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Intelligent connected vehicles (ICVs) are believed to change people’s life in the near future by making the transportation safer,
cleaner and more comfortable. Although many prototypes of ICVs have been developed to prove the concept of autonomous
driving and the feasibility of improving traffic efficiency, there still exists a significant gap before achieving mass production of
high-level ICVs. The objective of this study is to present an overview of both the state of the art and future perspectives of key
technologies that are needed for future ICVs. It is a challenging task to review all related works and predict their future
perspectives, especially for such a complex and interdisciplinary area of research. This article is organized to overview the ICV
key technologies by answering three questions: what are the milestones in the history of ICVs; what are the electronic
components needed for building an ICV platform; and what are the essential algorithms to enable intelligent driving? To answer
the first question, the article has reviewed the history and the development milestones of ICVs. For the second question, the
recent technology advances in electrical/electronic architecture, sensors, and actuators are presented. For the third question, the
article focuses on the algorithms in decision making, as the perception and control algorithm are covered in the development of
sensors and actuators. To achieve correct decision-making, there exist two different approaches: the principle-based approach
and data-driven approach. The advantages and limitations of both approaches are explained and analyzed. Currently automotive
engineers are concerned more with the vehicle platform technology, whereas the academic researchers prefer to focus on
theoretical algorithms. However, only by incorporating elements from both worlds can we accelerate the production of high-level
ICVs.
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1 Introduction

In the early stage of the automotive industry, the pursuit of
speed was the initial driving force to develop new technol-

ogies. In the late 20th century, the consumer’s concerns
about safety, comfort and fuel efficiency became the major
motivation and direction to improve vehicle performance. In
the early 21st century, the intelligent connected vehicle
(ICV) was widely accepted as a promising technology to
eliminate traffic accidents and improve traffic efficiency. A
vehicle that can drive itself is fascinating enough just be-

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018 tech.scichina.com link.springer.com

SCIENCE CHINA
Technological Sciences

*Corresponding authors (email: ydg@tsinghua.edu.cn; jiangkun@tsinghua.edu.cn;
zhaoding@umich.edu)

https://doi.org/10.1007/s11431-017-9338-1
https://doi.org/10.1007/s11431-017-9338-1
http://tech.scichina.com
http://springerlink.bibliotecabuap.elogim.com
http://crossmark.crossref.org/dialog/?doi=10.1007/s11431-017-9338-1&amp;domain=pdf&amp;date_stamp=2018-09-06


cause of its surprising intelligence; moreover, the safety,
comfort, convenience, and efficiency that ICVs promise
provide even more benefits to passengers and society.
Therefore, research institutes, car manufacturers and even IT
companies are keeping investing in this new technology
trend. Many universities and research labs have already
successfully built demonstration vehicles with high-level
intelligent abilities to prove the feasibility of ICV concepts.
However, transposing these intelligent systems from a de-
velopmental context to mass production requires break-
throughs in both hardware and software technologies. An
interesting aspect of the development of ICV technologies is
that the automotive manufacturers and academic researchers
understand the ICV from quite different angles of view. The
manufacturers tend to focus on developing industrially
standardized equipment, which is to regard the perception,
decision, and control algorithms as part of some subsystem
or equipment. On the contrary, the academic researchers are
more interested in developing the intelligent algorithms, re-
garding the sensors, controllers, and actuators as black boxes
that are always functional and available. The lack of un-
derstanding of each other’s work results in a gap between the
two worlds. For the purpose of accelerating the development
of autonomous driving, the industrial and academic sides
should work together to truly integrate the development of
automotive hardware and software.
This study provides an overview of the history of ICVs and

analyzes the key technologies for mass production of au-
tonomous driving. The paper is organized as follows: Section
1 reviews the history and current status of ICV. Section 2
introduces the architecture of ICV, explaining why and how
the electric and electronic architecture (E/E architecture,
EEA) should be changed to be more adapted to the re-
quirements of autonomous driving. Sections 3 and 4 discuss
the advantages and drawbacks of different sensors and ac-
tuators that would be installed in future ICVs. Section 5
provides an overview of recent advances in decision making
technology. Section 6 draws conclusions on current ICV
research. The relationship between E/E Architecture, sensors
and actuators is illustrated in Figure 1.

1.1 Worldwide classification standards of ICV levels

An ICV can be defined as a next-generation vehicle that is
equipped with advanced sensors, controllers, and actuators,
and is designed with the intelligent and cooperative driving
capacity to ensure safety, comfort, energy-efficiency, and
relief of human drivers. In the following paragraphs, we will

present a general overview of ICVs by comparing different
classification standards of ICV levels in the world and re-
viewing the important events or breakthroughs in the history
of ICV development.
Generally, ICVs can be classified according to the level of

driving intelligence. Different standards of ICV level clas-
sification have been published in Europe, the U.S. and China.
In 2014, Society of Automotive Engineers (SAE) published a
standard of intelligent vehicle levels [1]. Many companies
around the world use this standard to guide their research and
development, such as Toyota, Nissan, Tesla and Audi. There
are six levels in the SAE standard:
Level 0, no automation, needs the driver to perform all the

dynamic driving tasks;
Level 1, driver assistance, achieves either longitudinal or

lateral control when activated;
Level 2, partial automation, achieves both longitudinal and

lateral control when activated;
Level 3, conditional automation, can provide a part-time or

driving mode-dependent performance to execute all the dy-
namic driving tasks;
Level 4, high automation, can perform all the dynamic

driving tasks even if the driver does not respond to system’s
request to intervene in certain driving modes or geographical
areas;
Level 5, full automation, can finish all the dynamic driving

tasks once programmed with a destination in at least all the
environments manageable by a human driver.
In Table 1, we classify some representative ICVs based on

SAE intelligent levels.
In September 2017, National Highway Traffic Safety

Administration (NHTSA) released Automated Driving sys-
tems 2.0 Voluntary Guidance, offering further explanation of
SAE levels1).
Apart from the SAE level, the BASt levels2) released by

German Federal Highway Research Institute in 2012 and
NHTSA levels3) proposed in 2013 are also important stan-
dards of ICV classification with global influences.
Figure 2 illustrates the similarities and differences of these

standards in an intuitive way. The description of Level 0 to
Level 2 in NHTSA standard are functionally the same as that
of SAE standard. BASt standard has similar description of
Level 0 to Level 4 as that of SAE standard. NHTSA stan-
dards and SAE standards are different in the definition of
high-level ICV.
China has also released its intelligent vehicle level stan-

dard based on the SAE standard, adding specific traffic mode
explanations to consider the complexity of traffic in China:

1) National Highway Traffic Safety Administration. Automated Driving Systems 2.0 Voluntary Guidance. 2017.
2) Gasser TM, Westhoff D. BASt-study: Definitions of automation and legal issues in Germany. In: Proceedings of the 2012 Road Vehicle Automation

Workshop. Bergisch Gladbach: German Federal Highway Research Institute, 2012. 1–20.
3) National Highway Traffic Safety Administration. Preliminary statement of policy concerning automated vehicles. Washington, DC, 2013. 1–14.
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Level 1 (DA) vehicles provide accelerating/decelerating or
steering assistance to the driver, relieving the driver’s hands
or feet from the driving tasks;
Level 2 (PA) vehicles provide multiple assistance of ac-

celerating/decelerating and steering to the driver, relieving
both the driver’s hands and feet from the driving tasks;
Level 3 (CA) vehicles can perform all driving tasks in

certain conditions, the driver should properly intervene ac-
cording to system request;
Level 4 (HA) has one more requirement than Level 3, that

the system should be able to deal with the situation in which
the driver does not intervene upon the system’s request;
Level 5 (FA) vehicles can accomplish all driving opera-

tions in all the road environments manageable by a human
driver, completely relieving the driver from the dynamic
driving tasks.

1.2 History and milestones of ICV development

This subsection analyzes the significant events during the
development of ICVs and the key technologies behind them.
The brief history is shown in Figure 3. The lower part of
figure shows the important events that are pushed forward by
these technologies. The upper part shows the occurrence
time of revolutionary technologies in autonomous driving. In
1925, the Houdina Radio Control demonstrated the radio-
controlled “American Wonder” on New York City streets
[12], which was based on the invention of electron tube radio
transmitters in 1920s [13]. This can be called the prototype of
the driverless car. During the 1950s through the 1960s,
General Motors showcased the Firebirds, a series of ex-
perimental cars that were guided by detector circuits buried
in the pavement and controlled by radio4),5),6). Thereafter, to
enhance the autonomy of vehicles, radar was introduced to
avoid collision in the 1970s [14]. In 1977, the Mechanical

Figure 1 (Color online) Key ICV technologies and structure of this ar-
ticle.

