
SCIENCE CHINA
Technological Sciences Print-CrossMark

July 2019 Vol. 62 No. 7: 1111–1122
https://doi.org10.1007/s11431-017-9284-y

c⃝ Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019 tech.scichina.com link.springer.com

. Article .

Finite-time stabilization of uncertain delayed-hopfield neural
networks with a time-varying leakage delay via non-chattering

control
AOUITI Chaouki1, LI XiaoDi2* & MIAADI Foued1

1University of Carthage, Faculty of Sciences of Bizerta, Department of Mathematics, Research Units of Mathematics and Applications UR13ES47,
Bizerta 7021, Tunisia;

2School of Mathematics and Statistics, Shandong Normal University, Ji’nan 250014, China

Received December 12, 2017; accepted May 14, 2018; published online March 25, 2019

This article is concerned with the finite-time stabilization (FTSB) of a class of delayed-Hopfield neural networks with a time-
varying delay in the leakage term in the presence of parameter uncertainties. To accomplish the target of FTSB, two new finite-
time controllers are designed for uncertain delayed-Hopfield neural networks with a time-varying delay in the leakage term. By
utilizing the finite-time stability theory and the Lyapunov-Krasovskii functional (LKF) approach, some sufficient conditions for
the FTSB of these neural networks are established. These conditions, which can be used for the selection of control parameters,
are in the form of linear matrix inequalities (LMIs) and can be numerically checked. Additionally, an upper bound of the settling
time was estimated. Finally, our theoretical results are further substantiated by two numerical examples with graphical illustrations
to demonstrate the effectiveness of the results.
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1 Introduction

Neural networks (NNs) have sparked great interest in many
researchers due to its successful practical applications in
many areas such as computer vision, associative memory,
pattern recognition, generalized optimization, and memory
design [1–7]. In a realistic NN, a time delay often occurs and
creates some oscillations that cause high complexity in the
dynamical behavior of the NN.

Many studies have been conducted on the effects of the
delays on the stability of NNs [1, 2, 7–12]. One such delay
is leakage delay, also known as forgetting delay, whose effect
on stability is one of the major topics of research [13–17].
As indicated previously [18], logic circuits and ultra-thin-
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body geoi devices involve leakage delays [18], which tend to
cause instability in NNs; thus, the strategies used for conven-
tional delayed NNs cannot be applied to this problem[19].
There are many studies on the stability of NNs in the pres-
ence of forgetting delays [10, 17, 20–25]. Unfortunately, the
approaches considered by the abovementioned studies can-
not be extended to the finite-time stabilization (FTSB) of
delayed-Hopfield NNs with time-varying delays in the leak-
age terms.

Due to external disturbances and parameter fluctuations,
the values of the resistances and capacities of neurons are
often uncertain [26]. Therefore, it is of practical interest to
consider the uncertain parameters when studying the stability
of NNs. Moreover, on the one hand, the parameters of NNs
may exhibit some deviations because of modeling errors, ex-
ternal disturbances, and parameter fluctuations [26, 27]; on
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the other hand, in the electronic implementation of NNs, the
connection-weight coefficients can be perturbed by the exter-
nal environment and cause parameter uncertainties [19]. In
recent years, there have been many studies on the stability of
uncertain NNs [28–30], but none on the FTSB of uncertain
delayed-Hopfield NNs (UDHNNs) with a time-varying leak-
age delay. Hence, there is an urgent need to study UDHNNs
with time-varying delays in the leakage terms.

As is well known, the usual stability analyses of UDHNNs
with time-varying delays in the leakage terms require asymp-
totic convergence, which can be rather time-consuming for
achieving the desired precision, and hence, they can exceed
the scale of human operations they will be useless to the real
world applications [31]. However, in practice, we always
hope that the physical process is able to achieve convergence
within a shorter period of time: a concept known as finite-
time stability (FTS), which means that the solutions to a sys-
tem reach an equilibrium point in finite time [32]. The key
issue in FTS is the estimation of the time function, known as
the settling time, which indicates when the trajectories have
reached the equilibrium point.

Haimo [33] was the first to study the concept of FTS; some
interesting results were also obtained by refs. [34–36]. Re-
cently, Moulay et al. developed this theory by extending the
subjects of the abovementioned studies to non-autonomous
systems in ref. [32] and to time-delay differential equations in
ref. [37]. FTS is of major interest to many applications such
as secure communications [38] or finite-time attitude track-
ing for spacecrafts [39]. There are many studies on the FTS
of delayed systems [26, 31, 40–52]. However, previously de-
signed controllers such as the pinning controller proposed by
refs. [53, 54] cannot ensure the FTS of the delayed NNs con-
sidered in our study. More precisely, according to classical
control law, controlling the effects of leakage delays based
on the inequality V̇(t) 6 −βVµ is not difficult due to the re-
quirement µ ∈ [0, 1].

Most recent studies on the FTS of delayed systems re-
quired the use of the sign function in the designed controllers
[47, 55, 56]. However, these functions caused the chattering
phenomenon [31, 57, 58] and induced undesirable effects in
NNs [58]. Thus, the main difficulty lies in the time-varying
leakage delay effect when a classical finite-time controller is
used during the investigation of FTSB. Our research aims to
solve this problem. The contributions of this article touches
upon three aspects.

