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This present work uses different methods to synchronize the inertial memristor systems with linear coupling. Firstly, the
mathematical model of inertial memristor-based neural networks (IMNNs) with time delay is proposed, where the coupling
matrix satisfies the diffusion condition, which can be symmetric or asymmetric. Secondly, by using differential inclusion method
and Halanay inequality, some algebraic self-synchronization criteria are obtained. Then, via constructing effective Lyapunov
functional, designing discontinuous control algorithms, some new sufficient conditions are gained to achieve synchronization of
networks. Finally, two illustrative simulations are provided to show the validity of the obtained results, which cannot be contained
by each other.
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1 Introduction

To structure more better and more realistic model of neu-
ral networks, researchers have replaced the resistor with
memristor to simulate the biological synapse. The results
show that the memristive systems are more accurate models
of artificial neural networks, since the memristors have
properties of memory and nanoscale, just like the human
brain. These all thanks to Prof. Chua and the researchers
from Hewlett-Packard Laboratory, the former predicted the
existence of memristor in ref. [1], and the latter estab-
lished a prototype of memristor [2, 3] made by TiO2 thin
films. Therefore, the memristor has attracted widespread
attentions. Due to the good properties of memristor, a variety
of memristor-based neural networks (MNNs) have been
constructed, which can mimic the biological brain as well as a
variety of applications, such as chip-in-the-loop learning and
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image processing. In recent years, many scholar focused on
the dynamic behaviors and circuit implementation of MNNs
[4–9].

As we all know, synchronization, which can be seen
as one of common and important phenomenon, has been
widely applied in different areas including biology, ecology,
sociology, and technology etc. In ref. [10], the authors
had used fractional-order differential inequality and obtained
the projective synchronization criteria for fractional-order
MNNs which extended the synchronization results in ref.
[11]. Ref. [12] investigated synchronization of multiple
memristive neural networks, some algebraic synchronization
criteria had been given and by designing novel adaptive con-
troller, the adaptive synchronization of MNNs investigated
in ref. [13]. The main important types of synchronization are
drive-response synchronization [14] and self-synchronization
of coupled networks. Pecora and Carrol [15] firstly proposed
the drive-response law to synchronize chaos system. By
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designing a suitable feedback controller and adopting the
theory of finite time stability theory, the upper bounds of the
synchronization time of chaotic MNNs had been estimated
[16]. Generally speaking, drive-response synchronization
need to design suitable controllers [17–21], such as feedback
controller, adaptive controller, intermittent controller, etc.
Nowadays, most of scholars investigate the drive-response
synchronization of MNNs, few works related to the coupled
memristive model are investigated.

As it is pointed out in refs. [22, 23], semicircular canal of
mammal and surface layer of hair cells could be achieved
by integrated circuits, which include inductor. Koch [24]
mentioned that neuron could be described as active mem-
brane under some conditions, its behavior is like band pass
filter, electric tuning, and its circuit implementation can be
completed by adding an inductance. Hence, it is important
to add inertial term (the second derivative of state) to neural
networks, which not only can improve the performance of
the optimized network, but also can reflect the characteristics
of biological neural network. Babcock and Westervelt [25]
firstly proposed the model of inertial neural networks, by
introducing inertial term to the Hopfield neural networks
with one or two neurons, and investigated the complicated
behavior such as chaos. Hence, the neural networks with
inertial term is an important research topic. Recently,
many works related to the inertial neural networks had been
reported [26–30]. In ref. [26], the time-varying delays was
concerned, stability of delayed inertial BAM neural network
have been conducted, and ref. [30] introduced the uncertain
parameters to IMNNs, robust passivity was also studied by
adopting inputs and outputs control.

Motivated by the aforementioned discussions, this paper
deals with the synchronization problem for the coupled
IMNNs with time delay. In this paper, two effective methods
are utilized to synchronize the coupled IMNNs with time
delay. The main novelty of this paper can be summarized
as follows: (1) By introducing the second-order derivative of
networks’ states and linearly coupling topological structure
into MNNs, a mathematical model of the IMNNs is estab-
lished, which extends the traditional model; (2) The topology
structure of the networks can be directed or undirected,
and the coupling matrix could be symmetric or asymmetric;
(3) Two different methods are considered, and different
synchronization criteria are derived, respectively, in the form
of matrix-measure and LMIs.