Table 1 SAE levels of representative ICVs a)

Level 1-2
Production Vehicles: 2015 Infiniti Q50S; 2016 Lexus RX; 2016 Volvo XC90; BMW 750i xDrive; Ford (High end production); Mercedes-
Benz E and S-Class [2]; Otto Semi-Trucks; Renault GT Nav

Research Vehicles:

Level 3

Production Vehicles: Audi’s A8; Tesla Model S

Research Vehicles: AutoNOMOS’s MadeIn-Germany; LIVIC’s CARLLA [3]; Delphi’s Research Vehicle; Bosch’s Research Vehicle;
tuSimple’s Research Vehicle; ZhiXingZhe’s Research Vehicle; Nvidia’s Research Vehicle; SAIC Motor MG iGS; General Motors Cadillac
CTS; Nissan’s Research Vehicle; VisLab’s BRAiVE [4]; PSA’s Research Vehicle; Nagoya and Nagasaki University’s Open ZMP Robocar
HV [5]

Level 4-5

Production Vehicles:

Research Vehicles: Ford’s Hybrid Fusion Research Vehicle; KIT and Ohio State University’s AnnieWAY [6]; Carnegie Mellon’s Boss3) [4,7];
Googles Research Vehicle; Baidu’s Research Vehicle; Uber’s Research Vehicle; Drive.ai Research Vehicle; Pony.ai Research Vehicle; MIT’s
Talos [8]; Stanford’s Junior [9,10]; Virginia Tech’s Odin [11]; Apple’s Research Vehicle

a) We classify production vehicles and research vehicles based on published data and descriptions. The classification may have some errors due to the
limited available information. But we can see from the Table 1 that most production vehicles belong to Level 1-2.

Figure 2 Comparison of SAE, NHTSA and BASt levels.

4) Motors G. The Future is our Assignment-Book 4 in a Series of Visits behind the Scenes at the GM Research Laboratories: Flight the Firebird. Detroit,
USA: General Motors, 1959.
5) Temple D W. GM’s Motorama: The Glamorous Show Cars of a Cultural Phenomenon. Minneapolis, MN: Motorbooks, 2006.
6) West K L. Convertible top conversion 1970–1981 GM Firebird and Camaro. 1986. https://opus.ipfw.edu/etcs_seniorproj_mcetid/13.
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Engineering Laboratory of Tsukuba in Japan developed the
first camera-based driverless car that can detect obstacles in
real time [15], the application of which benefitted from the
appearance of digital camera in 1975 and the improvement of
real-time image processing technology. In the 1980s, a
vision-guided driverless Mercedes-Benz robotic van
achieved a speed of 63 km/h on streets without traffic [16].
In the same decade, from 1984 to 1989, the DARPA-fun-

ded Autonomous Land Vehicle (ALV) project in the United
States achieved the first road-following demonstration by
using light detection and ranging (LiDAR), computer vision,
and autonomous robotic control technologies to direct a ro-
botic vehicle [17]. Even though LiDAR originated in the
early 1960s, this event marked the first use of LiDAR in
autonomous car [18]. Nevertheless, the LiDAR at that time
was a five-channel multispectral laser range scanner, the
output of which was a planar digital image [19]. Besides, the
ALV vehicle employed global positioning system (GPS) to
help navigation [20], which entered service in 1984. Based
on the ALV project, in 1989, Carnegie Mellon University
(CMU) pioneered the use of neural networks to steer and
otherwise control autonomous vehicles7), forming the basis
of contemporary control strategies, the key control algorithm
of which was based on the purpose of perceptron in 1958.
Beginning in 1994, GM developed the OnStar telematics

business to realize communication between vehicle and
system, which pioneered the application of the vehicular
network [21]. The vehicular network was later extended to
V2X (e.g., vehicle, road, pedestrian, cloud). The dedicated
short-range communications (DSRC) and WAVE [22] be-
came the core of vehicular network.

Stanford [10,23], CMU [7,24] and MIT [8] applied the
sensor layout of LiDAR, radar, camera and GPS/IMU on
their intelligent vehicles in 2005 and 2007, which is an im-
portant milestone of multi-sensor fusion.
In 2009, Google self-driving car was introduced as

breaking news. High-precision map growth in the past dec-
ade [25–27] had contributed to this success. In 2016, NVI-
DIA realized end-to-end prediction from camera to steering
angle with deep learning, which performed well in road tests
[28], leading a new trend of deep learning applications in
autonomous driving [29,30]. Deep learning proposed by
Hinton et al. [31] is a milestone of neural network devel-
opment, which is based on increasing performance and lower
costs of computational hardware (e.g., the emergence of
graphics processing unit (GPU) in 1999) [32].
With the development of autonomous driving technology,

many companies joined this fast-growing trend. For ex-
ample, the Mercedes Benz’s S-Class S500 INTELLIGENT
DRIVE recreated the first cross-country automobile journey
in 2013 [33]. The Tesla Autopilot for Model S realized
conditional automation in 2014. Many other automotive
companies and research institutes such as Audi, Ford, Chana,
Baidu and University of Michigan are also developing their
own intelligent vehicles. This is surely an era for the pros-
perity of the intelligent vehicle.

2 E/E architecture of ICV

In this section, we focus on one question: what are the dif-
ferences between the EEA of a traditional vehicle and an

Figure 3 (Color online) Technology Roadmap of ICV.

7) Pomerleau D A. Alvinn: An autonomous land vehicle in a neural network. Technical report. Pittsburgh: Carnegie Mellon University, 1989.
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ICV? In order to answer this question, it is necessary to
understand the requirements of an ICV’s platform. The in-
telligence of an ICV actually comes from the capacity of
acquiring and processing different sensor data. It is a fact that
the traditional EEA is not designed to support the im-
plementation of autonomous driving functionalities. The
main drawback of the traditional EEA is its limited capacity
in communication and computation. A practical and tem-
porary method that is often used when building a demon-
stration ICV is to add additional cables and industrial
computers to the vehicle. Nevertheless, this is not a standard
solution for mass production vehicle in either quality, ro-
bustness, or cost. Therefore, the EEA has to be updated or
even revolutionized to meet the requirements of commu-
nication and computation capacity. In the author’s opinion,
the major differences between the EEA of the next genera-
tion and a traditional one can be expressed in three aspects:
the overall structure of EEA, the in-vehicle communication
network and the computation platform.

2.1 The change in overall E/E architecture

The traditional EEA is designed for the situation in which
human drivers have control, where most of the information is
acquired and processed by human drivers [34]. Most of the
modern vehicles were designed according to the gateway-
based EEA. The central gateway works as the information
transfer center to enable communication between multiple
different clusters and provide diagnostic application. With
the development of automotive technologies, especially the
development of autonomous driving, the connected compo-
nents need to transmit and receive much more data. The
central gateway tends to be a bottleneck for data transfer,
furthermore, it cannot provide support in processing data.
Therefore, the EEA of the vehicle has to evolve to have the

ability to acquire large amounts of environment information
in real time, and process these data simultaneously.
One feasible approach is to divide the controllers into

several domains according to their function, which is called
domain-based architecture and is recently applied in pro-
duction vehicles. The so-called central domain electronic
control units (ECUs) [35], are assigned to different domains,
supporting the needs of both communication and computa-
tion. With the domain controller, the needed number of
ECUs can be reduced, as their functions and computation can
be integrated into domain controllers. Furthermore, the
communication within the domain will not occupy the
bandwidth of the backbone and gateway, which results in

better performance and scalability. A typical domain-based
EEA is illustrated in Figure 4.
Another type of EEA for future high-level ICVs is the

centralized architecture. Different from a domain archi-
tecture, components in the centralized architecture are
grouped according to their physical placement or their
communication properties, rather than a functional domain.
Each group has a controller in charge of the subnetwork,
which is called a zone controller8). The characteristic of this
architecture is that most of the data processing is done in a
central entity, illustrated as the driving brain in Figure 5, but
not in the zone controller.
The centralized architecture has many significant ad-

vantages. First, as most algorithms are implemented in the
central server, it is very convenient for diagnostics, debug-
ging, and testing of the algorithms. Moreover, it provides a
central control platform making it possible to consider all
information together, such as situation inside and outside the
vehicle, and information from local and cloud-based ap-
proaches, to optimize the overall safety and performance.
Last but not least, the centralized architecture is flexible and
easy to extend9). The architecture can work as a “plug and
play” system, if only the software drivers could be installed
in the central computation unit. Research from Bosch also
predicted that centralized architecture will be the future trend
[35]. Many demonstration ICVs are developed by using
centralized architecture, mainly because of its feasibility in
implementation for non-automotive background researchers.
However, for mass production, the application of this
structure requires more powerful and more automotive-in-
dustry-adapted communication methods and computation
platform.