(1) By using FTS theory and the Lyapunov-Krasovskii
functional (LKF) approach, the difficulty of controlling for
the effects of leakage delays on FTS is overcome. Our study
is the first to consider the FTSB of UDHNNs with time-
varying leakage delays.

(2) The control parameters can be directly determined by
solving the linear matrix inequalities (LMIs), wherein the
connection weights contain parametric uncertainties. These
kinds of parameters are of major interest in practice but not
common in the study of the FTSB of NNs with time-varying
leakage delays.

(3) Unlike classical controllers such as those used by refs.
[47, 55, 56], the designed controller in our study does not in-
volve the sign function and can be easily implemented in real
applications without inducing the chattering phenomenon.
Then, a delay-free controller that is more suited to real phys-
ical applications can be used because knowledge regarding
the delays is not required.

The remainder of this article is organized as follows. In
Sect. 2, some preliminaries useful for the study of a class of
uncertain NNs are given. In Sect. 3, the FTSB of a class
of UDHNNs with time-varying leakage delays is considered
and some criteria are established. Then, Sect. 4 discusses the
theoretical results, which are substantiated by two numerical
examples. Finally, Sect. 5 contains the concluding remarks.

2 Preliminaries

2.1 Model description

Throughout this article, we use the following notations.
(1) C([a, b], Rn) stands for the space formed by the con-

tinuous functions ϕ : [a, b]→ Rn equipped with the uniform
norm ∥ϕ∥C = sup

a6s6b
∥ϕ(s)∥.

(2) Rn and Rn×n stand for the n-dimensional real space
equipped with the Euclidean norm ∥ . ∥ and the set of n × n
real matrices, respectively.

(3) AT, A−1 and A < 0 stand for the transpose of A,
the inverse of a square matrix, and −A is positive definite,
respectively.

(4) The function ν : R+ → R+ belongs to the class K if it
is strictly increasing and ν(0) = 0.

(5) λmax(A) and In stand for the maximum eigenvalue of
A and the n-dimensional identity matrix, respectively.

(6) (∗) in a symmetric matrix block stands for the symmet-
ric block.

In this article, we consider the following UDHNN with a
time-varying delay in the leakage term:

ẋ(t) = −C(t)x (t − σ(t)) + A(t) f (x(t))

+B(t) f (x(t − τ(t))),
x(s)= ϕ(s), s ∈ [−τ∗, 0],

(1)

where
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(1) x(t) = (x1(t), . . . , xn(t))T, and f = ( f1, . . . , fn)T stand
for the neuron-state and the neuron-activation functions, re-
spectively, with f j(0) = 0, j = 1, . . . , n.

(2) τ(.) and σ(.) stand for the time-varying transmission
delays and the leakage delay, respectively.

(3) 0 6 τ(t) 6 τ̄, 0 6 σ(t) 6 σ̄ and σ̇(t) 6 σ∗ < 1.
According to the results obtained in ref. [26], the paramet-

ric uncertainties in system (1) can be written as follows.
(1) C(t) = C+∆C(t), B(t) = B+∆B(t), A(t) = A+∆A(t),

in which C = diag (c1, . . . , cn) is a diagonal matrix with ci > 0
while A =

(
ai j

)
n×n

and B =
(
bi j

)
n×n

are the interconnection
weight matrix of the neurons.

(2) ∆C(t),∆B(t), and ∆A(t) stand for the time-varying
parametric uncertainties and satisfy the matched conditions
[26]

∆C(t) = EC∆1(t)EC , ∆B(t) = EB∆2(t)EB, (2)

∆A(t) = EA∆3(t)EA, (3)

where EA, EB, and EC are known constant matrices and
∆i(t), i = 1, 2, 3 is an unknown time-varying matrix that sat-
isfies

∆i(t)T∆i(t) < In, i = 1, 2, 3. (4)

(3) ϕ(.) ∈ C([−τ∗, 0], Rn) where τ∗ = max{τ̄, σ̄}.

2.2 Definitions and lemmas

Let us introduce the following assumption:
H1: There exist constants M−j , M+j such that the functions

f j ( j = 1, 2 . . . , n) satisfy the following condition:

M−j 6
f j(x) − f j(y)

x − y
6 M+j , j = 1, 2, . . . , n,

for all x, y ∈ R.

Remark 1. Under the assumption (H1), the existence of so-
lutions of system (1) is ensured, as explained in ref. [59]. In
(H1), the constants M+j and M−j can be negative or positive.
Consequently, this assumption allows Lurie-type functions
and Lipschitz functions if M+j ,M

−
j > 0, and M−j = −M+j < 0,

respectively.

Some useful definitions and lemmas are provided below.
LetΩ be an open subset of C([−τ∗, 0],Rn) such that 0 ∈ Ω.

Definition 1. The equilibrium point, if it exists, of system
(1) is FTS if [37]:

(i) the equilibrium of system (1) is Lyapunov stable;
(ii) for any state ϕ(s) ∈ Ω, there exists 0 6 T(ϕ) < +∞

such that every solution of system (1) satisfies x(t, ϕ) = 0 for
all t > T(ϕ).

