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Interpolation-based contour error estimation and component-
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High accuracy contour error estimation and direct contour error control are two major approaches to reduce the contour error.
However, two key factors make them complex for five-axis machine tools: the nonlinear kinematics and the coupling between
the tool position and orientation. In this study, by finding the reference point nearest to the current actual position, and
interpolating the point with two neighboring reference points and using the distance ratio, a new contour error estimation method
for five-axis machine tools is proposed, which guarantees high accuracy while depending on only the reference points. By adding
a weighted contour error on the tracking error in the workpiece coordinate system, and specifying a desired second-order error
dynamics based on the error variable, an effective contouring control method is proposed, which can alleviate the problem: when
the contour error components are introduced into the controller, the contour errors increase instead in some regions of the
tracking trajectory. A series of experiments are performed on a tilting-rotary-table (TRT) type five-axis machine tool. The results
reveal that the proposed estimation method has high accuracy, and compared with the case without contour error control, the
proposed control approach can reduce the contour error along the whole trajectory.
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1 Introduction

Five-axis CNC machine tools, which include three transla-
tional and two rotary drives, have the ability to follow free-
form surfaces with required geometry and dimensional ac-
curacy. Therefore, they have been extensively utilized in the
manufacturing application fields. However, during the five-
axis contouring operation, the individual servo tracking lag
[1] and the unmatched dynamic responses among different
axes [2] are always inevitable. The resulting tracking errors
are transferred kinematically to the tool tip position and the
tool orientation, resulting in the contour errors between the
desired and the actual contours. They must be controlled to

avoid violating the tolerance of the product. To reduce the
contour error, which is defined as the shortest distance of the
actual position from the reference contour [3], considerable
research efforts have been utilized to come up with a range of
solutions over the past few decades, and the proposed ap-
proaches concentrate mainly on estimating the contour error
accurately and designing the contouring controller effec-
tively.
The first attempt was made by Koren [4] for biaxial ma-

chining, where the contour error is estimated as linear re-
lationships of tracking errors. For arbitrary curves, by
adopting the spatial contour error, a contour error estimation
method was proposed by Yeh and Hsu [5], where contour
error can be acquired from the actual tool position to the
tangent line at the reference position. Using point-to-curve
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distance function, Zhu et al. [6] presented a second-order
approach for the contour error estimations of arbitrary tra-
jectories. By adopting the distance from the actual position to
the local approximate circle of the desired curve, Yang and
Li [7] acquired the contour errors of arbitrary smooth tool
paths. By using the average direction of the reference and
actual tool velocities, Chuang and Liu [8] provided a linear
approximation method to estimate the contour error for
multi-axis machine tools. For three-dimensional machining
operations, based on the instantaneous curvature of the re-
ference curve, El Khalick and Uchiyama [9] obtained the
contour error iteratively. By decoupling the tracking error
into the tangential and normal errors in the local task co-
ordinate frame, the normal error was used as the approx-
imation of contour error by Chiu and Tomizuka [10]. Based
on the canonical approximation, Shi and Lou [11] proposed a
novel contour error estimation approach for three-dimen-
sional contouring control. The approximation is obtained
locally from the Taylor expansion of the reference contour.
In contrast to the local task coordinate frame, for biaxial
systems Yao et al. [12] provided a global task coordinate
frame (GTCF), by which the contour error can be acquired as
the first order approximation of the true contour error. Later,
a similar contour error estimation was provided by Wu et al.
[13] in biaxial systems. For estimating the contour error
more accurately, by adopting the line-segment approxima-
tion of the desired curve with n number of the reference
positions, a contour error estimation approach for arbitrary
tool paths was presented by Erkorkmaz and Altintas [14].
Subsequently, a similar approach was provided by Huo et al.
[15], where its inputs are a series of the actual positions as
well as the desired positions of the machine tool. Utilizing
the polynomial root-seeking formulae, an essentially exact
contour error calculation approach was provided by Conway
et al. [16]. Differing from the above studies, a concept of
equivalent contour error was proposed for arbitrary smooth
tool paths by Chen and Wu [17]. The equivalent errors,
which consist of equivalent contour errors and tangential
error, are taken as the control objective. Ghaffari and Ulsoy
[18] proposed a dynamic contour error estimation (CEE)
method based on the Newton update algorithm. Because the
convergence rate of the Newton update algorithm is in-
dependent of the desired contour, the proposed CEE is al-
most identical to the true contour error for the sharp corners
or different feedrates.
The contour error estimations for biaxial and triaxial ma-