Notations. Throughout this paper, co[i] is the closure
of the convex hull of some set i. For any matrices A and
B, A < 0 represents real, symmetric and negative definite,
and A > 0 means positive definite respectively, A ≽ B
(A ≼ B) means that each element of A and B satisfies the

inequality ai j > bi j(ai j 6 bi j). For scalar τ > 0, C([−τ, 0];Rn)
denotes the family of continuous functions φ from [−τ, 0] to
Rn. ∥ · ∥p means the p-norm of matrices, p = 1, 2,∞, ω.
B(x, δ) = {y : ∥y − x∥ 6 δ} is the ball with center x and
radius δ.

2 Network model and preliminaries

Consider the isolated IMNNs with time delay, which can be
described by the following equation:

d2xi(t)
dt2 = − D

dxi(t)
dt
−Cxi(t) + A(xi(t)) f (xi(t))

+ B(xi(t)) f (xi(t − τ(t))) + J(t), (1)

where xi(t) = (xi1(t), · · · , xin(t))T ∈ Rn, (i = 1, 2, · · · ,N)
is the state variable of the ith dynamical node, the second
derivative of xi(t) is called an inertial term of system eq. (1).
D = diag(d1, d2, · · · , dn) and C = diag(c1, c2, · · · , cn) > 0 are
constant matrices, A(xi(t)) = [ak j(xi j(t))]n×n and B(xi(t)) =
[bk j(xi j(t))]n×n denote feedback connection weight matrix and
delayed connection memristive weight matrix, respectively.
According to the feature of memristor, the memristor-based
weights ak j(xi j(t)) and bk j(xi j(t)) satisfy the following condi-
tions:

ak j(xi j(t)) =

 ák j, |xi j| < T j,

àk j, |xi j| > T j,

bk j(xi j(t)) =

 b́k j, |xi j| < T j,

b̀k j, |xi j| > T j,

(2)

in which T j > 0 is the switching jump, ák j, àk j, b́k j

and b̀k j are all constants, k, j = 1, 2, · · · , n. J(t) =
(J1(t), · · · , Jn(t))T ∈ Rn represents the input vector, τ(t)
corresponds to the time-varying transmission delay, which is
nonnegative function with the upper bound τ. And f (xi(t)) =
( f1(xi1(t)), · · · , fn(xin(t)))T denotes the output of neuron unit,
which are subject to the following assumption.

(H1): For ∀u , v ∈ R, there exist constants li > 0 and
ki(i = 1, 2, · · · , n) such that

0 6
fi(u) − fi(v)

u − v
6 li, | fi(u)| 6 ki

hold. In the sequel, denote L = diag(l1, l2, · · · , ln) for brevity.
Moreover, in the switching point, it satisfies fi(±Ti) = 0.

Since the memristive system eq. (1) is discontinuous, its
solutions are considered in the Filippov’s sense. Before
proceeding, we will introduce the definitions about Filippov
solution.

Definition 1. [31] Consider differential system dx
dt = f (t, x),

where f (t, x) is not continuous. The Filippov solution of
Cauchy problem for the discontinuous system is an abso-
lutely continuous function, satisfies initial condition x(0) =
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x0 and the differential inclusion:

dx
dt
∈ F(t, x), for a.e. t ∈ [0,T ],

where F(t, x) is set-valued map of f (t, x), which is defined as

F(t, x) =
∩
δ>0

∩
µ(N)=0

co[ f (t, B(x, δ)\N)].

It should be noted that Aubin and Cellina [32] proposed
a functional differential inclusion with memory defined as
follows:

dx
dt
∈ F(t, xt),

where F : R×C([−τ, 0],Rn)→ 2R
n

is a given set-valued map,
and xt(θ) = x(t + θ).

Lu and Chen [33] have extended the notion extend the
Filippov solution to the case of delayed neural networks.
By applying the theory, the IMNNs model eq. (1) can be
rewritten as follows:

d2xi(t)
dt2 ∈ − D

dxi(t)
dt
−Cxi(t) + co[A(xi(t))] f (xi(t))