The functional

T0(ϕ) = inf
{
T(ϕ) > 0 : x(t, ϕ) = 0, ∀t > T(ϕ)

}
.

is called the settling time of system (1).

The derivative of V along the trajectories of system (1) is
defined in ref. [59] as follows:

V̇(ϕ) = V̇(1)(ϕ) = lim sup
h→0+

1
h
[
V(xh(ϕ)) − V(ϕ)

]
.

Lemma 1. If there exist two functions ν and r of class K
and a continuous functional V : Ω→ R+ such that [37]

(i) ν(ϕ(0)∥c) 6 V(ϕ);

(ii) V̇(ϕ) 6 −r (V(ϕ)) with
ϵ∫

0

dz
r(z) < ∞, ∀ϵ > 0, ϕ ∈ Ω;

then system (1) is FTS with a settling time satisfying the in-

equality T0(ϕ) 6
V(ϕ)∫
0

dz
r(z) . In particular, if r(V) = λVρ, where

λ > 0, ρ ∈ (0, 1), then the settling time satisfies the inequal-
ity

T0(ϕ) 6

V(ϕ)∫
0

dz
r(z)
=

V1−ρ(0, ϕ)
λ(1 − ρ) . (5)

Lemma 2. For a positive definite matrix Q ∈ Rn×n and any
vectors x, y ∈ Rn, ϵ > 0, the following inequality holds [60]:

±2xTy 6 ϵ−1xTQ−1x + ϵyTQy.

Lemma 3. (Schur Complement [60]): Given three constant
matrices Ω1, Ω2, and Ω3, where Ω1 = Ω

T
1 and 0 < Ω2 = Ω

T
2 ,

then

Ω1 +Ω
T
3Ω
−1
2 Ω3 < 0,

if and only ifΩ1 Ω
T
3

Ω3 −Ω2

 < 0 or

−Ω2 Ω3

ΩT
3 Ω1

 < 0.

Lemma 4. For given matrices Q = QT, H, and E of appro-
priate dimensions [50],

Q + HF(t)E + ETFT(t)HT < 0

holds for all F(t) satisfying FT(t)F(t) 6 In if and only if
there exists ϵ > 0 such that

Q + ϵ−1HHT + ϵETE < 0.

In the following, we consider the controlled system:
ẋ(t) = −C(t)x (t − σ(t)) + A(t) f (x(t))

+B(t) f (x(t − τ(t))) + u, t > 0,

x(s)= ϕ(s), s ∈ [−τ∗, 0],

(6)

where u(x) = (u1(x), . . . , un(x))T stands for the control input.
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Remark 2. If system (6) is FTS, the uniqueness of solutions
in forward time at the origin cannot be ensured [37]. How-
ever, Theorem 3.4 (page 24) shows that in ref. [61], the con-
tinuity of the right-hand sides of system (6) with the unique-
ness of the solutions in forward time ensure the continuity of
the solutions.

3 Main results

In this section, we design two different kinds of controllers
that are able to finite-time stabilize the class of UDHNNs
with time-varying delays in the leakage term.

Before we investigate the abovementioned problem, we in-
troduce the following notations:

M j = max
{
|M−j |, |M+j |

}
, L f = diag(M1, . . . ,Mn).

The state feedback control inspired by refs. [41, 51, 62] is
designed as follows:

u (x(t)) = − λ

x(t)Tx(t) +

t∫
t−σ(t)

x(s)Tx(s)ds


γ

x(t)
∥x(t)∥2 + ν

− k1 x(t) −
[
k2 x (t − τ(t))T x (t − τ(t))

+ k3 x (t − σ(t))T x (t − σ(t))
] x(t)
∥x(t)∥2 + ν , (7)

with λ, ν, ki > 0, i = 1, 2, 3 as the gain coefficients to be
determined and 0 < γ < 1.

Remark 3. It is well known that the sign functions cause
chattering in NNs state [57, 58] and induce undesirable ef-
fects. Despite this, a majority of interesting (à supprimer
ce mot) FTS results were obtained using the sign functions
[47,55,56]. To eliminate chattering when taking the FTS ap-
proach, we designed a non-chattering controller (7) based on
continuous functions under integration. Moreover, under a
time-varying leakage delay, the pinning control presented in
refs. [53, 54] cannot be utilized to realize the FTS of sys-
tem (6), which is solved here by establishing some sufficient
conditions for the FTS of system (6).

In the following theorem, sufficient conditions in terms of
LMIs are established to ensure the FTSB of system (6).

Theorem 1. If there exist positive constants si, ki (i =
1, 2, 3) such that the following conditions hold

In + s1 A(t)A(t)T + s2 B(t)B(t)T + s3 C(t)C(t)T

+ s−1
1 L2

f − 2k1 In < 0, (8)

s−1
2 L2

f − 2k2 In < 0, (9)

− (1 − σ∗) + s−1
3 − 2k3 < 0, (10)

then system (6) is FTSB via the controller (7) and the settling
time satisfies T 6 T1 where T1 =

V1−γ(0,ϕ)
λ(1−γ) .