chining operations have been fully studied. However, one
key factor limits their direct application to five-axis machine
tools, that is, the five-axis contouring accuracy is affected
simultaneously by the tool tip position and the tool orienta-
tion, as illustrated in Figure 1. For five-axis machine tools,
the contour errors can be classified into two categories. One
is the tool tip contour error P, which is considered as the

shortest distance of the actual tool tip from the reference
position trajectory, the other is the tool orientation contour
error O, which is regarded as the orthogonal angular de-
viation of the actual tool orientation from the reference or-
ientation trajectory. Lo [19] presented a five-axis contour
error estimation approach, where the tool tip contour error is
acquired by the projections of tracking error, and the tool
orientation contour error is obtained by using two rotational
angles. Sencer et al. [1] provided an estimation approach, by
which the tool tip contour error can be approximated
adopting the projections of tracking error in the shifted
Frenet frame, and the tool orientation contour error can be
acquired using a vector. The vector is obtained by trans-
forming the tool orientation tracking error. However, since
the tool tip and tool orientation contour errors are in-
dependently estimated, large overcut or undercut may be
caused in the machined surface. In order to solve this pro-
blem, El Khalick and Uchiyama [20] provided a new tool
orientation contour error estimation method, where the tool
orientation used for the orientation contour error estimation
is synchronized to the tool tip position. Zhang et al. [21]
presented an off-line approach to predict the contour errors
analytically for five-axis splined paths, where the tool tip
contour error is estimated by searching numerically the point
nearest to the actual tool tip position, and the tool orientation
contour error is acquired in a similar way. However, the
estimation performance may degrade when the adopted
models are not accurate. Yang and Altintas [22] proposed a
generalized on-line estimation approach for five-axis CNC
machine tools, where the corresponding axis components of
contouring errors are obtained by the drive commands and
the generalized Jacobian. In our previous work [23], a new
estimation method was proposed, where the tool tip contour
error estimation is based on the second-order Taylor series
expansion, while the tool orientation contour error estimation
is obtained by the linear interpolation method. However, it
depends on the geometrical information of the desired con-
tour, which may increase the computational load.

Figure 1 (Color online) Five-axis contour error definition.
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In addition to the accurate estimation of the contour error,
effective contouring controller design is also crucial to re-
duce the contour error. Two major control methods are fre-
quently used. The first method is the tracking control, where
the reduction of contour error is achieved indirectly by re-
ducing the tracking error. Some tracking controllers such as
zero phase error tracking controller (ZPETC) [24], feed-
forward controller [25] and sliding mode controller (SMC)
[26] can improve the tracking accuracy. However, for multi-
axis motion systems, high tracking accuracy does not ne-
cessarily mean good contouring accuracy [27]. Thus, the
second method, called the contouring control, is to directly
control the contour error on the basis of the estimated con-
tour error. The first cross-coupled control (CCC) structure
for biaxial control systems was proposed by Koren [4],
where the contouring accuracy is improved by feeding back
the real-time estimation of contour error to each axis. Some
variants [28,29] of CCC were also proposed. Since the CCC
is found to be not universally successful, recently, a new
method to control the contour error for corner tracking was
proposed by Rahaman et al. [30], which combines the CCC
with the frequency modulated interpolation (FMI). However,
owing to the coupling between the tool position and or-
ientation for five-axis machine tools, it has not been reported
that the CCC can be directly adopted for five-axis machin-
ing. Unlike the CCC, another control structure, which is
named task coordinate frame approach (TCFA), was pro-
posed by Chiu and Tomizuka [10]. Since the normal error in
the task coordinate frame is used to approximate the contour
error, the normal error becomes the direct objective of the
contouring control. Subsequently, this control structure was
adopted by Sencer and Altintas [31] to control the tool tip
contour error for five-axis machine tools, while the tool or-
ientation contour error was controlled by the integral of the
contour error components. Although the TCFA can be uti-
lized for five-axis machine tools, it may increase the com-
putational load due to the introduction of the coordinate
transformation. Seeing that the effect of matched dynamics
among all axes on the contouring accuracy, for multi-axis
motion systems, a perfectly matched feedback control
(PMFBC) was proposed by Yeh and Hsu [2], which uses
stable pole-zero cancellation and complementary zeros in-
clusion techniques. Howerer, the PMFBC may not be
achieved for five-axis machining since the models are dif-
ficult to identify accurately. By considering the contour error
model of the tool center point (TCP), a five-axis servo dy-
namics matching method was proposed by Lin and Wu [32].
Decoupling the contour errors predicted off-line into all the
drives to modify the reference position commands of each
axis, a contour error pre-compensation approach for five-axis
machine tools was presented by Zhang et al. [21]. By feeding
back the axis components of the contour errors to the posi-
tion commands with a proper proportional gain, a contour