2.2 The change of in-vehicle communication network

One of the most challenging tasks during the development of
ICV is handling the communication among on-board elec-
tronic components, which are continuously increasing in
both quantity and complexity. For the automotive industry,
the task is even more difficult as the cost is very sensitive.
The controller area network (CAN) protocol has been the
dominant standard for vehicle hardware communication
since it was firstly published by Bosch in the 1986 SAE
congress with a paper titled “Automotive Serial Controller
Area Network” [36]. Compared to other network technolo-
gies, CAN has been much more successful and will continue
to be so mainly for two reasons: cost efficiency and flex-
ibility. CAN with flexible data-rate (CAN-FD) is a variant of

8) Brunner S, Roder J, Kucera M, et al. Automotive E/E-architecture enhancements by usage of ethernet TSN. In: 13th Workshop on Intelligent Solutions
in Embedded Systems (WISES). Hamburg: IEEE, 2017. 9–13.
9) Weiss G, Schleiss P, Drabek C. Towards flexible and dependable E/E-architectures for future vehicles. In: 4th International Workshop on Critical

Automotive Applications-Robustness & Safety. Göteborg, 2016.
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CAN [37,38], it uses different data rate during one cycle of
message transmission, with normal data-rate when sending
arbitration bits, and faster data-rate when sending actual data
bits. The bandwidth of CAN-FD is up to 8 Mb/s [39].
Apart from CAN, local interconnect network (LIN) is also

widely applied in the automotive network [36]. Compared
with CAN, LIN permits more low cost and flexible wire
harness, as it is a single wire network. LIN can be easily
implemented on various kinds of controllers, even the 8-bit
microcontroller, without special support requirements, but its

maximum transmission speed can only reach 20 kb/s. Flex-
Ray and media oriented serial transport (MOST) are created
to meet some specific requirements that are unique and cri-
tical in automotive environment [40]. FlexRay was created to
support safety critical “X-by-wire” applications [41]. MOST
was designed to obtain a higher data rate to support in-
fotainment applications [42–44].
The recent advances in in-vehicle communication net-

works mainly concentrate upon automotive Ethernet (AE)10)

[40,45]. AE is an “old but new” technology, as Ethernet has
been the most common technology for local area networks
(LANs) in the computer world for nearly 45 years, whereas it
has to be greatly modified to be adapted to the automotive
industry. The first application of AE in production passenger
vehicle could be found in the BMW X5 for connecting the
onboard cameras, in 2013. The comparison of different
networks is shown in Table 2.
AE is a promising option of in-vehicle network for the

following reasons: (1) Larger bandwidth. The current AE
bandwidth capacity can reach 100 Mbps, and soon will be
updated to 1 Gbps. (2) Improved security. In the design of
CAN and LIN, security was not considered thoroughly
[46,47]. This kind of problem can be solved in the AE owing
to its nature, as the Ethernet employs an IP-based routing
method, stopping one hi-jacked ECU from getting full access
to the whole Ethernet. Furthermore, the switches in Ethernet
are capable to prevent the situation in which one ECU floods
too much unwanted information into the network, causing an
overload. (3) Low latency. The time sensitive network (TSN)
can be applied to implement low-latency communication8).
(4) Fewer ECUs and cables. With higher communication
bandwidth, the AE can be used as a high-speed backbone to
simplify the network, and reduce ECUs and cables. (5)
Available standards. Many mature Ethernet standards would
be applied in the automotive industry directly or with some
minor modification.

Figure 4 (Color online) Domain-based E/E architecture.

Figure 5 (Color online) Centralized E/E architecture.

Table 2 Characteristics of different in-vehicle networks

AE CAN FlexRay MOST LIN

Bandwidth (Mb/s) 1000 (developing) 1 or 10 (CANFD) 20 150 0.02

Maximum number of nodes Number of switch ports 30 22 64 16

Network length 15 m per link 40 m 24 m 1280 m 40 m

Messaging IP based Multi-master Multi-master Cyclic frames/streams Master-slave

Cost High Low Low High Very low

Safety-critical functionality Proven outside of automotive
applications Yes Yes Yes No

Availability Growing Many Few One Many

Cabling UTP UTP UTP Optical, UTP 1-wire

Main applications Infotainment, Backbone (future) General bus Safety-critical, X-by-wire Infotainment Switches, doors, seats

10) ABIresearch. Ethernet in-vehicle networking to feature in 40% of vehicles ship-ping globally by 2020. 2014. Available at: https://www.abiresearch.
com/press/ethernet-in-vehiclenetworking-to-feature-in-40-of.
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Owing to these advantages, more and more companies are
planning to use Ethernet in cars. However, in the author’s
opinion, the traditional networks such as CAN will not be
replaced completely. The cohabitation of heterogeneous
networks in the vehicles will last for many years.

2.3 The change of V2X communication network

The vehicle to X (vehicle, roadside and people) commu-
nication network is a dynamic network which combines the
inter-vehicle network and the mobile network. The V2X
communication is fundamental to realize the intelligent
traffic control, the vehicle intelligent control. According to
the communication protocol and the data exchange standard,
the wireless communication and information exchange are
carried out from vehicle to vehicle, roadside and people, so
as to realize the intelligent traffic management control, the
vehicle intelligent control and the intelligent dynamic in-
formation service.
In 1990s, the development of vehicle networking was fo-

cusing on the telematics vehicle information service based
on wide area mobile communication. For instance, Toyota
Corporation launched G-Book intelligent vehicle commu-
nication system to provide emergency rescue, anti-theft
tracking, and safe driving reminder for vehicles.
In the late 1990s, the short-range communication tech-

nology was gradually rising, people began to study the
communication through the point to point mode. Among
them, dedicated short-range communication (DSRC) tech-
nology is widely used in vehicle networking communication
[48], which has optimized the reliability of data transmission
and delay performance. At present, various countries have
formulated different technical standards for DSRC. For
Europe, the DSRC carrier frequency band is 5.795–
5.815 GHz, while it is 5.850–5.925 GHz for North America,
Japan uses the 5.770–5.850 GHz band, and the 5.8 GHz band
is adopted in China. The high cost of DSRC communication
module is a significant drawback of this system. In addition,
because of its use of CSMA access mechanism, when vehicle
density is large, packet loss and network congestion of
DSRC will appear.
The development of ICV results in the increasing demand

for bandwidth, connection reliability and transmission delay
of the wireless network. 4GLTE technology has great ad-
vantages in this regard, and the technology can support a
large number of terminal access at the same time. It has been
applied in some vehicle networking projects, such as the
European CoCar project. The feasibility of applying the
cellular mobile communication technology including UMTS
and LTE to the V2V and V2I scenarios is studied. In some
applications, mobile communication networks have more
advantages. DhilipKumar et al. [49] applies 4GLTE tech-
nology to the internet of cars. By analyzing data throughput,

time delay, power consumption and other indicators, it
confirms that 4GLTE can indeed improve the performance of
the network. However, 4GLTE technology requires base
station to establish communication. At present, the point to
point communication of car cannot be realized in the area
without the base station covering.
In 2012, the United States Department of transport led the

Connected Vehicle Safety Pilot project, which mainly stu-
died the influence of V2X system based on DSRC technol-
ogy on vehicle driving safety. The project installed V2V
equipment on more than 2800 vehicles, and established a
regional connected transportation system to improve the
actual traffic efficiency [50]. In Japan, the AHS project re-
search vehicle synergy technology impact on traffic safety.
In Europe, vehicle road coordination system (CVIS) project
[51] and DRIVE C2X [52] project realize vehicle and vehicle
communication, and verifies the driving safety and trans-
portation efficiency in collaborative environment.

2.4 The change of computation platform

After a mass of information being collected in the ICV, huge
amounts of computation are expected to be performed
swiftly, precisely and robustly, as well as at low power
consumption. In traditional vehicles, the computation plat-
forms mainly refer to the ECUs. The traditional ECU can no
longer meet the stringent requirements of high-level ICVs,
and thus more elaborate hardware and more powerful soft-
ware are urgently needed.
In the early stage, some simple controllers were widely

used in traditional vehicles, such as microcontroller units
(MCUs) (8-bit, 16-bit and 32-bit) and digital signal proces-
sing (DSPs). Relatively simple control, including taillights
on and off [53], air-conditioning [54], powertrain [55], etc.,
can be realized through classic MCUs. DSPs, featuring high
integration and great processing capacity, are more proper
for onboard multimedia systems [56], also commonly ap-
plicable in driver assistance functions [57,58].
Recently, with emergence of computation demands for

artificial intelligence (AI), such as image processing and
deep learning, the in-vehicle computation hardware revolu-
tion has been underway. Graphics processing units (GPUs)
are designed to perform massive parallel computation,
especially good at image processing [59]. It can be equipped
not only for the entertainment system, but also for automated
driving functions like obstacle detection and collision
avoidance. Field-programmable gate arrays (FPGAs) are
also characterized with parallel computation, but it is rea-
lized based on hardware, whereas GPUs depend more on
algorithms. GPUs have the advantage of being programmed
much more easily and applying to more unexpected situa-
tions, but they may consume more power [60]. Recently,
Google developed a new processor for machine learning,
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called a tensor processing unit (TPU). TPU is a kind of ap-
plication specific integrated circuit (ASIC), while central
processing unit (CPU) is a typical general-purpose processor
(GPP), DSP and GPU are classified into application-specific
processors (ASPs), and FPGA is a kind of configurable
hardware. The TPU has been regarded to possess the highest
computation efficiency so far [61], considering the perfor-
mance and power consumed. A new concept called a neu-
romorphic chip [62], which can work like human brain, also
emerges, hoping to further reduce the delay and power
consumption when performing deep learning. The perfor-
mance of different chips are compared in Figure 6.
A popular scheme for ICV central control is CPU+GPU