Proof. Consider the following LKF

V(x(t)) = x(t)Tx(t) +

t∫
t−σ(t)

x(s)Tx(s)ds. (11)

The derivative of eq. (11) along the trajectories of system (6)
is estimated as follows:

V̇(x(t)) =x(t)T ẋ(t) + ẋ(t)Tx(t)

=x(t)T
[
− C(t) x(t − σ(t)) + A(t) f (x(t))

+ B(t) f (x(t − τ(t))) + u
]

+
[
A(t) f (x(t)) − C(t) x(t − σ(t))

+ B(t) f (x(t − τ(t))) + u
]T

x(t). (12)

It is easy to see that when |x(t)| , 0,

xT(t)
[
− λ

x(t)Tx(t) +

t∫
t−σ(t)

x(s)Tx(s)ds


γ

x(t)
∥x(t)∥2

]

= −λ

x(t)Tx(t) +

t∫
t−σ(t)

x(s)Tx(s)ds


γ

. (13)

Then, from ref. [58] and eq. (13), we have

V̇(x(t)) 62x(t)T
[
− C(t) x(t − σ(t)) + A(t) f (x(t))

+ B(t) f (x(t − τ(t)))
]
− k1 x(t)

− λ

x(t)Tx(t) +

t∫
t−σ(t)

x(s)Tx(s)ds


γ

− k2 x (t − τ(t))T x (t − τ(t))
− k3 x (t − σ(t))T x (t − σ(t))

− (1 − σ̇(t)) x(t − σ(t))Tx(t − σ(t)). (14)

Furthermore, from Lemma 2, we easily obtain

2x(t)T A(t) f (x(t)) 6s1x(t)T A(t)A(t)Tx(t)

+ s−1
1 f T (x(t)) f (x(t)); (15)

2x(t)T B(t) f (x(t − τ(t)))
6 s2x(t)TB(t)BT(t)x(t) + s−1

2 f T (x(t − τ(t))) f (x(t − τ(t)));
(16)

2x(t)T C(t) x(t − σ(t))) 6s3x(t)TC(t)CT(t)x(t)

+ s−1
3 xT(t − σ(t))x(t − σ(t)). (17)

Thus, combining eqs. (15) and (17), we derive

V̇(xt) 6x(t)T
[
In + s1 A(t)A(t)T + s2 B(t)B(t)T
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+ s3 C(t)C(t)T + s−1
1 L2

f − 2k1In

]
x(t)

+ xT (t − σ(t))
[
− (1 − σ∗) + s−1

3 − 2k3

]
x (t − σ(t))

+ xT (t − τ(t))
[
s−1

2 L2
f − 2k2In

]
x (t − τ(t))

− 2λVγ(t),∀ t > 0. (18)

Furthermore, from (8)–(10), we obtain

V̇(t) < −2λVγ(t), ∀ t > 0. (19)

Thus, since condition (i) in Lemma 1 is ensured by (H1), sys-
tem (6) is FTSB via controller (7) and T 6 V1−γ(0,ϕ)

λ(1−γ) , which
completes the proof.

Remark 4. The leakage delay tends to destabilize the NNs
[22] and makes the dynamical behavior of the systems more
complex. In refs. [17, 26, 47–49], the FTSB of delayed NNs
was investigated. However, the approach used in the above-
mentioned work fails when σ(.) , 0. The routine employed
for conventional delayed NNs cannot be applied to study this
kind of delay [19]. In Theorem 1, we present another FTSB
result based on a new LKF, which renders our results more
general than those of the existing studies.

When there is no parametric uncertainty, system (6) re-
duces to

ẋ(t) = −C x(t − σ(t)) + A f (x(t))

+B f (x(t − τ(t))) + u,
x(s)= ϕ(s), s ∈ [−τ∗, 0].

(20)

If we take EA = EB = EC = 0 in Theorem 1, we obtain the
following corollary.

Corollary 1. If there exist positive constants si, ki (i =
1, 2, 3) such that the following conditions hold

In + s1 AAT + s2BBT + s3CCT + s−1
1 L2

f − 2k1In < 0, (21)

s−1
2 L2

f − 2k2In < 0, (22)

− (1 − σ∗) + s−1
3 − 2k3 < 0, (23)

then system (20) is FTSB via the controller (7) and the set-
tling time satisfies T 6 T1.

Remark 5. The established conditions in refs. [63–66] are
based on the analytical approach and are invalid when the
L2-norm is used [65]. We would like to mention here that
L2 ⊂ L1, so the settling time established in our work may be
smaller than that obtained in the abovementioned papers and
proves the advantage of our results.

Obviously, the conditions of Corollary 1 are not easy to
check since they are nonlinear. One approach to tackling
such a problem is to make the sufficient conditions in terms of
LMIs equivalent to the abovementioned conditions of Corol-
lary 1.

Corollary 2. If there exist positive constants si, ki (i =
1, 2, 3) such that the following LMIs hold:

Ω0 =



In − 2k1In L f s1 A s2B s3C
∗ −s1In 0 0 0

∗ ∗ −s1In 0 0

∗ ∗ ∗ −s2In 0

∗ ∗ ∗ ∗ −s3In


< 0, (24)

−2k2In L f

∗ −s2In

 < 0, (25)

−(1 − σ∗)In − 2k3In In

∗ −s3In

 < 0, (26)

then system (20) is FTSB via the controller (7) and the set-
tling time satisfies T 6 T1.