+ co[B(xi(t))] f (xi(t − τ(t))) + J(t), (3)

where co[A(xi(t))] = [co[ak j(xi j(t))]]n×n and co[B(xi(t))] =
[co[bk j(xi j(t))]]n×n,

co[ak j(xi j(t))] =


ák j, |xi j| < T j,[
ak j, ak j

]
, |xi j| = T j,

àk j, |xi j| > T j,

co[bk j(xi j(t))] =


b́k j, |xi j| < T j,[
bk j, bk j

]
, |xi j| = T j,

b̀k j, |xi j| > T j,

in which ak j = min{ák j, àk j}, ak j = max{ák j, àk j}, bk j =

min{b́k j, b̀k j}, bk j = max{b́k j, b̀k j}, a+k j = max{|ak j|, |ak j|}, b+k j =

max{|bk j|, |bk j|}. Or there exist πk j(xi j(t)) ∈ co[ak j(xi j(t))] and
ϖk j(xi j(t)) ∈ co[bk j(xi j(t))] such that

d2xi(t)
dt2 = − D

dxi(t)
dt
−Cxi(t) + π(xi(t)) f (xi(t))

+ϖ(xi(t)) f (xi(t − τ(t))) + J(t), (4)

where π(xi(t)) = [πk j(xi j(t))]n×n and ϖ(xi(t)) =

[ϖk j(xi j(t))]n×n. Obviously, A ≼ π(xi(t)) ≼ A, B ≼ ϖ(xi(t)) ≼
B with A = (ak j)n×n, B = (bk j)n×n, A = (ak j)n×n, B = (bk j)n×n.

Let xi(t) be the ith node, the multiple IMNNs with N
coupled identical nodes can be composed as

d2xi(t)
dt2 = − D

dxi(t)
dt
−Cxi(t) + A(xi(t)) f (xi(t))

+ B(xi(t)) f (xi(t − τ(t))) + J(t)

+ c
N∑

j=1

Gi jΓ

(
dx j(t)

dt
+ x j(t)

)
, i = 1, 2, · · · ,N,

(5)

where c is a positive real number, denoting coupling strength,
Γ = diag(γ1, γ2, . . . , γn) ∈ Rn×n is the inner coupling matrix,
G = (Gi j)N×N is the topological structure matrix, which is
defined as: if there is no connection from node i to node j,
then Gi j = 0, otherwise, Gi j > 0( j , i). Moreover, it satisfies
the following condition:

Gii = −
N∑

j=1, j,i

Gi j, i = 1, 2, · · · ,N.

The initial value associated with inertial network eq. (5)
is given as xi(s) = φi(s), dxi(s)

ds = ψi(s), where φi(s), ψi(s) ∈
C([−τ, 0];Rn), and i = 1, 2, . . . ,N.

From system eq. (3), one knows that the dynamics of the
ith node in the coupled networks is given as

d2xi(t)
dt2 ∈ − D

dxi(t)
dt
−Cxi(t) + co[A(xi(t))] f (xi(t))

+ co[B(xi(t))] f (xi(t − τ(t)))

+ J(t) + c
N∑

j=1

Gi jΓ

(
dx j(t)

dt
+ x j(t)

)
,

i = 1, 2, · · · ,N, (6)

or

d2xi(t)
dt2 = − D

dxi(t)
dt
−Cxi(t) + π(xi(t)) f (xi(t))

+ϖ(xi(t)) f (xi(t − τ(t))) + J(t)

+ c
N∑

j=1

Gi jΓ

(
dx j(t)

dt
+ x j(t)

)
, i = 1, 2, · · · ,N. (7)

By adopting the variable substitution

ri(t) =
dxi(t)

dt
+ xi(t),

then the IMNNs model eq. (7) can be transformed as

dxi(t)
dt
= −xi(t) + ri(t),

dri(t)
dt
= −Θxi(t) − Λri(t) + π(xi(t)) f (xi(t))

+ϖ(xi(t)) f (xi(t − τ(t))) + J(t)

+c
∑N

j=1 Gi jΓr j(t), i = 1, 2, · · · ,N,

(8)

where Θ = I +C − D, Λ = D − I.
Denote x(t) = (xT

1 (t), · · · , xT
N(t))T, r(t) = (rT

1 (t), · · · ,
rT

N(t))T, Θ = IN ⊗ Θ, f(x(t)) = [ f T(x1(t)), · · · ,
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f T(xN(t))]T, J(t) = [JT(t), · · · , JT(t)]T, Λ = IN ⊗
Λ, A(x(t)) = diag(π(x1(t)), · · · , π(xN(t))), B(x(t)) =

diag(ϖ(x1(t)), · · · , ϖ(xN(t))), G = G ⊗ Γ, then the matrix
form of system (8) can be written as

dx(t)
dt
= −x(t) + r(t),

dr(t)
dt
= −Θx(t) −Λr(t) + A(x(t))f(x(t))

+B(x(t))f(x(t − τ(t))) + J(t) + cGr(t).