[63], represented by NVIDIA Drive PX 2, which is an-
nounced to be able to support high-level automated driving.
Intel applies another hardware approach for AI, which is the
CPU+FPGA scheme11). It can handle deep learning with
lower power consumption, less time delay and greater ac-
celeration performance, but it is not able to execute in-
structions not programmed, which means it is less flexible.
The multi-core heterogeneous architecture is believed to be
the solution of computation hardware design for future ICVs.
Software of computation platforms also has to evolve

alongside with hardware, in order to make the best use of the
updated hardware. By the mid-1990s, OSEK/VDX, a spe-
cification for open system and the corresponding interfaces
for automotive electronics and vehicle-distributed executive,
had been developed by the European automotive industry
[64]. In addition to Europe, Japan also established JASPAR
(Japan Automotive Software Platform and ARchitecture) in
2004, whose main members included Toyota, Nissan, Honda
and Denso.
However, as the automotive electronic systems are be-

coming far more complicated, OSEK/VDX or JASPAR is
not qualified enough to meet the requirements of reusability
and transferability. The standard AUTOSAR (AUTOmotive
Open System ARchitecture) was designed by an organiza-
tion which is now made up of almost all the main OEMs,
Tier1 parts suppliers, semiconductor suppliers and software
developers. The most prominent contribution of AUTOSAR
is separating application software from the associated hard-
ware, which can obviously improve the reusability and
transferability, and save a lot of development costs [65].
The classic AUTOSAR is designed to support control and

runtime functionality in ECUs, but infotainment and user
application functions, which are increasingly important to
automated driving, remain unaddressed. Conversely, Linux,
Android, and other general operating system can perfectly

meet the requirements for connectivity and infotainment, but
fail to be utilized in ECUs. To implement more possible
functions for the future automated vehicles, the gap between
these two kinds of software platforms has to be eliminated
[66]. One solution to this problem is improving the auto-
motive software, such as the development of AUTOSAR
adaptive platform12), which is designed to meet the POSIX
standard and is thus compatible with other operating sys-
tems. Another solution is changing the general operating
systems to be adapted to the automotive industry. Robot
operating system (ROS) is a typical software platform for
ICV based on Linux, and has been widely used by ICV
developers [65].
With the unified and integrated platform and open source,

manufacturers will be able to produce more types of appli-
cation software and realize more automated functions in the
future [67]. As is roughly illustrated in Figure 7, the con-
sumer electronics and automotive electronics are converging
into the revolutionized computation platform for future ICVs
[68].
Besides the intelligent functionality, software updates and

security are two other critical elements in software devel-
opment. As the ICV is under a continuous modification
process, the “over the air” update of software applications is
quite necessary to ensure the ICV running with most recent

Figure 6 (Color online) Computation capacity and power consumption of
different computing elements.

11) Zhang C, Chen R, Prasanna V. High throughput large scale sorting on a CPU-FPGA heterogeneous platform. In: 2016 IEEE International Parallel and
Distributed Processing Symposium Workshops. Chicago, IL: IEEE, 2016. 148–155.
12) Fürst S, Bechter M. AUTOSAR for connected and autonomous vehicles: The AUTOSAR adaptive platform. In: 46th Annual IEEE/IFIP International

Conference on Dependable Systems and Networks Workshop. Toulouse: IEEE, 2016. 215–217.
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technology. Distributing update is a possible method13),
which can evidently reduce the update time. Moreover,
current formal methods for verifying correctness of transi-
tion systems may be extended to vehicle system by speci-
fying correct behavior [69], which can further improve the
security.

3 Sensors in ICV

In order to achieve intelligent driving capacity, it is essential
for ICVs to have full observations of both their own state,
surrounding environment and even the situation beyond the
visual range. The self-state is the basis of decision making,
and the perception of self -state is mainly based on pro-
prioceptive sensors. In order to ensure the driving safety of
the car, it needs to be aware of the surrounding vehicles,
obstacles, road conditions, and so on. These perception tasks
are mainly completed by exteroceptive sensors. However, in
the high-speed driving condition, in order to ensure the
driving safety, comfort and economy, it is necessary to sense
the long-distance environment. In addition, blind-spots also
need to be sensed in order to ensure traffic safety, as shown in
Figure 8. Some typical technologies are listed in Table 3.
From Table 3, we can draw the conclusion that if we want

ICVs to achieve high/full autonomous driving, propriocep-
tive, exteroceptive, and virtual sensors are all necessary.

3.1 Proprioceptive sensors

Proprioceptive sensors usually refer to sensors such as
pressure sensors, engine temperature sensors, gas con-
centration sensors, flow sensors, wheel speed sensors, and
knock sensors, which are mainly used to guarantee the basic
driving functions. For better driver comfort and driving
convenience, more sensors have been used on the car such as

Figure 7 (Color online) Relationship between hardware computation platform and software operation system.

Figure 8 (Color online) ICV perception requirement area.

Table 3 Typical technologies perception requirement

Ego state Surro-unding Long range Blind spot

Lane-keeping [70] ++ ++

ACC/CACC [71] ++ ++ +

Collision Warning [72,73] ++ ++ + ++

Auto Parking [74] + ++ +

Path-Planning [7,75] ++ ++ ++ ++

Stop & Go [76] ++ ++

13) Onuma Y, Terashima Y, Kiyohara R. Ecu software updating in future vehicle networks. In: 31st International Conference on Advanced Information
Networking and Applications Workshops. Taipei, China: IEEE, 2017.
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vehicle speed sensors and pedal position sensors for ACC,
air temperature sensors and humidity sensors for the air
conditioning system, localization sensors and inertial sensors
for the navigation system [77,78].
The localization sensor mainly refers to the GPS sensor.

The localization accuracy of the traditional GPS is usually
approximately 10 m. However, with the development of
driverless vehicles, the requirement of the ICV’s position
accuracy becomes higher, and the traditional navigation GPS
cannot meet this demand. In order to improve the positioning
accuracy, the real-time kinematic (RTK) technique is pre-
sented. It uses measurements of the phase of the signal’s
carrier wave, rather than the information content of the sig-
nal, and relies on a single reference station or interpolated
virtual station to provide real-time corrections, providing up
to centimeter-level accuracy. The current RTK method are
virtual reference station (VRS) [79], master-auxiliary con-
cept (MAC) [80], Flaechen-Korrektur parameter (FKP) [60],
combined bias interpolation (CBI) [81] and so on. Currently,
the methods of reference station establishment are the
ground-based augmentation system (GBAS), also called lo-
cal area augmentation system, and satellite-based augmen-
tation system (SBAS), also called wide area augmentation
system. GBAS is mainly applied in ICVs, as the ground
reference stations’ accuracy can be guaranteed. And SBAS
are normally used in ships and planes, where the ground
reference stations cannot be established.

3.2 Exteroceptive sensors

The exteroceptive sensors are mainly used to sense a ve-
hicle’s driving environment. The characteristics of typical
exteroceptive sensors employed in ICV14),15) [6,82–88] are
shown in Figure 9.
Ultrasonic radar data processing is simple and fast, the

ultrasonic wave energy will be greatly attenuated as it pro-
pagates through the air, and it is difficult to obtain accurate
distance information. Therefore, it is usually used as rever-
sing detection radar in the traditional manned vehicle.
Millimeter wave radar has the capability of penetrating

fog, smoke, and dust. It has the characteristics of handling
all-weather, small size, low cost, and long detection distance.
It is widely used in ICV to detect long-range targets. How-
ever, the millimeter-wave radar horizon resolution is not high
[89]. Millimeter wave radar usually cooperates with other
sensors. The most common solution is to incorporate vision
sensor for target detection and tracking [90].
The visual sensors used in ICV are monocular vision

system, stereo vision system, Omniview system, and infrared

vision system. Monocular vision systems are mainly em-
ployed in the semantic segmentation of driving environment
[89], target detection and tracking [91], ranging [73,92],
driver behavior analysis [93] and so on [82,94]. At present,
monocular vision systems are widely used and have been
equipped on some production vehicles.
The Israeli company Mobileye’s monocular vision pro-

ducts have been provided road semantic feature descriptions,
and pedestrian and vehicle identification and ranging. By the
end of 2015, it had been installed in more than 10 million
vehicles, covering more than 20 automotive enterprises.
The stereo vision systems consist of several visual sensors.

The distance of feature points is directly measured by the
parallax principle. Currently, stereo vision system is mainly
used in ranging and target recognition and tracking based on
depth image [95]. The latest trends in the stereo vision field
mainly pursue real-time execution speeds, as well as decent
accuracy, whereas these two properties are always in oppo-
sition [96,97]. In the applications towards intelligent ve-
hicles, Mercedes Benz uses a stereo vision system, called
SMPC, to achieve three-dimensional human/vehicle testing,
BOSCH and Continental have binocular camera products.
Omniview system is also composed of several cameras,

designed to make the system reach 360° visual field. In a
common Omniview system, there are four wide-field cam-
eras, covering the whole area around vehicle. The system
synthesizes a bird’s-eye view image in front of the vehicle by
distortion correction, projection transformation, and image
fusion. Omniview technology first became available in ve-
hicle electronic products in 2007, as a vehicle parking as-
sistant technology.
Infrared night vision systems are developed to make the

Figure 9 Typical exteroceptive sensors characteristics.