A simple use of Lemma 3 and Corollary 1 imply the re-
sults of Corollary 2. The details of the proof are left to the
reader.

Remark 6. The FTS conditions established in refs. [57,
63, 64] are based on the analytical method and cannot be ex-
pressed in LMIs, because the inequalities are based on the
L1-norm. In this work, some sufficient conditions in terms of
LMIs are established. The LMI approach leads to less conser-
vative conditions than do the non-LMI methods. These kinds
of conditions can be easily checked by using the MATLAB
LMI toolbox. This (the above-mentioned discussion) proves
the advantage of our proposed method.

Remark 7. Unlike the sliding mode approach, the follow-
ing controller

u∗ (x(t))=



−λ
x(t)Tx(t) +

t∫
t−σ(t)

x(s)Tx(s)ds

γ x(t)
∥x(t)∥2

−k1 x(t) −
[
k2 x (t − τ(t))T x (t − τ(t))

+k3 x (t − σ(t))T x (t − σ(t))
] x(t)
∥x(t)∥2 ,

if ∥x(t)∥2 , 0,

0, if ∥x(t)∥2 = 0

(27)

is only discontinuous at the origin and does not contain
the sign function, which could lead to the chattering phe-
nomenon. If ∥x(t)∥2 = 0 for t 6 T, then the FTS is obtained
without appearance of chattering.

Now, when there is no leakage delay, system (6) reduces
to

ẋ(t) = −C(t) x(t) + A(t) f (x(t))

+B(t) f (x(t − τ(t))) + u, t > 0,

x(s)= ϕ(s), s ∈ [−τ∗, 0].

(28)

Then, we have the following result:
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Corollary 3. If there exist positive constants s1, s2, ki (i =
1, 2, 3) such that the following conditions hold:

In + s1 A(t)A(t)T + s2 B(t)B(t)T + C(t) + C(t)T

+ s−1
1 L2

f − 2k1In < 0, (29)

s−1
2 L2

f − 2k2In < 0, (30)

then system (28) is FTSB via the following controller:

u (x(t)) = − k1 x(t) − k2xT (t − τ(t)) x (t − τ(t)) x(t)
∥x(t)∥2 + ν

− λ∥x(t)∥γ, (31)

with λ > 0, 0 < γ < 1, and ki > 0 (i = 1, 2, 3) the control
strength. Moreover, the settling time satisfies T 6 ∥ϕ∥

1−γ
c

λ(1−γ) .

Proof. By taking σ(.) = 0 in the LKF (11) and calculating
the derivative of the functional (11) along the trajectories of
system (28), we easily obtain a result with arguments similar
to the ones of Theorem 1.

Remark 8. Although the stability of NNs with leakage de-
lays has been studied (see for instance refs. [10, 21, 22] and
the references therein), all the previous works have been for
asymptotic or exponential behaviors rather than the FTSB of
UDHNNs with time-varying leakage delays.

When dealing with parametric uncertainties, the condi-
tions of Theorem 1 are not standard LMIs. Consequently,
Theorem 1 cannot be used to check the FTSB of system (6).
Hence, we formulate a new theorem in which the obtained
conditions are LMIs that can be numerically checked.

Theorem 2. If there exist positive constants si, ki, λi (i =
1, 2, 3) such that the following LMIs hold:

Ω =



In − 2k1In L f s1 A s2B s3C s1EA s2EB s3Ec

∗ −s1In 0 0 0 0 0 0

∗ ∗ Ω33 0 0 0 0 0

∗ ∗ ∗ Ω44 0 0 0 0

∗ ∗ ∗ ∗ Ω55 0 0 0

∗ ∗ ∗ ∗ ∗ −λ1In 0 0

∗ ∗ ∗ ∗ ∗ ∗ −λ2In 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −λ3In


< 0, (32)

−2k2In L f

∗ −s2In

 < 0, (33)

−(1 − σ∗)In − 2k3In In

∗ −s3In

 < 0, (34)

where Ω33 = −s1In + λ1EAET
A, Ω44 = −s2In + λ2EBET

B,
Ω55 = −s3In + λ3EC ET

C , then system (6) is FTSB via the
controller (7) and the settling time satisfies T 6 T1.

The proof of Theorem 2 is inspired by the proof of Theo-
rem 3 in ref. [26].
Proof. We prove the theorem in two steps.

Step 1: we prove that the inequality (8) is equivalent to

Ω̄ = Ω0 +Ω1 < 0,

where

Ω1 =



0 0 s1EA∆(t)EA s2EB∆(t)EB s3EC∆(t)EC

∗ 0 0 0 0

∗ ∗ 0 0 0

∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ 0


.

According to the matched conditions (2), Ω̄ can be written
as follows:

Ω̄ = Ω0 +Ω1 =



In − 2k1In LT
f s1 A(t) s2B(t) s3C(t)

∗ −s1In 0 0 0

∗ ∗ −s1In 0 0

∗ ∗ ∗ −s2In 0

∗ ∗ ∗ ∗ −s3In


.