error component compensation control approach was pro-
posed by Yang and Altintas [22]. A dual sliding mode con-
touring controller was proposed in our previous work [23],
where the dual sliding surface including a tracking sliding
surface, a contouring sliding surface and the control input,
was designed separately for each axis. The contour error
component control method has been used in the recent works
[21–23,31]. However, the contour error components are ex-
pressed in the workpiece coordinate system, while the drive
commands or tracking errors are defined in the machine
coordinate system. They are directly added together, which
raises a problem: when the contour error components are
introduced into the controller, the contour errors instead in-
crease in some regions of the tracking trajectory. This phe-
nomenon is particularly noticeable in the experimental
results shown in [21,31] and our previous work [23]. Ob-
viously, it is detrimental for the actual machining operations.
Motivated by an endeavor to attack the aforementioned

problems, this study proposes a new contour error estimation
method for five-axis machine tools. The reference point
closest to the current actual position is searched firstly, and a
second-order polynomial is adopted to interpolate this re-
ference point with its two neighboring reference points.
Then, the point nearest to the actual position, which may be
called foot point, can be estimated by definition. Finally, the
tool tip contour error can be obtained. The tool orientation
contour error is estimated by the distance ratio method,
where the ratio is obtained using the actual position of the
foot point between two adjacent reference points. The pro-
posed estimation method has high accuracy while depending
on only the reference points. When the contour error com-
ponents are introduced into the controller, the contour errors
increase instead in some regions of the tracking trajectory. In
order to alleviate this problem, the contour errors are de-
coupled in the form of components, and a new error variable
is constructed by adding a weighted contour error on the
tracking error in the workpiece coordinate system. Based on
this new error variable, the contouring controller can be
designed simply by specifying a desired second-order error
dynamics. Compared with the case without contour error
control, the proposed contouring control method can reduce
the contour error along the whole trajectory.

2 Modeling of contour errors of five-axis ma-
chine tools

2.1 Kinematic model for five-axis machine tools

During five-axis machining operation, the movement of the
tool depends on the motion of the drives of the machine tool.
Typical five-axis machine tools have three translational and
two rotary drives. Here a tilting-rotary-table (TRT) type five-
axis machine tool, known as the most economic [33], is
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adopted as an example, as shown in Figure 2(a). The TRT
type five-axis machine tool has three degrees of freedom
(DOF) in the X-, Y-, and Z-direction and two additional ro-
tary DOF with respect to A- and C-axis. Since the cutter
location P(t)=[Px(t), Py(t), Pz(t)]

T and orientation O(t)=[Oi(t),
Oj(t), Ok(t)]T, ||O(t)||=1 are generated from the CAD/CAM
software systems, they are expressed in the workpiece co-
ordinate system as illustrated in Figure 2(b). The actual in-
puts of the control system of the machine tool q(t)=[X(t), Y
(t), Z(t), θA(t), θC(t)]T are defined in the machine coordinate
system. The transformation between these two coordinate
systems called kinematics modeling should be accomplished
first, as illustrated in Figure 2.
Currently, the kinematics modeling can be achieved by

utilizing Denavit-Hartenberg (D-H) method [33]. Then, the
forward kinematics can be calculated as following:
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where LY and LZ are linear offsets respectively along the Y-
and Z-axis direction between the point P on the A-axis and
the origin of the workpiece coordinate system, as illustrated
in Figure 2(b). From eqs. (1) and (2), the inverse kinematics
can be obtained, and then the positions of Cartesian and
rotary axes can be calculated as following:
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Figure 2 (Color online) Kinematics for TRT type five-axis machine tool. (a) Kinematic configuration; (b) tool path generated in the workpiece coordinate
system.
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L× . (4)Y

