model (GMM),
which is a combination of three normal distributions. In ad-
dition, three goodness-of-fit measures of AIC, SSE, and R2

were used to gauge the effect of these distribution models on

fitting travel time data. In the following, the average values of
AIC, SSE, and R2 in fitting TTD models are listed in Table 5,
and Table 6 lists the estimated parameters of these fitted TTD
models. It is also of note that all these outcomes are presented
together with different time intervals.

An observation of Table 5 shows firstly that the GMM
model consistently outperforms other models in terms of all
the three goodness-of-fit measures and across all time inter-
vals. This indicates that the statistical structure of travel time
data is complex; therefore, single distribution models may
not be able to capture all the dynamics embedded within the
travel time data, and hence mixed models with multiple com-
ponent distributions may be better choices for fitting travel
time data. The GMM provides an established improvement
over other models, and its degree of complexity is well re-
warded by delivering a more realistic representation of travel
time variations. Furthermore, the GMM model can be easily
handled by standard statistical packages. It is thus consid-
ered to be flexible and robust enough to handle travel time
data distributions. An observation of R2 also shows a consis-
tently decreasing trend with an increase in the time intervals
(this measure has a high value of 0.9248 for the 5-min inter-
val but decreases consistently to a moderate value of 0.6713
for the 60-min interval), which also indicates that aggregation
of travel time data may cancel out the statistical dynamics of
travel time data, thereby decreasing the model fitting effect.
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Table 4 Variability in travel time data measurements