14) No Hands Across America Official Press Release. http://www.cs.cmu.edu/~tjochem/nhaa/official_press_release.html.
15) Gehrig S, Reznitskii M, Schneider N, et al. Priors for stereo vision under adverse weather conditions. In: Proceedings of the IEEE International

Conference on Computer Vision Workshops. Sydney, NSW: IEEE, 2013.
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environment perceptible by the ICV at low light conditions.
Visible light ranges from 400 nm (violet/blue) to 700 nm
(red); wavelengths above 700 nm and up to about 30 mm
(=30000 nm) are known as infrared. Sensors working in the
near-infrared (NIR) radiation region are based on the de-
tection of NIR photons reflected from objects, whereas the
mid-wave infrared (MWIR) and long-wave infrared (LWIR)
detectors detect thermal photons which are emitted by an
object originating from its heat, which can be used for ran-
ging and detection at night [98].
The relationships between different kinds of vision sensors

are shown in Figure 10.
LiDAR is used to measure 3D-representations of a target

by illuminating the target with a pulsed laser light and
measuring the reflected pulses and reflected laser intensity.
The current applications and algorithm for LiDAR are
mainly obstacle detection (segmentation) [99,100], target
tracking [101,102], 3D mapping (SLAM) [103,104], and
fusion with image [105–107]. The LiDAR used in ICV can
be divided into high- and low-definition LiDAR according to
the number of laser channels. High-definition LiDAR has a
view of 360° with more than 16-layer laser. Low-definition
LiDAR has a view approximately 100° to 200° with usually
four or one layer laser. According to the method of changing
laser scanning angle, LiDAR can be also divided into me-
chanical LiDAR, semisolid-state LiDAR and solid-state Li-
DAR. Mechanical LiDAR and semisolid-state LiDAR
achieve the rotation of scanning through the way of hardware
rotation. Without special indication, mechanical LiDAR
means mechanical and semi-solid state in the following pa-
per. Solid-state LiDAR fulfills horizon scanning without
mechanical rotation. Current research on solid-state LiDAR

based on a micro electro mechanical system (MEMS) mirror
[108,109] or optic phased array (OPA) [110,111]. The
properties of these LiDARs are compared in Table 4, and the
principles are shown in Figure 11.

3.3 Multi-sensors fusion and virtual sensors

3.3.1 Multi-sensors fusion
It is important to fuse multiple sensors information, such as
camera-radar [112], camera-LiDAR [107], and visual odo-
metry-GPS-IMU [113]. The mainstream fusion algorithms
are the filter method (e.g., Kalman filter, particle filter) and
the optimization method (e.g., graph optimization). The in-
formation fusion technology improves the accuracy and re-
liability of the data [114,115]. With the development of the
intelligent driving system, there is also perception demand
for blind spots and targets outside the field of view (FoV). In
order to solve this problem, fusing other information sources,
such as other vehicles or infrastructure facilities, can be
applied. Figure 12 shows that for high-level ICVs, the V2X
and HD map are the essential sources of information. V2X

Figure 10 (Color online) Comparison of monocular with other vision
sensors.

Figure 11 (Color online) Mechanical and solid-state LiDAR. (a) MEMS mirror; (b) mechanical; (c) OPA LiDAR.

Table 4 Comparison between mechanical, MEMS mirror and OPA LiDAR

Scanning frequency Resolution Directional controllability Sidelobe FoV Price

Mechanical <100 Hz 0.08° (Horizon) 0.4° (Vertical) Spinning direction controllable None Up to 360° 5000~70000$

MEMS Mirror >1 kHz μrad level Direction controllable None ~200° <100$

OPA >1 MHz μrad level Direction controllable Have ~150° <100$
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and HD map are called virtual sensors in this study, as they
are not the normal sensors, but provide useful information.

3.3.2 V2X
The concept of V2X communication emerged in the late 20th
century. With the rapid development of networking, a variety
of wireless communication technologies appeared: the de-
velopment of 4G LTE and 5G remote communication tech-
nologies, and the breakthrough of DSRC. Cooperative
intelligent transportation systems (ITS) based on vehicular
communication are the next important steps to the vision of
accident-free driving [116].
At present, the V2X communication is employed to en-

hance two kinds of intelligent driving. The first one is the
onboard-based intelligent driving, where the V2X is em-
ployed as an additional sensor to provide supplementary
information besides the on-board sensors. Typical usage of
V2X is to realize cooperative localization and cooperative
perception. The other kind of intelligent driving is the could-
based intelligent driving. The information of connected ve-
hicles will be collected and analyzed by the cloud servers to
manage the overall traffic efficiency. The cloud-based in-
telligent driving is more a topic of intelligent transportation
system, which is out of the scope of this article. The V2X is
very helpful to localization. Although the fusion of IMU,
visual odometry or filtering algorithms [117,118] can im-
prove the positioning accuracy in this situation, the errors
will accumulate with time. However, the accurate localiza-
tion can be fulfilled through V2X communication, as the
infrastructure could correct the position errors [119,120].
Furthermore, cooperative perception based on V2X is an

effective way to solve the problem of limited perception
range and blind-spots. Cooperative perception based V2X
can not only be used to improve the reliability of target
recognition and tracking in FoV [121], but also achieve
perception of the area out of the FoV or in occlusion
[72,122,123], and realize the fusion of free space [74,124].
As Figure 13 shows, there has already been some research

on exchange monocular vision [72], low-definition LiDAR
[72,122,123] and localization systems [121]. However, the
amount of information communicated is limited. The future
trends in V2X include the perception results such as the
occupied grid and semantic messages, rather than enormous
raw data.

3.3.3 HD map
HD map can provide accurate and reliable surrounding en-
vironment information for ICVs. The prototype high-preci-
sion map was generated from the Urban Challenge.
Organizers provide the road network description file
(RNDF) for each vehicle.
The storage format and expression form of HD map [125–

127] the acquisition devices, and the feature exaction-asso-
ciation problem [107,128,129] are still the focus of the re-
search. Different research institutions have different
expressions of HD map. In order to carry out a common
layered structure to classify HD maps of different forms in
future research, we propose a seven-layers HD map struc-
ture, as shown in Figure 14.
Layer 1: Road-level network layer. Providing road-level

message, which can be used in global route planning (mis-
sion planning) [130].
Layer 2: Global dynamic layer. Providing global dynamic

message, such as traffic jam and road works, which can be
used in congestion avoidance and dynamic global path
planning.
Layer 3: Inter layer. Providing lane-level road network

data, mainly the lane data.
Layer 4: Lane-level detail layer. Providing roadside in-

formation of the road, such as point of interest (POI),
building and guidepost. Layer 3 and Layer 4 can be used in
behavior planning [10] or lane-level global route planning

Figure 12 (Color online) Sensors used in different autonomous level
(concluded from Table 1).

Figure 13 (Color online) Majority message exchange in V2X currently
and the future research topic.
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[131].
Layer 5: Virtual sensor layer. Providing high-precision 3D

data, which can be used in HD map based localization or
perception [132–134].
Layer 6: Mobile obstacle layer. Providing standardized

interfaces for fusing the information from multisensors (Li-
DAR, camera, V2X and etc.), which can be used in motion
planning [7] and dynamic local route planning.
Layer 7: Driver layer. Characteristic driving date layer,

which learn driver’s habits or provide different driving
modes.
One significant benefit of using the seven-layers HD map

is that it provides a unified information fusion platform with
standardized data exchange structures, which are able to
exchange data from static maps and real-time sensors.

4 Actuators in ICV

4.1 Current vehicle platform for ICV

Vehicle platform technology is a key technology in devel-
oping ICV. The vehicle platform mainly refers to the ac-
tuators of vehicle, which are responsible for executing the
driving behaviors, such as the turning, braking. In the tra-
ditional vehicles, the actuators are designed to be controlled
by human drivers, thus cannot support the autonomous
driving. To enable the autonomous driving functions in
prototype ICVs, the actuators of vehicle should be custo-
mized to react to the orders of controller. In the early state,
the automated control of steering, brakes, and throttles are
realized by mounting additional motors. For example,

Sandstorm [24,135] of CMU in 2005 DARPA Grand Chal-
lenge controls the steering angle by a gear attached to a dc
motor. Similarly, for longitudinal dynamics control, the
throttles and brakes are also controlled by additional motors
with analog position feedback. With the development of
automotive electronics, the electronic control systems have
been widely employed in the production vehicles. The
steering, brakes and throttles are controlled by the ECU
through CAN bus. In this way, the control of vehicle beha-
vior can be realized by sending CAN signal according to the
protocol. For instance, Tsinghua University has realized the
autonomous driving from Chongqing to Beijing together
with an automotive manufacturer. The vehicle platform in
this activity is provided by the manufacturer with full access
to the CAN bus.