Z

The first-order partial derivatives of the tool orientation
with respect to the positions of rotary axes can be obtained by
differentiating eq. (1), and then the orientation Jacobian

RJ t( )O
3×2 can be calculated as following:
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which relates the velocities of rotary axes to the tool angular
velocity of the machine as
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Similar to the orientation Jacobian, the position Jacobian
RJ t( )P

3×5 can also be acquired by the first-order partial
derivatives of eq. (2) with respect to the positions of all
drives as following:
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By combining the cutter location P(t)=[Px(t), Py(t), Pz(t)]T

and orientation O(t)=[Oi(t), Oj(t), Ok(t)]
T, which will be

adopted later for the contouring controller design, a tool pose
variable can be defined as
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T

Differentiating eq. (8) with respect to the positions of all
drives and considering eqs. (6) and (7), it can be shown that
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where JPuv (u=1, 2, 3, v=1, 2, 3, 4, 5) is the element in the u-th
row and v-th column of the position Jacobian matrix, and JOuv
(u=1, 2, 3, v=1, 2) is the element in the u-th row and v-th
column of the orientation Jacobian matrix. By differentiating
eq. (9), it can be shown that

t t t t tP̈ J q J q̈( ) = ( ) ( ) + ( ) ( ). (11)O

Obviously, the tool pose accelerations tP̈ ( )O is related to
the drive velocities tq( ) and accelerations tq̈( ) by tJ( ) and its
first-order derivatives tJ( ).

2.2 Real-time estimation of contouring errors

The five-axis contouring accuracy is affected simultaneously
by the translational and rotary drives. The synchronization of
the movements of tool position and orientation must be sa-
tisfied along the tool path to avoid any overcut or undercut in
the machined surface. As illustrated in Figure 3, suppose that
Pa and Pr are the actual and desired tool tip position, and Pf is
the nearest tool tip position on the desired contour to the
actual tool position, andOa,Or andOf are the tool orientation
at the point Pa, Pr and Pf, respectively, then the tool tip
contour error P is the distance between Pf and Pa, while the
tool orientation contour error O is the angular difference
between Of and Oa.
To estimate the contour error as accurately as possible, it is

necessary to find the point that is closest to the current actual
position on the reference curve, and this point can be called
foot point. For the given spline tool-path, although the ac-
curate computation of the foot point can be performed
iteratively, it may increase the computational complexity. In
order to reduce the computational effort without loss of
largely computational accuracy, in our previous work [23] a
foot point estimation method based on the second-order
Taylor expansion has been proposed, and then the tool or-
ientation at the foot point was obtained by the linear inter-
polation about the curve parameter. However, it still involves
the calculation of the geometric information of the curve
such as the tangent, normal vectors and curve parameter, etc.
Here a new estimation method is proposed, which guarantees
high accuracy while depending on only the reference points.
The details of the proposed new method are presented as
follows.
First, by adopting the look-up table approach, the reference

point Pq closest to the current actual position Pa can be ob-
tained as shown in Figure 4(a). Since the foot point is located
between Pq−1 and Pq or Pq and Pq+1, a second-order poly-
nomial curve that passes through these three points Pq−1, Pq
and Pq+1 can be constructed by the interpolation method.
Since the reference points acquired after interpolation must
have the time stamp, the tracking time t can be reasonably
considered as the parameter of the polynomial. The poly-
nomial can be described as the following form:

Figure 3 (Color online) Synchronized illustration for five-axis contour
errors.
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where am,n (m=0, 1, 2, n=x, y, z) is the coefficients of the
polynomial. Assuming that Ts is the sampling period, then
the coordinates (xt−1, yt−1, zt−1), (xt, yt, zt) and (xt+1, yt+1, zt+1) of
the points Pq−1, Pq and Pq+1 can be expressed as
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Rewriting eq. (14) concisely in matrix form as
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Since det(A)=−2Ts3, where det(·) is the determinant of the
matrix, the matrixA is nonsingular. Then the coefficients can
be obtained as