(9)

In order to exhibit the main results distinctly, some defini-
tions and lemmas are introduced.

Definition 2. The coupled IMNNs model eq. (5) is said
to be globally synchronized if xi(t) − x j(t) → 0 as t → ∞
holds, for any given initial conditions φi(·), ψi(·), where
i, j = 1, 2, · · · ,N.

Definition 3. [34] For a real matrix W = (wi j)n×n, the matrix
measure is denoted as

µp(W) = lim
h−→0+

∥I + hW∥p − 1
h

,

where ∥ · ∥p is the corresponding induced matrix norm, which
has the nonnegative property, but matrix measure can be
negative and p = 1, 2,∞ or ω.

Remark 1. The corresponding matrix measures are ob-

tained as: µ1(W) = max
j

{
a j j+

n∑
i=1,i, j

|ai j|
}
, µ2(W) = λmax(AT+A)

2 ,

µ∞(A) = max
i

{
aii +

n∑
j=1, j,i

|ai j|
}
, µω(W) = max

j

{
w j j +

n∑
i=1,i, j

ωi
ω j
|wi j|

}
, here, wi > 0(i = 1, 2, . . . , n) are given any

constant numbers.

Definition 4. [35] Suppose G ∈ T (R,K) be a N ×N matrix,
then the (N − 1) × (N − 1) matrix H defined by H = MGJ
satisfies MG = HM, where M is the following matrix:

M =


1 −1 0 · · · 0 0

0 1 −1 · · · 0 0
...
...

...
. . .

...
...

0 0 0 · · · 1 −1


(N−1)×N

,

J =



1 1 1 · · · 1

0 1 1 · · · 1
...
...
. . .

... 1

0 0 · · · 1 1

0 0 · · · 0 1

0 0 · · · 0 0


N×(N−1)

,

and T (R,K) is the set of matrices with entries in R such that
the sum of the entries in each row is equal to K.

Lemma 1. The matrix norm ∥ · ∥p and matrix measure µp(·)
have the following basic properties:

(1) −∥A∥p 6 µp(A) 6 ∥A∥p,∀A ∈ Rn×n;
(2) µp(αA) = αµp(A),∀α > 0, A ∈ Rn×n;
(3) µp(A + B) 6 µp(A) + µp(B),∀A, B ∈ Rn×n.

Lemma 2. (Halanay inequality [36]) Let u(t) : [t0−τ,∞)→
[0,∞) be a continuous function, and for all t > t0, we have

D+u(t) 6 −au(t) + b sup
t−τ6θ6t

u(θ).

If a > b > 0, then

u(t) 6 sup
t0−τ6θ6t0

u(θ)e−r(t−t0), t > t0,

where r > 0 is the unique positive solution of the equation
r − a + berτ = 0.

Lemma 3. Given any real matrices X, Y and Q > 0 with
appropriate dimensions, then the following matrix inequality
holds:

XTY + YTX 6 XTQX + YTQ−1Y.

Lemma 4. (Schur Complement [37]) For given matrix S 11 S 12

S T
12 S 22

 < 0,

where S 11 = S T
11, S 22 = S T

22, which is equivalent to one of
the following conditions:
(1) S 11 < 0, S 11 − S 12S −1

22 S T
12 < 0;

(2) S 22 < 0, S 22 − S T
12S −1

11 S 12 < 0.

3 Synchronization criteria by matrix measure
method

In this section, by using the matrix measure method and
Halanay Inequality, the synchronization criteria for coupled
IMNNs are derived. For fluent presentation, some notations
are given: Θ1 = IN−1 ⊗ Θ, Λ1 = IN−1 ⊗ Λ, L1 = IN−1 ⊗ L,
A+ = (a+k j)n×n, B+ = (b+k j)n×n, A+ = IN ⊗ A+, B+ = IN ⊗ B+,
A+1 = IN−1 ⊗ A+, B+1 = IN−1 ⊗ B+, H = H ⊗ Γ, M = M ⊗ In.

Theorem 1. Under Assumption (H1), if the following
equality holds:

0 < ξ2 < −ξ1,

where ξ1 = max{−1+ ∥Θ1∥p + l∥A+1 ∥p, 1+µp(−Λ1)+ c∥H∥p},
ξ2 = l∥B+1 ∥p, and p = 1, 2,∞, ω, l = max16i6n(li). Then, the
coupled IMNNs eq. (5) can reach the synchronization.