(35)

Thus, pre-and post-multiplying (35) by the block-diagonal
matrix

R =



In 0 0 0 0

0
√

s1
−1In 0 0 0

0 0
√

s1
−1In 0 0

0 0 0
√

s2
−1In 0

0 0 0 0
√

s3
−1In


,

we obtain

RΩ̄R

=



In − 2k1In
√

s1
−1L f s1 A

√
s1
−1 s2B

√
s2
−1 s3C

√
sn
−1

∗ −In 0 0 0

∗ 0 −In 0 0

∗ 0 0 −In 0

∗ 0 0 0 −In


.

Then, by letting

Ω2 =


In 0 0 0

0 In 0 0

0 0 In 0

0 0 0 In


,
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ΩT
3 =

[
In − 2k1In

√
s1
−1L f s1 A

√
s1
−1 s2B

√
s2
−1 s3C

√
sn
−1
]

and Ω1 = In − 2k1In, we obtain

Ω̄ < 0⇔ RΩ̄R =

Ω1 Ω
T
3

Ω3 −Ω2

 < 0, (36)

which is equivalent, by a simple use of Lemma 3, to inequal-
ity (8).

Step 2: we prove that the inequality Ω̄ = Ω0 + Ω1 < 0 is
equivalent to the existence of λ1, λ2, λ3 such that

Ω0 +



λ−1
1 s2

1EAET
A 0 0 0 0

∗ 0 0 0 0

∗ ∗ λ1EAET
A 0 0

∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ 0



+



λ−1
2 s2

2EBET
B 0 0 0 0

∗ 0 0 0 0

∗ ∗ 0 0 0

∗ ∗ ∗ λ2EBET
B 0

∗ ∗ ∗ ∗ 0



+



λ−1
3 s2

3EC ET
C 0 0 0 0

∗ 0 0 0 0

∗ ∗ 0 0 0

∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ λ3EC ET
C


< 0. (37)

Firstly, Ω1 can be written as follows:

Ω1 = Ω11 +Ω12 +Ω13 (38)

with

Ω11 =



s1EA

0

0

0

0


∆1(t)

[
0 0 EA 0 0

]

+



0

0

ET
A

0

0


∆1(t)T

[
s1ET

A 0 0 0 0
]

;

Ω12 =



s2EB

0

0

0

0


∆2(t)

[
0 0 0 EB 0

]

+



0

0

0

ET
B

0


∆2(t)T

[
s2ET

B 0 0 0 0
]

;

Ω13 =



s3EC

0

0

0

0


∆3(t)

[
0 0 0 0 EC

]

+



0

0

0

0

ET
C


∆3(t)T

[
s3ET

C 0 0 0 0
]
.

Thus, by applying Lemma 4 to Ω11 with

Q = Ω0 +Ω12 +Ω13 ;

H =



s1EA

0

0

0

0


, ET =



0

0

ET
A

0

0


, F(t) = ∆1(t).

It follows from Lemma 4 and eq. (4) that

Ω̄ = Q + H∆1(t)E + ET∆1(t)T(t)HT < 0

implies that there exists λ1 > 0 such that

Q + λ−1
1 HHT + λ1ETE < 0,

i.e.

Ω0 +Ω12 +Ω13 +



λ−1
1 s2

1EAET
A 0 0 0 0

∗ 0 0 0 0

∗ ∗ λ1EAET
A 0 0

∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ 0


< 0. (39)
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Then, we applied Lemma 4 to Ω12 by choosing

Q = Ω0 +Ω13 +



λ−1
1 s2

1EAET
A 0 0 0 0

∗ 0 0 0 0

∗ ∗ λ1EAET
A 0 0

∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ 0


, (40)

H =



s2EB

0

0

0

0


, ET =



0

0

0

ET
B

0


, F(t) = ∆2(t)

and we obtain that eq. (39) is equivalent to the existence of
λ2 > 0 such that

Ω0 +Ω13 +



λ−1
1 s2

1EAET
A 0 0 0 0

∗ 0 0 0 0

∗ ∗ λ1EAET
A 0 0

∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ 0



+



λ−1
2 s2

2EBET
B 0 0 0 0

∗ 0 0 0 0

∗ ∗ 0 0 0

∗ ∗ ∗ λ2EBET
B 0

∗ ∗ ∗ ∗ 0


< 0. (41)

Finally, we applied Lemma 4 to Ω13 by choosing

Q = Ω0 +



λ−1
1 s2

1EAET
A 0 0 0 0

∗ 0 0 0 0

∗ ∗ λ1EAET
A 0 0

∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ 0



+



λ−1
2 s2

2EBET
B 0 0 0 0

∗ 0 0 0 0

∗ ∗ 0 0 0

∗ ∗ ∗ λ2EBET
B 0

∗ ∗ ∗ ∗ 0


, (42)

H =



s3EC

0

0

0

0


, ET =



0

0

0

0

ET
C


, F(t) = ∆3(t).

Eq. (41) is equivalent to λ3 > 0 such that eq. (37) is satis-
fied and completes the proof of Step 2.

Now, by pre- and post-multiplying eq. (32) by a block-

diagonal matrix diag
(
In, In, In, In, In,

1√
λ1

In,
1√
λ2

In,
1√
λ3

In

)
and a simple use of Lemma 3 to obtain the inequality show
that eq. (37) is equivalent to eq. (32). Therefore, the condi-
tions of Theorem 1 are satisfied.