Base station pair
5-min 10-min

COV Skewness Kurtosis SD COV Skewness Kurtosis SD

(6288, 6286) 36.94 1.84 6.58 60.30 34.99 2.03 7.56 57.16

(6286, 6284) 31.81 1.00 4.86 27.96 27.87 0.81 3.32 24.52

(6283, 6285) 36.92 2.41 18.85 21.41 2.26 2.39 18.38 18.72

(6285, 6287) 54.92 2.42 9.35 68.03 53.43 2.53 8.91 66.17

(6258, 6256) 49.93 4.73 36.28 37.83 44.70 4.57 32.96 33.71

(6256, 6254) 49.47 2.39 7.94 69.96 48.34 2.40 7.88 68.55

(6254, 6252) 46.64 1.80 5.92 52.28 44.25 1.71 5.17 49.56

(6251, 6253) 74.97 1.64 2.59 89.86 72.92 1.58 2.20 87.38

(6253, 6257) 37.84 0.99 0.95 95.67 37.43 1.03 0.97 95.10

(6257, 6259) 62.39 2.41 7.42 72.82 60.31 2.50 7.86 70.48

(6332, 6330) 24.90 1.45 13.16 35.55 21.60 1.77 18.99 30.86

(6330, 6328) 47.14 2.61 13.57 35.52 44.59 2.72 13.71 33.67

(6328, 6326) 29.40 0.97 4.62 45.36 27.27 1.02 4.97 42.11

(6326, 6324) 55.93 2.43 6.26 79.47 54.58 2.55 6.75 77.66

(6323, 6325) 43.18 2.50 9.64 51.97 40.64 2.79 11.44 49.06

(6325, 6327) 51.88 1.76 3.50 71.07 50.22 1.83 3.62 66.79

(6327, 6329) 38.74 3.58 21.45 48.60 36.16 3.77 23.19 45.33

(6329, 6331) 50.71 1.50 2.81 52.23 48.66 1.55 2.98 50.11

(6026, 6028) 58.98 1.75 3.52 98.19 54.83 2.38 6.05 84.54

Base station pair
30-min 60-min

COV Skewness Kurtosis SD COV Skewness Kurtosis SD

(6288, 6286) 32.61 1.94 6.50 53.32 30.53 1.52 3.96 49.94

(6286, 6284) 24.24 0.83 3.93 21.35 23.07 0.59 1.13 20.34

(6283, 6285) 26.76 2.31 14.77 15.50 3.94 1.92 10.29 13.88

(6285, 6287) 49.03 2.26 6.84 60.63 46.84 2.10 6.01 57.91

(6258, 6256) 38.04 4.20 28.08 28.53 31.18 3.06 16.75 23.22

(6256, 6254) 44.05 2.10 6.45 62.30 40.38 1.71 4.63 56.95

(6254, 6252) 39.70 1.28 2.08 44.38 37.18 1.06 1.34 41.57

(6251, 6253) 67.65 1.37 1.15 80.25 64.48 1.27 0.8 76.03

(6253, 6257) 35.85 0.96 0.73 91.77 34.19 0.82 0.44 97.66

(6257, 6259) 56.04 2.34 6.51 65.38 52.08 2.05 4.7 60.61

(6332, 6330) 17.40 1.95 19.33 24.85 15.59 1.23 9.72 22.30

(6330, 6328) 39.92 2.47 10.44 30.18 36.85 2.15 8.53 27.89

(6328, 6326) 24.77 0.89 3.74 38.30 23.31 0.38 0.45 36.10

(6326, 6324) 51.89 2.62 7.04 73.99 48.76 2.58 6.94 69.59

(6323, 6325) 37.05 2.80 10.19 44.86 34.85 2.63 8.67 42.26

(6325, 6327) 47.24 1.80 3.13 64.91 45.42 1.70 2.71 62.38

(6327, 6329) 32.45 3.87 23.98 40.64 29.05 3.12 16.99 36.26

(6329, 6331) 45.18 1.62 3.30 46.64 42.46 1.45 2.44 49.92

(6026, 6028) 52.45 2.30 5.82 81.28 49.13 2.08 4.85 76.08

An observation of Table 6 shows the similarity of the fitted
distributions for each RFID station pair across different time
intervals. In other words, the TTD shapes remain stable for
each RFID station pair with different aggregation time inter-
vals. This confirms the findings in the previous investigation
and supports the notion of plausible stability of travel time
data under different time intervals.

To demonstrate intuitively the effect of fitting distribu-
tion models, Figure 4 to Figure 7 shows the fitting effect for
four different RFID station pairs on different roads, including
(6029, 6027), (6253, 6257), (6285, 6287) and (6329, 6331).
In these figures, the histograms of travel time data and the fit-
ted distribution models are shown collectively. An observa-
tion of Figure 4 to Figure 7 firstly shows that the histograms
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Table 5 Distribution estimation effect of different time intervals

TTD model
5-min 10-min 30-min 60-min

SSE R2 AIC SSE R2 AIC SSE R2 AIC SSE R2 AIC

Normnal 0.0311 0.4929 87244 0.0022 0.4084 43424 0.0037 0.2206 14237 0.0044 0.1704 6975

Lognormal 0.0136 0.8469 83875 0.0012 0.7672 41573 0.0024 0.5363 13645 0.0034 0.3789 6777

Gamma 0.0165 0.8078 84495 0.0013 0.7183 41953 0.0028 0.4932 13780 0.0036 0.3531 6924

Weibull 0.0302 0.5012 86206 0.0023 0.3566 41189 0.0039 0.1306 14160 0.0048 0.0778 7004

Burr 0.0089 0.9117 83395 0.0008 0.8634 41234 0.0018 0.7365 13508 0.0029 0.5575 6711

GMM 0.0004 0.9284 83128 0.0007 0.8804 40958 0.0016 0.7444 13443 0.0022 0.6713 6646

Table 6 Estimated parameters of travel time distribution models

Station Pair Time Interval
GMM Normal

λ1 λ2 µ1 µ2 µ3 σ1 σ2 σ3 µ σ

(6253, 6257) 5-min 0.2533 0.4997 155.78 245.85 366.55 26.62 45.45 97.02 252.85 95.67

10-min 0.2787 0.4684 159.18 249.34 367.41 23.15 41.42 95.42 254.08 95.10

30-min 0.3351 0.2808 166.21 254.82 335.20 18.25 22.19 88.60 256.01 91.77

60-min 0.3145 0.3488 164.37 256.87 341.88 14.84 30.67 78.74 256.41 87.66

(6283, 6285) 5-min 0.7062 0.2720 49.51 74.65 125.07 13.34 12.41 54.05 58 21.41

10-min 0.9872 0.0030 56.95 123.13 145.89 15.34 3.83 49.41 58.03 18.72

30-min 0.9834 0.0050 56.77 101.57 136.18 12.19 2.74 27.46 57.91 15.50

60-min 0.9363 0.0456 56.43 66.15 118.23 10.95 1.69 17.57 57.99 13.88

(6329, 6331) 5-min 0.4798 0.3639 67.83 114.22 184.86 16.50 30.05 60.84 103.01 52.23

10-min 0.4180 0.4240 67.98 108.07 181.87 13.85 29.69 58.76 102.97 50.11

30-min 0.4106 0.4200 70.39 106.47 174.20 12.02 26.42 54.63 103.24 46.64

60-min 0.4699 0.3813 71.68 114.46 175.41 10.39 25.71 45.65 103.42 43.92

(6026, 6028) 5-min 0.8529 0.0814 125.43 235.66 419.54 33.51 55.85 71.25 153.74 86.20