X = A B. (17)1

Second, suppose that Pf is the foot point, then the co-

ordinate of Pf can be expressed as

( )( ) ( ) ( )P t P t P tP = , , , (18)f x f y f z f

where tf is the time parameter of the point Pf . Assume that
the coordinate of Pa is (Pa,x, Pa,y, Pa,z), according to the de-
finition of the foot point, the inner product between the
vector consisting of the point Pa and Pf and the tangent

vector P f at the point Pf should be equal to zero, that is

( )P P P = 0. (19)a f f

Further simplification of eq. (19) can be obtained as
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Since eq. (20) is a cubic equation about the time tf, and it
can be solved using the analytical root-finding algorithm
such as Shengjin’s formulas [34]. Once the time tf is calcu-
lated, the foot point can be obtained, and then the estimated
tool tip contour error can be expressed as

P P= , (22)P f a

where || · || is the Euclidean norm. It can be seen that the
proposed tool tip contour error estimation only depends on
the information of the reference points, and it does not in-
volve the calculation of any additional curve information.
Since the local shape of the curve is approximated by the
second-order polynomial curve, compared with our previous
work, the proposed estimation method still has high accu-
racy.
Though the estimation of the tool orientationO f at the foot

point Pf has been achieved with high accuracy in our pre-
vious work, and then the tool orientation contour error O can
be obtained as illustrated in Figure 4(b), it still needs the
knowledge of the curve parameter. Here an improved tool
orientation contour error estimation approach is proposed.
In Figure 4(b)–(d), Oq−1, Oq and Oq+1 are the known tool

orientations that correspond to the reference points Pq−1, Pq
and Pq+1, respectively. Suppose thatO f is the tool orientation
estimated at the foot point, since the foot point is located
between Pq−1 and Pq or Pq and Pq+1, O fmust be located be-

Figure 4 (Color online) Five-axis contour error estimations. (a) Tool tip contour error estimation; (b)–(d) tool orientation contour error estimation.
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tween Oq−1 and Oq or Oq and Oq+1. Suppose that O f is the

intersection of O f and the line Oq−1Oq or OqOq+1, then the

estimated tool orientation O f can be acquired from the fol-
lowing two cases.
Case 1 (Figure 4 (c)): If the foot point is located between

the point Pq−1 and Pq, the distance ratio λ can be defined as

P P

P P= . (23)
q f

q q 1

By utilizing the ratio, O f can be computed as

( )O O O O= + . (24)f q q q1

Case 2 (Figure 4(d)): If the foot point is located between
the point Pq and Pq+1, the distance ratio λ can be defined as

P P

P P= . (25)
f q

q q+1

By utilizing the ratio, O f can be computed as

( )O O O O= + . (26)f q q q+1

Using vector unitization method to normalize O f , then the
estimated tool orientation can be obtained as

O
O
O

= . (27)f
f

f

Therefore, the estimated tool orientation contour error il-
lustrated in Figure 4(b) can be expressed as

( )O O= arccos , (28)O f a

where Oa is the actual tool orientation.
Obviously, the tool orientation contour error is still esti-

mated by the linear interpolation method. However, since the
actual position of the foot point between Pq−1 and Pq or Pq and
Pq+1 is utilized, compared with our previous work, the im-
proved method does not need the information of the curve
parameter.
From eqs. (19) and (22) it can be seen that, the tool tip

contour error is obtained by the foot point, which is similar to
the calculation of the true contour error, thus the estimated
value is very close to the true value. The estimation error is
mainly derived from the local approximation of the curve.
For the tool orientation contour error, the distance ratio
method is used. However, since the orientation differences
between two adjacent reference positions are tiny, such es-
timation can also have high accuracy.
In order to help the design of the following contouring

controller, the contour errors can be decoupled in the form of
components as

P P P O O O

P P P O O O

= [ , , , , , ]

= , , , , ,

, , , , , ,

(29)

x y z i j k

f x f y f z f i f j f k

a x a y a z a i a j a k

T

, , , , , ,
T

, , , , , ,

T

wherePf n, and Pa,n (n=x, y, z) are the Cartesian coordinates of

the foot point Pf and the actual tool tip position Pa, respec-

tively.Of n, andOa n, (n=i, j, k) are the spherical coordinates of

the tool orientation O f at the foot point and the actual tool
orientation Oa, respectively.