4.2 Future vehicle platform for ICV

Electric actuators are becoming very common in passenger
cars, especially in electric vehicles, executing almost all
tasks during driving, including steering, braking, suspending
and even accelerating. The characteristics of actuators are
deeply coupled with the design of control algorithms. Thus,
it is necessary to acknowledge the recent advances in ac-
tuators. This section will review two kinds of technologies
related to actuators: X-by-wire and distributed drive, which
are changing or are going to change the control algorithms of
ICVs.
X-by-wire technology was originally used on airplanes. In

1972, the first digital fly-by-wire fixed-wing aircraft without
a mechanical backup was developed by NASA [136]. After

Figure 14 (Color online) Seven layers HD map structure.
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approximately 40 years development, the X-by-wire system
has quickly become an standard equipment for luxury cars
[137,138], as shown in Figure 15.
One large benefit introduced by X-by-wire technology is

the standard digitalized control platform, where internal or
external controllers can have full control of brake pressures
and wheel angles through the CAN or FlexRay bus. X-by-
wire enables the development of active safety technology by
controlling the longitudinal and lateral dynamics together,
further improving the vehicle’s stability in critical situation
[139–143]. In addition, compared with the traditional cars, a
car equipped with X-by-wire could be transformed into a
high level ICV with less modification. For example, Junior
by Stanford in 2008 utilized “drive-by-wire interface” to
pass controls on throttle, brake, steering, gear shifting, turn
and emergency brake [10]. P1 by Seoul University was
equipped with throttle and two front steering wheels by wire
[144].

Distributed drive technology has garnered great attention
from ICV researcher worldwide, as it offers higher energy
efficiency and motion control performance [145,146]. The
first application of distributed drive technology was pro-
posed by Ferdinand Porsche as early as in 1898, when he
designed the world’s first electric vehicle using hub motors.
Nearly a century later, the distributed drive technology enters
into a rapid development stage along with the popularity of
electric vehicle, as shown in Figure 16. In 2012, Tesla re-
leased Model S, of which the front and rear axles are re-
spectively arranged with motors to realize all-wheel drive.
In the author’s opinion, the distributed drive electric ve-

hicle (DDEV) is the most promising chassis platform for
ICV for the following reasons: (1) More space. The chassis
of DDEV has much more space for flexible arrangement
[147]. (2) Better controllability. The individual torque of
each wheel can be distributed according to dynamic con-
figuration. (3) More power. The Tesla Model S uses a dis-

Figure 15 (Color online) Development of X-by-wire.

Figure 16 (Color online) Development of distributed drive and independent steering technology.
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tributed front and rear drive mode to achieve higher accel-
eration performance. (4) Higher energy efficiency. It reduces
vehicle weight and simplifies the transmission system. (5)
More flexibility. Fully distributed drive can be combined
with independent steering technology, enabling much flex-
ible motion, such as oblique and lateral movement.
Although these new actuators have many advantages and

some of them have already been used in ICVs, the mentioned
new actuators can still be improved in the following aspects:
(1) Reliability of system. The improvement of reliability is
essential to the vehicle safety. It can be achieved by re-
dundancy design [148]. (2) Multi-goal optimized control
algorithms. The new electrical actuators provide a new
platform with much flexibility and different dynamics
characteristics, resulting in significant changes in the vehicle
control model. Thus, new dynamics models and new control
algorithms need to be redesigned to realize multi-goal opti-
mization. Some initial research have already been published
[149–151], but further research is needed.

5 Decision algorithms

In general, the main intelligent vehicle algorithm framework
is divided into three elements: environment perception, de-
cision making and vehicle dynamic control. Environment
perception is the principal focus for modeling the environ-
ment and providing information about surrounding objects to
the intelligent vehicle. Excellent research and reviews, such
as refs. [152–154], have been published. Vehicle dynamic
control, including lateral and longitudinal control, is related
to the structure and model of the controlled vehicle [155]. In
this section, we focus on the review of decision-making al-
gorithms, especially motion planning.
An essential task for ICVs is to “decide” how to plan a

feasible path towards the destination against obstacles and
dynamic limitations. Some reviews for motion planning al-
ready exist and made great contributions. To generate the
trajectory directly, Souissi et al. [156] summarized the path
planning approaches. The methods in that study could gen-
erate a trajectory between two points on the roads, but did not
consider much about the vehicles’ features. Furthermore,
Katrakazas et al. [157] mainly focused on the vehicles. They
described the main approaches for systematically planning
maneuvers and trajectories, and covered some of the most
important ideas concerning intelligent vehicle motion plan-
ning. González et al. [158] found that the generated trajec-
tories were not always suitable to all conditions. They
compared the benefits and limitations of these methods such
as computing efficiency, required hypothesis and applied
scenarios. In addition, some reviews focus on the specific
requirements of motion planning. Veres et al. [159] described
how to model the environment and form data abstractions for

symbolic processing and logic-based reasoning. Eskandarian
[77] summarized motion planning in terms of safety issues,
focusing on risk estimation. Motion planning needs to be
able to predict surrounding objects and some approaches are
summarized in ref. [160]. Bila et al. [161] reviewed the
safety issues related to motion planning.
Most of these articles focus on specific approaches, and are

not so much written for the autonomous vehicle decision
framework itself. Therefore, this study will focus on how the
vehicle makes a decision and then generates a trajectory. We
will provide the big picture for researchers and developers
embarking on future work.

5.1 How humans learn to drive

“Learning” is an important ability for human beings. Drivers
need to take professional training courses to learn how to
drive. Similarly, the autonomous vehicle decision framework
needs to deal with information in the environment through a
perception system and then calculate the control signals for
controllers. Thus, the decision framework also needs to
“learn” to drive similar to how human beings do. It is
therefore meaningful for researchers to understand how hu-
mans learn to drive.
The two main processes by which humans learn are

through “procedural memory” and “declarative memory”.
“Procedural memory” is created through procedural learning
or repeating a complex activity over and over again until all
of the relevant neural systems work together to automatically
produce the activity [162]. The “procedural knowledge”
needs to be mastered by practicing. “Declarative memory” is
the conscious, intentional recollection of factual information,
previous experiences and concepts [163]. People usually
recall “declarative knowledge” to finish a task or make a
decision. Both memory processes are important for human
beings and are often used together.
Inspired by the human learning process, researchers have

recourse to two ideas for developing a framework for au-
tonomous vehicle decision-making. Some researchers hope
to “practice” the system and “develop” it based on driving
data. Weng [164] proposed an autonomous mental devel-
opment robot, which is the application of “procedural
memory” on the robot. Other researchers try to summarize
the models that can describe the environment and vehicles
and present them as “declarative knowledge”. In this study,
we try to summarize the autonomous vehicle decision ap-
proaches and applications in terms of these two points of
view. In order to explain the relationship and differences
between the approaches more clearly, we define the “prin-
ciples-based methods” and “data-based methods” as follows.
There are two stages in the process of the autonomous ve-
hicles learning to drive for the unfamiliar situations, which
are explained in Figure 17: (1) the vehicles “search” the
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principles and “choose” a suitable one to generate the action;
(2) after this action, the vehicles “observe” the results and
adjust the action for the next time. If the autonomous vehicle
just uses principles and does not adjust, this approach is
considered as a total “principles-based method”. By contra-
ries, if the vehicle generates the action only by adjusting
without any principles, this is a “data-based method”. Most
approaches are based on both principles and data. In Figure
18, we summarize the main approaches and applications in
terms of these two methods and the details will be introduced
in the following paragraphs.

5.2 Data-driven motion planning

5.2.1 Why the data-based method gets attention
Data-based methods want to learn the rules from database
which means the methods should find the relationship from

the input and output data. Machine learning [165] is just an
important technology for establishing a relationship between
the input and output based on real data, which is also a key
method among data based methods. In fact, the development
of machine learning can be traced back to the 1950s. Samuel
[166] developed the famous Checker programs to beat hu-
mans, which turned people’s focus to machine learning.
Connectionism based on neural networks developed rapidly
soon thereafter. One of the representative results was the
“Perceptron” proposed by Rosenblatt [167]. Michalski et al.
summarized the developing process of machine learning up
to 198316). In 1985, Ackley et al. [168] made an important
breakthrough in this area, proposing an approach where the
neural network can adjust itself according to the error of the
output data. That means that neural networks can learn from
the dataset, without prior experience and knowledge. The
neural network has much deeper layers and need more
benchmark data. Deep learning [169] grows up and is gra-
dually applied in many fields, including computer vision and
chess. In 2012, Krizhevsky et al. [170] achieved much
greater accuracy than before based on deep learning. The
record from the image detection challenge race in PASCAL
VOC [171] shows that the results via deep learning are more
accurate than the results from model-based methods. The
famous competition in which AlphaGo beat the best player in
the world [172] also showed the great potential of the
learning method.
From all the above, we can see that data-based methods

(deep learning) provide the possibility to break through the
limitations of human cognition. For the autonomous vehicle
system, particularly motion planning, there are many non-
measurable parameters [173] and errors [174] need to be

Figure 17 (Color online) How the autonomous vehicles learn to drive
compared with human drivers.

Figure 18 (Color online) Factors which the references trust and the control level they apply.

16) Michalski S R, Carbonell G J, Mitchell M T. Machine Learning an Artificial Intelligence Approach Volume II. Berlin, Heidelberg: Springer, 1984.
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considered. These factors are difficult to be modeled and
measured accurately, and should be addressed with learning
methods. On the other hand, control signals data are much
easier to collect [175] in intelligent vehicles, providing the
conditions for the learning process. Because of these con-
siderations, some researchers have focused on this area
which will be described in details in the next part.