Remark 9. It is difficult to obtain an exact NN when model-
ing a dynamical system, which requires consideration of the
parameter uncertainties. The feedback controls given in refs.
[47, 48] cannot stabilize the finite-time system (6), unlike the
controller (7), which improves and extends the abovemen-
tioned works.

Let us introduce the following assumption:
(H3) there exist constants Gi such that

| fi(x)| 6 Gi i = 1, . . . , n.

Now, through the LMI approach, a new kind of finite-time
controller is built for UDHNNs with time-varying leakage de-
lays.

Theorem 3. If there exist positive constants si, ki (i = 1, 3)
such that the following conditions hold

In + s1 A(t)A(t)T + s3 C(t)C(t)T + s−1
1 L2

f − 2k1In < 0, (43)

− (1 − σ∗) + s−1
3 − 2k3 < 0, (44)

then system (6) is FTSB via the following controller:

u (x(t)) = − λ

x(t)Tx(t) +

t∫
t−σ(t)

x(s)Tx(s)ds


γ

x(t)
∥x(t)∥2 + ν

− k3x (t − σ(t))T x (t − σ(t))
x(t)

∥x(t)∥2 + ν
− k1 x(t) − (B + E2

B) G sign(x(t)), (45)

with λ > 0, ki > 0 (i = 1, 3) as the control strength to be de-
termined. The real number γ satisfies 0 < γ < 1, G = max

16i6n
Gi

and the settling time satisfies T 6 T1.

Proof. By replacing eq. (45) in eq. (14) and applying eqs.
(15), (17), and (H3), we obtain

V̇(xt)

6 x(t)T
[
In+s1 A(t)A(t)T+s3 C(t)C(t)T+s−1

1 L2
f − 2k1In

]
x(t)T

+ xT (t − σ(t))
[
− (1 − σ∗) + s−1

3 − 2k3

]
x (t − σ(t))

− 2λVγ(t), ∀ t > 0. (46)

Thus, from (43) and (44), we obtain

V̇(t) < −2λVγ(t), ∀ t > 0.

The rest of the proof is straightforward, and so, is omitted.
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In the following corollary, we present some new LMI con-
ditions that could be easily checked, and via controller (45),
ensure the FTSB of UDHNNs with time-varying leakage de-
lays.

Corollary 4. If there exist positive constants si, λi, ki

(i = 1, 3) such that the following LMIs hold:

Ω =



In − 2k1In L f s1 A s3C s1EA s3Ec

∗ −s1In 0 0 0 0

∗ ∗ Ω33 0 0 0

∗ ∗ ∗ Ω55 0 0

∗ ∗ ∗ ∗ −λ1In 0

∗ ∗ ∗ ∗ −λ2In 0

∗ ∗ ∗ ∗ ∗ −λ3In


< 0, (47)

−(1 − σ∗)In − 2k3In In

∗ −s3In

 < 0, (48)

then system (6) is FTSB via the controller (45).

The proof of Corollary 4 is similar to that of Theorem 2,
so it is omitted.

In practice, the exact values of the delay are often poorly
known [31]. Also, it is difficult to assess the delays, and most
of the time, only approximate values are available [67]. Even
a real-time operating system can guarantee only the maxi-
mum values for the time-varying delays [68]. A new finite-
time controller was designed with the following corollary, in
which the knowledge of only the upper bounds σ̄ of the time-
varying delays σ is necessary, rendering the controller more
suitable for real applications.

Corollary 5. If there exist positive constants si, ki (i =
1, 2, 3) such that the following LMIs hold:

Ω =



In − 2k1In L f s1 A s3C s1EA s3Ec

∗ −s1In 0 0 0 0

∗ ∗ Ω33 0 0 0

∗ ∗ ∗ Ω55 0 0

∗ ∗ ∗ ∗ −λ1In 0

∗ ∗ ∗ ∗ −λ2In 0

∗ ∗ ∗ ∗ ∗ −λ3In


< 0, (49)

−(1 − σ∗)In In

∗ −s3In

 < 0, (50)

then system (6) is FTSB via the continuous controller as fol-
lows:

u (x(t)) = − k1 x(t) − (B + E2
B)G sign(x(t))

− λ

x(t)Tx(t) +

t∫
t−σ̄

x(s)Tx(s)ds


γ

x(t)
∥x(t)∥2 + ν (51)

and the settling time satisfies T 6 T1.

Proof. By replacing eq. (51) in eq. (14), as with Corollary
4, we have

V̇ (xt) 6 x(t)T
[
In + s1 A(t)A(t)T + s3 C(t)C(t)T

+ s−1
1 L2

f − 2k1In

]
x(t)T

+ xT (t − σ(t))
[
− (1 − σ∗) + s−1

3

]
x (t − σ(t))

− 2λVγ(t), ∀ t > 0. (52)

Thus, from eqs. (49) and (50), we immediately obtain the
result that completes the proof.

4 Applications

In this section, two numerical examples are given to demon-
strate the effectiveness of our main theoretical results.