3 Component-based contouring controller de-
sign

The simplified dynamics of a single feed drive system can be
presented as illustrated in Figure 5. For five-axis machine
tools, when the subscript l=X, Y, Z, A, C is adopted to denote
X-, Y-, Z-, A-, C-drives, respectively, the dynamics of the
five-axis machine tool can be expressed by using the fol-
lowing decoupled second-order differential equations as

{ }
t t t t

m c u d
Mq̈ Cq u d
M C u d

( ) + ( ) = ( ) ( ),
=diag{ }, = diag{ }, = diag{ }, = diag ,

(30)
l l l l

where diag{·} denotes the diagonal matrix, and ul is the
actual control voltage produced by the control law of the l-th
drive, and

m J
K K R c B

K K R d K K T= , = , = 1 , (31)l
l

al tl gl
l

l

al tl gl
l

al tl
dl

where Kal and Ktl are the current amplifier and servo motor
constant of the l-th drive, respectively. Jl and Bl are the inertia
and viscous damping of the l-th drive, respectively. Rgl is the
reduction ratio of the l-th drive. Tdl is the external disturbance
of the l-th drive, which includes the friction, backlash as well
as the cutting forces, etc. For the convenience of writing, the
symbol twill be omitted in the following formulas. Using eq.
(30), the drive accelerations q̈ can be obtained in compact
form as

q̈ M u d Cq= ( ). (32)1

Substituting eq. (32) into eq. (11), the drive dynamics then
can be mapped to the actual tool pose PO as follows:

Figure 5 (Color online) Simplified linear dynamics of a single feed drive
system.
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P̈ Jq JM u d Cq= + ( ). (33)O
1

Assuming that the reference tool pose is

P P P O O OP  =  , , , , , , (34)O x y z i j k,ref ,ref , ref ,ref ,ref , ref ,ref
T

then the tracking errors in the workpiece coordinate system
can be expressed as

e e e e e ee P P= [ , , , , , ] = . (35)x y z i j k O O
T

,ref

By substituting eq. (33) into eq. (35), the tracking error
dynamics in the workpiece coordinate system can be ex-
pressed as

ë P̈ Jq JM u d Cq= ( ). (36)O , ref
1

Since the goal of tracking control is only to reduce the
tracking error, which does not necessarily mean the im-
provement of the contour accuracy, direct contour error
control is certainly needed. Meanwhile, the tracking control
and contouring control are to make the tool actual pose close
to the reference pose and contour pose, respectively, thus
they should be considered simultaneously in the workpiece
coordinate system. By adding a weighted contour error on
the tracking error in the workpiece coordinate system, a new
error variable can be constructed as

e e= + , (37)
where ρ=diag{ρx, ρy, ρz, ρi, ρj, ρk} is the weight coefficient
matrix. A desired second-order error dynamics can be spe-
cified simply as follows:

e K e K e¨ + + = 0, (38)v p

where Kv=diag{Kvx, Kvy, Kvz, Kvi, Kvj, Kvk} and Kp=diag{Kpx,
Kpy, Kpz, Kpi, Kpj, Kpk} are the positive velocity and position
gain matrices, respectively. Since the vibration property of a
control system may affect the machined surface quality, the
control system is desirable to have critically damped dy-
namics. Hence the controller gains are set as

K K n x y z i j k= 2 ,  = ,  ( , , , , , ), (39)vn n pn n
2

where n is the closed-loop pole of the control system, which
can be determined by the designer. Differentiating eq. (37)
and substituting the results into eq. (38), for the five drive axes
the control law u u u u uu = [ , , , , ]X Y Z A C

T can be obtained as

( )u MJ P̈ K P K P ¨ K K

K P K P Jq Cq d

= + + + + +

+ + , (40)