5.2.2 How deep learning is used on autonomous vehicles
Data-based methods in intelligent vehicles date back to the
1990s. Alex Waibel et al. at Carnegie Mellon made an au-
tonomous land vehicle in a neural network called ALVINN7).
Limited by the sensors, computing ability and neural net-
work structure, ALVINN can only drive on some simple
roads in some specific situations. This vehicle is not yet
“autonomous” but demonstrates the concept.
Similar to this idea, Bojarski et al. [28] developed the

“end-to-end” autonomous vehicle that can learn to drive
from the front camera to the control signal by deep learning.
Compared with ALVINN, the scale of images are more than
40 times greater (39600 pixels) and the neural network
structure has ten layers (27 million connections and 250
thousand parameters). The DRIVETM PX17) is loaded on the
test vehicle for learning and driving. With these updates, this
autonomous vehicle can achieve autonomy in approximately
98% of the driving from the NVidia office in Holmdel to
Atlantic Highlands. Santana and Hotz [176] establish a si-
milar system, and Bojarski et al. [177] explain why this
system works.
Some researchers also suggested an improved method for

the supervised learning system. Zhang and Cho [30] pro-
posed “SafeDAgger” to solve the problem where the training
process suffered from unexpected behaviors from expert
drivers. Chen et al. [178] proposed a direct perception ap-
proach for autonomous vehicles. This method pre-treats the
images and detects a small number of key perception in-
dicators. In this way, the efficiency has significantly im-
proved. Xu et al. [29] found that the main approaches for
supervised-learning-based autonomous vehicles are suitable
only for the vehicle which the training data taken from. Thus,
their approach can be used by different sourced video data.
Liu et al. [179] combined the classical trajectory planning
and the supervised learning to park the vehicle like human
beings. Yang et al. [180] analyzed the influence of the fea-
tures in the images and selected the more influential features
to improve efficiency. Some research presented at interna-
tional conferences have discussed basic technology in deep
learning [181,182] that is meaningful for those who wish to
know more. We will not discuss it further here.
As can be seen in the review above, neural networks are

important tools in deep learning. A typical neural network7)

is shown in Figure 19(a), in which the hidden units do not
have a distinct physical meaning, which is problematic for
being able to adjust the system. In Bayesian network clas-
sifiers [183], on the other hand, the units’ meaning can be
described and understood by developers, allowing us to ob-
serve and adjust intermediate variables during the training.
Nevertheless, the weights between the units in Bayesian
dynamic network should also learn from dataset [184].
Therefore, the decision process based on a Bayesian dynamic
network is also the data-based process. One Bayesian net-
work is shown in Figure 19(b). This approach has been im-
plemented in the autonomous vehicle decision framework.
In 1995, Forbes et al. [185] established a decision frame-

work based on a Bayesian network considering sensor noise,
sensor failure, and uncertainty about the behavior of other
vehicles. They verified the framework in a simulation system
and the vehicles were able to make reasonable decisions
under various conditions. In order to understand the en-
vironment more accurately, Van Dan and Kameyama [186]
mainly estimated the motion of the intelligent vehicle, which
is developed for high safety, via a Bayesian network. Colli-
sions are also a significant factor while making decision.
Hamlet and Crane [187] developed a prediction system for
collision avoidance that can help autonomous vehicles travel
through intersections. The Bayesian network can also be
applied to control the vehicles. For examples, Eilers and
Möbus [188,189] built a Bayesian autonomous driver mix-
ture-of-behaviors model that can control a simulated auton-
omous vehicle in real time. Based on this model, they built a
longitudinal support system for driver assistance strategies
[190].
For both machine learning and Bayesian network learning,

the primary issue is to be able to adjust the network para-
meters to make the output closer to real output data. In an-
other words, the success of this approach is determined by
the quality and consistency of the training data, as already

Figure 19 (Color online) Network instances. (a) Neural network; (b)
Bayesian network.

17) NVIDIA Announces World’s First AI Computer to Make Robotaxis a Reality. 2017. http://www.marketwired.com/press-release/nvidia-announces-
worlds-first-ai-computer-to-make-robotaxis-a-reality-nasdaq-nvda-2236493.htm.
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mentioned in several papers7) [28,30]. Different from su-
pervised learning, reinforcement learning [191] does not
only rely on real data. When generating an action, the re-
inforcement learning system will observe the effect accord-
ing to a value function which is built according to the final
target. If the effect does not meet requirement, the system
will adjust the policy and generate another action next time.
This adjustment process will repeat until we find the best
policy which is different from the policy based on the col-
lected dataset. Kaelbling et al. [192] summarized the stra-
tegies for solving reinforcement-learning problems.
AlphaGo [172] also used deep reinforcement learning to beat
the world champion.
In order to achieve the driving target in the optimized way,

some data-based autonomous vehicles use reinforcement
learning as their learning structure. Koutník et al. [193] de-
veloped the racing vehicle system based on deep reinforce-
ment learning. In the racing video game, the controlled
vehicle can always win the game based on the image shown
on the screen. Xia et al. [194] combined the reinforcement
learning with data from the experience of professional driver,
which improved the learning efficiency and reduced the
learning time by 71.2%. Xiong et al. [195] took safety-based
control as their goal and built the system to be suitable on
unfamiliar roads based on deep reinforcement learning. Chae
et al. [196] implemented reinforcement learning on the
braking system to make the vehicle much safer for the en-
vironment. Isele et al. [197] generated policy for intersec-
tions, where many factors cannot be predicted.
Apart from the above methods, there is also a data-based

method called the partially observable Markov decision
process (POMDP) which is developed fromMarkov decision
process (MDP). The MDP is a discrete time stochastic
control process. At each time step, the process is in some
state, and the decision maker may choose any action that is
available in this state. The process responds at the next time
step by randomly moving into a new state, and giving the
decision maker a corresponding reward. If we consider the
driving process as a discrete time process, the autonomous
vehicle will make the action just according to the current
state, and this process is similar with MDP. However, the
state cannot always be observed clearly in the autonomous
vehicle decision process because of the uncertainty of the
sensors. As result, it must maintain a probability distribution
over the set of possible states, based on a set of observations
and observation probabilities, and the underlying MDP. The
policy of POMDP should also be adjusted according to the
real data collected by sensors, and so POMDP is also a data-
based method and is applied in the autonomous vehicle de-

cision process. A typical application is to navigation, which
takes the position and direction as the states to drive to the
destination. Koenig and Simmons [198] developed the robot
navigation architecture on the robot “Xavier” just based on
POMDP to guide the robot in the measured map. This ap-
proach has also been applied in some autonomous vehicle
frameworks. Liu et al. [199] developed a situation-aware
decision-making framework for autonomous driving via an
online POMDP. The proposed algorithm has been applied in
various urban road scenarios and performed well. Agussurja
and Lau [200] helped a taxi make cruising decisions in a
congested urban city via POMDP using the data from a
Singaporean taxi company. Brechtel et al. [201] presented a
generic approach for tactical decision-making under un-
certainty in the context of driving and this method did not use
a symbolic representation or discretize the state space a
priori. The generated actions in the approaches above are the
control signals that are “low-level actions”. Some decision
frameworks also try to generate the “high-level actions” such
as some maneuvers with POMDP. Amato et al. [202] de-
veloped the POMDP system facing to “macro-actions,”
which were high-level temporally extended actions.
In the end of this part, we provide the main relationship

and differences between these data-driven methods in Figure
20 and Table 5 in order to make them clear. These differences
have been mentioned in this review.

5.2.3 Relative dataset for data-based methods
The dataset is one of the most important factors for data-
based systems. The training data must be large enough and
contain rich information. Here, we summarize some public
datasets for autonomous vehicle developers. It should be
mentioned that some famous datasets, such as ImageNet
[203] and Pascal VOC [171], which contain objects
[204,205] unrelated to autonomous vehicles, will not be in-
cluded.
The dataset for “end-to-end” learning [28] is easy to col-

lect, because the dataset just need the front video and the
control signals. Some companies have published their “end-
to-end” dataset. Riccardo Biasini et al. published the driving
dataset lasting more than 7 h18). Similar to this type, Baidu
published a much bigger dataset19). Udacity developed a si-
mulation system for developers to build “end to end” data-
set20). Some data-based methods also published the dataset
they used. For example, the dataset mentioned in ref. [178] is
published [206].
The datasets mentioned above are collected by normal

vehicles with some simple sensors such as cameras. In fact,
the autonomous vehicle decision process usually needs more

18) Commaai, 7 and a quarter hours of largely highway driving dataset . 2016. https://archive.org/details/comma-dataset.
19) Baidu, Roadhackers dataset. 2017. http://roadhackers.baidu.com
20) Udacity, Behaviorial Cloning Project. https://github.com/udacity/CarND-Behavioral-Cloning-P3.
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information that cannot be collected just by cameras. Some
approaches also need the dataset taken by professional ve-
hicles integrating various sensors such as Lidar and GPS.
Some datasets are built for this purpose. Oxford RobotCar
projects published over 1000 km dataset and lasting one
year21). The dataset is collected from the Oxford RobotCar
platform [207], and contains all sensors’ data on this plat-
form. Similarly, Koschorrek et al.22) published the dataset
taken by the autonomous platform23). KITTI is also the da-
taset taken by the professional autonomous vehicle. How-
ever, KITTI mainly services for environmental perception
which kindly different from the other datasets above. The
dataset can be downloaded from ref. [208].
Some datasets are not only collected from a car but also

built for the autonomous vehicles. Usually, these datasets
make contribution to environment perception. For example,
Cityscape is an image segmentation dataset containing some
common traffic conditions [209]. Some traffic signs detec-
tion dataset24) [210], lane detection [209], vehicle detection25)

[171,203] or pedestrian detection [211,212] dataset are also
collected for environment perception. We will not com-
pletely summarize them in this work.
Datasets are valuable sources for data-based methods. We

summarize some important datasets for autonomous vehicle
decision framework in Table 6.