4.1 Example 1

Consider the following delayed-Hopfield NNs with time-
varying delays in the leakage terms:

ẋ(t) = −Cx (t − σ(t)) + A f (x(t)) + B f (x(t − τ))
+u, t > 0,

x(s)= ϕ(s), s ∈ [−τ∗, 0],

(53)

where n = 2 and

f1(s) = f2(s) = tanh(s), τ = 1, σ(t) = 0.2| sin t|.

The initial conditions are defined as follows:

x1(s) = ϕ1(s) = −1.6, x2(s) = ϕ2(s) = 1.2, ∀s ∈ [−1, 0]

and the parameters C, A, and B are given as follows:

C =

1 0

0 1

 , A =

 2 −0.1

−5 −4.5

 , B =

−1.5 −0.1

−0.2 −4

 .
Noting that L f = diag(1, 1), σ∗ = 0.2. By solving eqs. (24),
(25), (26) with the Matlab LMI toolbox leads to the following
solution

k1 = 50, k2 = 3, k3 = 3, si = 1, i = 1, 2, 3.

Therefore, according to Corollary 2, the following controller

u (x(t)) = −

x(t)Tx(t) +

t∫
t−0.2| sin t|

x(s)Tx(s)ds


0.9

x(t)
∥x(t)∥2 + ν
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− 50 x(t) −
(
3x (t − τ(t))T x (t − τ(t))

+ 3x (t − σ(t))T x (t − σ(t))
) x(t)
∥x(t)∥2 + ν . (54)

Setting γ = 0.9 and ν = 10−3 stabilizes the finite-time sys-
tem (53). The trajectories of the state variables are shown in
Figure 1, which confirms the effectiveness of our main theo-
retical results.

Remark 10. In Example 4, nine variables involved in the
LMIs are to be solved. It should be pointed out that when
LMI becomes larger, the complexity increases because the
number of variables to be solved in the LMIs depends on the
number of neurons n. Such a complexity is caused by the use
of LKF (11).

4.2 Example 2

Consider the following UDHNN with a time-varying delay in
the leakage term:

ẋ(t) = −C(t)x (t − σ(t)) + A(t) f (x(t))

+B(t) f (x(t − τ(t))) + u, t > 0,

x(s)= ϕ(s), s ∈ [−τ∗, 0],

(55)

x1(s) = ϕ1(s) = −1.6, x2(s) = ϕ2(s) = 1.2, and s ∈ [−1, 0].
The uncertain parameters are EA = EB = EC = diag(1, 1),
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Figure 1 (Color online) State trajectories of system (53) with initial con-
dition (−1.6, 1.2)T. (a) Open-loop evolution of system (53); (b) closed-loop
system (53) under controller (54).

∆i(t) = diag(sin(t), and sin(t)), i = 1, 2, 3. Other parameters
are similar to those in Sect. 4.1. Using Matlab LMI Toolbox
for solving eqs. (32)–(34) and fixing γ = 0.9, ν = 10−3, we
obtain the following solution:

s1 = 0.5522, s2 = 1.1595, s3 = 7.0379;

k1 = 50, k2 = 3, k3 = 3;

λ1 = 0.1314, λ2 = 0.3441, λ3 = 3.6611.

From Theorem 2, we deduce that system (55) is FTSB via the
controller

u (x(t)) = −

x(t)Tx(t) +

t∫
t−0.2| sin t|

x(s)Tx(s)ds

 x(t)
∥x(t)∥2 + ν

− 50 x(t) −
(
3x (t − τ(t))T x (t − τ(t))

+ 3x (t − σ(t))T x (t − σ(t))
) x(t)
∥x(t)∥2 + ν . (56)

Furthermore, according to Corollary 5, the following con-
troller

u (x(t)) = −

x(t)Tx(t) +

t∫
t−0.2

xT(s)x(s)ds


0.9

x(t)
∥x(t)∥2 + ν

− 50x(t) − (B + I2) sign(x(t)) (57)

also ensures the FTSB of system (4.2). In eq. (57), we do not
need to know the time-varying delay σ, and the controller is
well suited to real applications. Simulation results of system
(55) are depicted in Figure 2.

5 Conclusion

This article deals with the problem of the finite-time stabiliza-
tion of uncertain delayed-Hopfield NNs with time-varying
delays in the leakage term. By using the LKF method and
the FTS theory, some sufficient conditions in terms of LMIs
are established to ensure the FTSB. Firstly, our proposed re-
sults extend the previously known results established in refs.
[47–49], where the leakage delay is not taken into consid-
eration. Secondly, our proposed method improves and com-
pletes the results of refs. [21, 22], of which only the asymp-
totic behavior is investigated. Finally, some numerical ex-
amples are given to demonstrate the effectiveness of our pro-
posed results. Despite the contribution that provides the FTS,
the settling time depends on the initial conditions of the NNs.
On the one hand, the variation of the initial values has a strong
effect on the estimation of the settling time. On the other
hand, in practice, advance knowledge of the initial conditions
is very difficult to acquire [69]. For future research, we intend
to design a fixed-time controller for NNs with time-varying
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Figure 2 (Color online) FTS of system (55) with initial condition
(−1.6, 1.2)T under different kinds of control protocols. (a) Open-loop evo-
lution of system (55); (b) closed-loop system (55) under controller (56); (c)
closed-loop system (55) under controller (57).

leakage delays in which the settling time is independent of
the initial conditions.
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