O O O

O O

v p v p

v p

+
,ref ,ref ,ref

where J+ is the Moore-Penrose pseudoinverse of the Jaco-
bian matrix J, which can be computed as J J J J= ( )+ T 1 T.
and ¨ are the first- and second-order derivatives of the con-
tour error , respectively. The entries n and ¨n (n=x, y, z, i, j,
k) in and ¨, respectively, can be calculated utilizing the
backward difference formula as following:

h=
3 4 +

2 , (41)n
n n n

n

,0 , 1 , 2

h¨ =
2 5 + 4

, (42)n
n n n n

n

,0 , 1 , 2 , 3
2

where εn,−m (m=0, 1, 2, 3) is the n-axis component of the
contour error in the m-th previous sampling time that cor-
responds to the current time. hn is the sampling interval.
From eq. (38) it can be seen that the proposed controller

shown in eq. (40) is exponentially stable. Obviously, the
contouring performance will be good when using large value
of ρ. However, it is difficult to determine the range of ρ
which can guarantee stability from theoretical analysis. Since
the contour error is considered as the disturbance of tracking
control, even if we only care about the contouring errors, the
large value of ρ may lead to system instablity, which instead
worsens the contouring performance. Thus, under the con-
dition of system stabiltiy, the maximum value of ρ can be
determined by trial and error from zero, and then the range of
ρ can be obtained.
Since the sharp corners contain high frequency content, the

accuracy of the proposed controller degrades at the sharp
corners of the tracking trajectory. However, by the optimal
feedrate planning, feedforward control action and friction
compensation, the contouring accuracy at the sharp corners
can be maintained well.

4 Implementation and experimental results

The proposed contour error estimation and contouring con-
trol methods are validated on a real time TRT five-axis ex-
perimental system, as shown in Figure 6. A computer with
the VC++ 2012 and MATLAB software is adopted to plan
the feedrate, calculate the interpolation and design the con-
troller, and it also can communicate with the dSPACE
DS1103 controller board through the ControlDesk software
and the fiber bus hardware. For the five-axis machine tool,
all feed axes are driven by Yaskawa AC servo motors which
have the current control loop. For the X-, Y- and Z-axes, all
the motors are combined with a 10 mm pitch−1 leadscrew,
while the motors of the A- and C- axes are coupled with the
harmonic reducers. The reduction ratios of these reducers are
100:1. The encoders of all axes, which are located in the back
of the servo motors and with a resolution of
10000 pulses rev−1, are used for the position sensing of the
feed systems. Then, by differentiating the positions with
respect to the time and using the appropriate low-pass filter
to remove high frequency noise, the velocities of five axes
can be obtained. There exist two linear offsets in the kine-
matic transformation as shown in eqs. (2) and (4), and their
values are given by measurement as LY=0 mm and LZ=
41 mm. The dynamics parameters of each drive are identified
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using the method proposed by Erkorkmaz and Altintas [35],
and the results are shown in Table 1.

4.1 Verification of the contour error estimations

Several air cutting experiments are conducted for the ver-
ification of the contour error estimations. Since in the ex-
isting literature involving five-axis contour error estimations,
our previous work [23] may be the most accurate, the method
proposed now is compared with it for the discrepancies be-

tween the estimated contour errors and the true ones. The
true contour errors are acquired off-line by computing the
shortest distance between the actual and the reference tool
paths. Two trajectories are used, and one is the blade-shaped
curve, the other is the fan-shaped curve mentioned in ref.
[36]. By adopting the appropriate feedrate planning method,
these two tool paths can be obtained with an interpolation
period of 1 ms and a maximum tangential feed rate of
80 mm s−1. The blade-shaped trajectory and its drive com-
mands are illustrated in Figure 7, and its experimental results

Figure 6 (Color online) Five-axis experimental system.