10-min 0.8643 0.0775 126.95 252.98 427.43 32.75 55.65 62.17 154.18 84.54

30-min 0.8581 0.0365 127.99 223.28 350.79 32.09 14.46 87.74 154.97 81.28

60-min 0.8474 0.1299 128.78 273.48 448.21 32.32 58.67 26.09 154.85 76.08

Station Pair Time Interval
Lognormal Gamma Weibull Burr

µ σ α λ α λ α λ τ

(6253, 6257) 5-min 5.47 0.37 7.57 33.41 284.21 2.77 242.953 4.58 1.09

10-min 5.47 0.36 7.85 32.38 285.48 2.79 233.69 4.88 0.96

30-min 5.49 0.34 8.51 30.08 287.09 2.92 236.66 5 0.1293

60-min 5.49 0.33 9.13 28.09 286.82 3.08 263.79 4.65 1.31

(6283, 6285) 5-min 3.99 0.35 8.39 6.91 64.75 2.63 63.99 4.49 1.61

10-min 4.01 0.30 11.03 5.26 64.32 2.89 61.74 5.33 1.46

30-min 4.03 0.25 16.19 3.58 63.59 3.33 57.73 7.18 1.13

60-min 4.03 0.23 19.64 2.95 63.32 3.72 58.17 7.94 1.15

(6329, 6331) 5-min 4.52 0.47 4.64 22.20 116.83 2.10 77.65 4.45 0.6639

10-min 4.53 0.44 5.14 20.05 116.72 2.18 73.69 5.29 0.53

30-min 4.55 0.39 6.06 17.03 116.80 2.32 71.29 6.9 0.4031

60-min 4.56 0.38 6.74 15.35 116.82 2.46 64.81 11.69 0.2056

(6026, 6028) 5-min 4.93 0.43 4.78 32.19 174.50 1.93 103.657 6.45 0.4425

10-min 4.93 0.42 5.01 30.78 174.98 1.97 102.91 6.99 0.39

30-min 4.95 0.41 5.33 29.05 175.81 2.04 100 7.93 0.3215

60-min 4.95 0.39 5.75 26.92 175.51 2.15 103.42 7.51 0.3567
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of selected travel time data clearly show that TTDs are com-
plex and have multistate, peak, and right-skewness charac-
teristics. These results cross-validate the findings of pre-
vious investigations. It is also clear that aggregation of
travel time has no significant effect on the shape of TTDs,
thereby indicating the stability of travel time under differ-
ent time intervals. Furthermore, in terms of model fitting,

the GMM model generally shows superiority of model fit-
ting over the other distribution models. In particular, for
the RFID station pair (6253,6257) with pronounced multi-
state phenomenon, as shown in Figure 4, the fitted GMM
model clearly and closely tracks the two states shown in the
data, while the other models are unable to capture the two
states.
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Figure 4 (Color online) Travel time distribution (TTD) for (6253, 6257) under different time intervals. (a) 5 min; (b) 10 min; (c) 30 min; (d) 60 min.
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Figure 5 (Color online) Travel time distribution (TTD) for (6283, 6285) under different time intervals. (a) 5-min; (b) 10-min; (c) 30-min; (d) 60-min.
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Figure 6 (Color online) Travel time distribution (TTD) for (6329, 6331) under different time intervals. (a) 5-min; (b) 10-min; (c) 30-min; (d) 60-min.
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Figure 7 (Color online) Travel time distribution (TTD) for (6026, 6028) under different time intervals. (a) 5-min; (b) 10-min; (c) 30-min; (d) 60-min.

7 Conclusions and discussion

There has been a long-accepted consensus that TTD is funda-
mental for supporting transportation system reliability stud-
ies, particularly in relation to complex urban transportation
systems, and many studies have been published with the aim

of unraveling the nature of TTDs. However, due to the lack
of adequate travel time data collection techniques, these stud-
ies have generally been based on a travel time data set with a
limited sample size, resulting in inconsistent findings. There-
fore, in this paper, large amounts of travel time data were
collected using the emerging radio frequency identification
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(RFID) technique, and extensive investigations into travel
time data and its distributions were conducted to show the
nature of travel time data. In addition, the aggregation time
interval, an important determining factor for traffic variables,
was also investigated together with the travel time data.

Three major findings can be drawn from the studies pre-
sented in this paper, and these are listed as follows. First,
through empirical investigations into period-to-period travel
time variability and TTDs, this paper shows that travel time
data have a complex statistical structure: the TTD is in gen-
eral peaky, multi-modal, and skewed to the right. This finding
agrees with those of previous publications and is helpful in
understanding the nature of travel time data. Second, based
on previous findings, this paper shows that unimodal distri-
bution models are unable to capture the complex statistical
dynamics embedded in travel time data; therefore, use of a
multistate distribution model is more appropriate for mod-
eling TTDs. Specifically, in this paper, a three-component
gaussian mixture model (GMM) is tested together with other
typical unimodal distribution models, and results show that
the GMM consistently outperforms the unimodal distribution
models. Finally, results show that the aggregation time inter-
val does not affect significantly the shape of TTDs: TTDs re-
mains stable under different aggregation time intervals. Con-
sidering that time intervals are an important temporal fac-
tor for many transportation management and control appli-
cations, this finding is important as it supports the adoption
of a single TTD model with various time intervals for trans-
portation applications.

Future work is anticipated as follows. First, as travel time
variability is an important topic and one of the primary fo-
cuses of transportation studies, as it is now possible to collect
large amounts of travel time data, future work will be con-
ducted to reveal patterns in travel time variability (in terms
of vehicle-to-vehicle variability, data-to-day variability, and
period-to-period variability). Second, TTD estimations could
be further refined using mixture models with other types of
component distributions, and the relationship between TTD
and traffic conditions could also be investigated. This would
be helpful for breaking travel time data into distributional
groups with respect to different traffic condition states, and
thus provide in-depth insights into travel time data. Finally,
it is important to investigate adaptive procedures for estimat-
ing TTD models, as transportation management and control
applications generally operate in an online fashion. In this
sense, it is also important to generate a confidence level for
travel time data using the TTD model, so that reliability of
applications built upon travel time data can be measured in
real time.
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