5.3 Principles-based motion planning

In some conditions, we can drive the vehicle even though we
have never seen a similar scene. This is because we have
some principles to guide us make suitable decisions. Some
autonomous vehicle decision frameworks are also mainly
based on principles. In other words, researchers summarize
certain principles based on experience and knowledge. The
autonomous vehicles just drive according to these principles.
Compared with the data-based approaches, it is much clearer
to know how the system generates the control signals. The
control orders can also be adjusted easily. In this part, we will
summarize principle based methods for autonomous vehicle
decision.

5.3.1 Classical framework for principles-based methods
Usually, the decision frameworks are divided into three main
parts, which are global planning, maneuver decision and
trajectory planning suggested [213]. Certain frameworks
also have some slight differences. For example, Wei et al.
[214] added the “reference planner” in the framework to
combine the global planning with the maneuver planning.
Noh and An [215] further divided the maneuver planner into
two parts. Global planning provides the driving target for the
decision process. Some approaches have been described in

Figure 20 (Color online) Data-driven approach for autonomous driving.

Table 5 Main idea behind data-based methods

Approaches Main idea

Supervised learning Imitate directly from real-driving data.

Bayesian network Build a network with meaningful units. Adjust the parameters of the network according to real-driving data.

Reinforcement learning Consider future effects of the actions and make optimized decisions.

POMDP Considering sensor and data uncertainties.

21) Oxford Robotcar Dataset. 2014. http://robotcar-dataset.robots.ox.ac.uk.
22) Koschorrek P, Piccini T, Öberg P, et al. A multi-sensor traffic scene dataset with omnidirectional video. In: IEEE Conference on Computer Vision and

Pattern Recognition Workshops. Portland, OR, 2013, 727–734.
23) The automotive multi-sensor (AMUSE) dataset. 213. http://www.cvl.isy.liu.se/research/datasets/amuse.
24) Timofte R. BelgiumTSC Dataset. http://btsd.ethz.ch/shareddata.
25) Udacity, Self-Driving Car. Annotated Driving Dataset. https://github.com/udacity/self-driving-car/tree/master/annotations.
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refs. [154,216]. Global planning is an independent module
related to the navigation and HD map, so that we will not
introduce this part in detail.
Principles-based methods have recently been developing

rapidly. Some researchers have summarized these ap-
proaches from different directions. These reviews are men-
tioned in Section 5.1. In this study, we hope to introduce the
main framework of principles-based approaches.

5.3.2 Principles-based methods
How to generate a trajectory that vehicles can follow is the
key point of principles-based decision-making. Traffic rules,
driver comfort and other requirements provide the principles
to choose a suitable trajectory from the available curves.
In order to make the planning process simple, some re-

searchers choose a certain geometric curve as the generated
trajectory. Common curves include lines and circles [217],
clothoid curves [218], polynomial curves [219], Bezier
curves [220] and spline curves [152]. Sometimes, these types
of curves may be used combined with each other, in order to
make the trajectory more suitable for the planned condition
and the controlled vehicle. Some details about how to build
and adjust the fixed curve have been summarized [158]. The
fixed curves are the principles for the autonomous vehicles.
They are usually in some fixed road conditions. However,
there are also some unpredicted conditions the vehicle may
meet. The trajectory should be optimized according to the
speed, steering speed, rollover constraints, and jerk etc. of
the controlled vehicle. Therefore, some articles generate the
trajectory via optimizing the trajectory. In [221–223], the
trajectory estimation methods are described constrained by
road conditions, vehicle dynamic models and traffic rules.
The trajectory optimization approach is one of the main
methods in DARPA Urban Challenge [224,225].
We can also “search” a trajectory on the real road map in

real time, because we cannot consider all road conditions the
trajectory optimizations can apply. Another way to generate
the trajectory is searching on the lattice map. This approach
has two main steps: (1) build the dynamic lattice map; (2)
search a trajectory on the map. Some classical approaches for

searching is Dijkstra’s Algorithm [226,227], A* [11], D*
[228] Algorithm and state lattices [229,230]. Every algo-
rithm mentioned before is a masterpiece. However, we could
not introduce them in details in this paper.
In the approaches above, the systems need to generate a

whole perfect trajectory and then drive the vehicle to follow
it. In this way, the trajectory needs to finish the entire plan-
ning. However, this process may cost too many computing
re-sources, and it may not always be able to search a tra-
jectory to follow. In order to solve this problem, rapidly
exploring rand trees have been proposed. This method con-
structs a tree data structure which is expanded stochastically
by adding new configurations (vertices) in each iteration that
are randomly sampled from the configuration space until the
goal configuration is reached [231]. Some researchers have
also improved the performance of this method. For example,
Dolgov et al. [221] guaranteed the kinematic feasibility;
Kuwata et al. [232] handled general dynamical models in
real-time.
The autonomous vehicle decision framework should also

be verified in the design process, because different modules
should cooperate with each other without error. The ap-
proaches above cannot be verified by themselves and this
may cause risk. The formal method can be a tool which is a
particular kind of mathematically based technique for the
specification, development and verification [233]. Linear
temporal logic (LTL), one of the approaches in formal
method, was proposed [234]. It has been used in some au-
tonomous control framework [235]. Some details are de-
scribed in the mentioned references [236,237], which we
cannot introduce exhaustively in this article. Because this
method can achieve the design and verification at the same
time, researchers try to apply this method to the autonomous
vehicle. Wongpiromsarn [238] changed the Alice (the au-
tonomous vehicle in DUC) framework based on LTL. Fi-
nally, Alice finished the tasks designed by DUC. Sadigh et al.
[239] proved it was possible to apply LTL on the autonomous
vehicles in theory, and provided the direction for future
work.

6 Conclusions and the future policy of ICV

The objective of this paper is to present an overview of both
the state of the art and the future trends of key technologies in
ICVs, including EEA, sensor technology, actuator technol-
ogy, and decision-making algorithms. Even though many
demonstration ICVs have been developed to prove the con-
cept of autonomous driving and the possibility of improving
traffic efficiency based on ICVs, there still exists a big gap
that must be closed before the mass production of high-level
ICVs can be achieved. The causes of this gap, which indicate
the key technologies to eliminate this gap, seem to be dif-

Table 6 Some dataset attributes

Dataset Attribute

Commaai 18) Seven and a quarter hours driving data

Roadhackers 19) 10000 km driving data in China

Udacity 20),24) The platform generating driving data

Princeton [206] The dataset for “Direct Perception” in ref.
[178]

Oxford RobotCar 16) One year collection in complex environment

AMUSE 18) Muti-sensors collection

KITTI [208] Dataset for environment perception

Cityscape [209] Dataset for image segmentation
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ferent from different perspectives. From the automotive in-
dustry perspective, the key technologies needed to be de-
veloped are the high-quality electronic components, like
sensors, controllers, actuators. From the academic research
perspective, the problems are mainly the lack of reliable
algorithms to perform driving tasks like perception, decision
and control. Both perspectives can provide a unique point of
view of the current ICV development state. This study
combined the two perspectives aiming at helping researchers
from industry and robotics to better understand each other’s
work and cooperate more efficiently.
As a conclusion, to realize mass production of ICVs,

technological breakthroughs are needed in both vehicle
platform and intelligent algorithms. In the aspect of devel-
oping vehicle platform, the domain-based architecture and
centralized architecture are the promising solution for the
EEA of the next generation to provide much better capacity
in communication and computation. AE and multicore het-
erogeneous computation platforms are expected to be in-
troduced into the vehicle very quickly. Apart from the
powerful architecture, the future vehicle platform should also
be equipped with high-tech sensors, which are able to ac-
quire information and output recognition results by in-
tegrating perception algorithms. Electric actuation, such as
X-by-wire and distributed drive, are widely considered as the
best platform for ICV for their outstanding performance in
dynamics control and energy saving. From the aspect of al-
gorithm design, perception, decision, and control are all es-
sential processes in autonomous driving, however perception
and control algorithms could be covered by the development
of sensors and actuators. Many companies and universities
are already working together to integrate the sensor hardware
and perception algorithms. A successful example is the
Mobileye, which has transferred the vision algorithms into a
sensor product. The decision algorithms should be given
more attention. As introduced in this study, data-driven de-
cision processes and principle-based decision processes
should be combined in the future to provide more intelligent
driving instructions in complex driving environment.
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