Table 1 Dynamics parameters of each drive

Parameters X-axis Y-axis Z-axis A-axis C-axis

m (V s2 m−1 or V s2 rad−1) 0.2146 0.2863 0.1567 0.1101 0.0721

c (V s m−1 or V s rad−1) 1.994 1.131 1.464 0.4001 0.3871

Figure 7 (Color online) The blade-shaped trajectory and drive commands for each axis.
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are given in Figure 8.
The results demonstrate that, whether the tool tip contour

error or tool orientation contour error, the estimated contour
errors by the method proposed now have very small dis-
crepancies with the true ones. Meanwhile, when compared
with our previous work, the method proposed now has a
similar tool tip contour error estimation accuracy and a little
higher tool orientation contour error estimation accuracy.
The curvature of the tool tip position spline for the blade-
shaped trajectory is given in Figure 9, it can be seen that
although there exist some large curvature positions, the es-
timated tool tip contour errors are still very small within
0.05 μm, which demonstrates the estimation method pro-
posed now is robust to curvature variance.
The fan-shaped trajectory and its drive commands are il-

lustrated in Figure 10, and its experimental results are given
in Figure 11. The results demonstrate the same conclusions
similar to the blade-shaped trajectory, which shows the es-
timation method proposed now is trajectory type in-
dependent. The reasons for Figures 8 and 11 can be given as
follows: for our previous work, a second-order Taylor ex-
pansion is used to estimate the tool tip contour error, while
the tool orientation contour error is obtained by the ratio
about the curve parameter difference; for the method pro-
posed now, a second-order polynomial interpolation is
adopted to estimate the tool tip contour error, while the tool
orientation contour error is acquired by the ratio about the
distance of the foot point. Therefore, the method proposed
now still has a similar tool tip contour error estimation ac-
curacy with our previous work, and has a little higher tool
orientation contour error estimation accuracy than our pre-
vious work.

Obviously, the method proposed now does not involve the
calculation of the geometric information of the curve such as
the tangent, normal vectors and curvature, etc., but only in-
troduces the calculation of the inverse of a 3×3 matrix.
Meanwhile, for our previous work and the method proposed
now, both of which are achieved using M code, the mean
computing time are 0.04326 and 0.02574 ms, respectively.
Therefore, the computational efficiency of the method pro-
posed now is superior to that of our previous work from the
qualitative and quantitative analysis.

4.2 Verification of the contouring controller

The fan-shaped trajectory is used to validate the proposed
contouring controller. Table 2 gives the controller para-
meters, which are appropriately tuned, and the experimental

Figure 8 (Color online) The estimated contour errors and their discrepancies with the true values for the blade-shaped trajectory.

Figure 9 (Color online) Curvature of the position spline of blade-shaped
trajectory.
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results are presented in Figure 12. It can be seen that, when
the nonlinear kinematics of five-axis machine tool is con-
sidered in the controller, the tracking error and contouring
error are uniformly defined in the workpiece coordinate
system. Based on the newly constructed error variable, the
contouring control action is introduced by the weight
(ρ=0.6). Compared with the traditional controller (ρ=0), the

proposed control method can effectively achieve the global
contour error reduction. The problem is that the contour er-
rors increase instead when introducing the contouring con-
trol action can be alleviated, which is helpful for the actual
machining. The experimental data illustrated in Figure 12 is
further analyzed quantitatively as shown in Table 3, which
reveals that the maximum and mean contour errors have an

Figure 10 (Color online) The fan-shaped trajectory and drive commands for each axis.

Figure 11 (Color online) The estimated contour errors and their discrepancies with the true values for the fan-shaped trajectory.
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obvious decrease.

5 Conclusions

Since high accuracy contour error estimation and direct
contour error control can improve the contouring accuracy
during machining, an effective contouring controller with a
real-time high-accuracy contour error estimation for five-
axis machine tools is proposed in this paper. First, the con-
tour errors are estimated by the second-order polynomial
interpolation and the distance ratio method. Compared with
existing studies, the proposed estimation method only de-
pends on the reference points and still has high accuracy.
Then, the contour errors are decoupled in the form of com-
ponents, and the contouring controller is obtained by speci-
fying a desired second-order error dynamics about a new
error variable. This error variable is constructed by adding a
weighted contour error on the tracking error in the workpiece
coordinate system. Different from existing contour error

component control methods, since the nonlinear kinematics
of five-axis machine tool is considered, the proposed con-
touring controller can effectively reduce the contour error
along the whole trajectory. Some experimental results ob-
tained on a TRT five-axis experimental system validate the
effectiveness of the proposed contour error estimation
method and the contouring controller.

This work was supported by the National Natural Science Foundation of
China (Grant Nos. 51535004 & 91748114).
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