Proof. Consider the following Lyapunov function:

V(t) = ∥Mx(t)∥p + ∥Mr(t)∥p. (10)

Via calculating the upper-right Dini derivative of eq. (10)
along the trajectory of IMNNs eq. (9), one can get
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D+V(t) = lim
h→0+

∥Mx(t + h)∥p − ∥Mx(t)∥p
h

+ lim
h→0+

∥Mr(t + h)∥p − ∥Mr(t)∥p
h

= lim
h→0+

∥Mx(t) + hMẋ(t) + o(h)∥p − ∥Mx(t)∥p
h

+ lim
h→0+

∥Mr(t) + hMṙ(t) + o(h)∥p − ∥Mr(t)∥p
h

= lim
h→0+

∥Mx(t) + hM(−x(t) + r(t)) + o(h)∥p − ∥Mx(t)∥p
h

+ lim
h→0+

∥Mr(t) + hM(−Θx(t) −Λr(t) + A(x(t))f(x(t))) + o(h)∥p − ∥Mr(t)∥p
h

+ lim
h→0+

∥hM(B(x(t))f(x(t − τ(t))) + J(t) + cGr(t))∥p
h

. (11)

We can derive from Definition 4, MΘ = Θ1M, MΛ = Λ1M,
MJ = 0,

MGr(t) = (M ⊗ In)(G ⊗ Γ)r(t)

= (H ⊗ Γ)(M ⊗ In)r(t)

= HMr(t).

From the Assumption (H1), it gets

∥MA(x(t))f(x(t))∥p 6 l∥A+1 ∥p∥Mx(t)∥p,
∥MB(x(t))f(x(t − τ(t)))∥p 6 l∥B+1 ∥p∥Mx(t − τ(t))∥p.

Therefore,

D+V(t) 6 lim
h→0+

∥In(N−1) + h(−In(N−1))∥p − 1
h

∥Mx(t)∥p

+ ∥Mr(t)∥p

+ lim
h→0+

∥In(N−1) + h(−Λ1)∥p − 1
h

∥Mr(t)∥p

+ ∥Θ1∥p∥Mx(t)∥p + l∥A+1 ∥p∥Mx(t)∥p
+ l∥B+1 ∥p∥Mx(t − τ(t))∥p + c∥H∥p∥Mr(t)∥p.

It follows from the Definition 3 and Lemma 1, one has

D+V(t) 6 (µp(−In(N−1)) + ∥Θ1∥p + l∥A+1 ∥p)∥Mx(t)∥p
+ (1 + µp(−Λ1) + c∥H∥p)∥Mr(t)∥p
+ l∥B+1 ∥p∥Mx(t − τ(t))∥p
6 (−1 + ∥Θ1∥p + l∥A+1 ∥p)∥Mx(t)∥p
+ (1 + µp(−Λ1) + c∥H∥p)∥Mr(t)∥p
+ l∥B+1 ∥p∥Mx(t − τ(t))∥p
6 ξ1V(t) + ξ2V(t − τ(t)). (12)

From the conditions in Theorem 1, we have −ξ1 > ξ2 > 0,
according to Lemma 2, it can be obtained that

V(t) 6 sup
t−τ6s6t

V(s)e−ρ(t−t0), (13)

where −ρ = ξ1 − ξ2eρτ, from eq. (13) and Definition 2,
we conclude that system eq. (5) can reach exponentially
synchronization. This completes the proof.

Remark 2. Synchronization criteria for IMNNs have been
obtained by using the matrix-measure method and the Ha-
lanay inequality in Theorem 1. Different from the general
mathematical model of MNNs [38, 39], the inertial term
increases the order and dimension of neural network, by
using suitable transformation and the topology structure of
the neural network, without constructing the Lyapunov func-
tional and designing complex controller, the synchronization
criteria are easy to be obtained.

Remark 3. It should be noted that the algebra synchroniza-
tion results via matrix-measure method are easy to verify,
and matrix-measure can be positive or negative, have less
conservativeness than matrix norm criteria, which ignore the
excitatory and inhibitory effects of the neurons.

4 Synchronization criteria by the Lyapunov-
Krasovskii method

In this section, we will construct new Lyapunov functional,
design a discontinuous controller, some LMIs conditions are
derived to ensure the synchronization of the coupled IMNNs.

By designing the discontinuous controller, the coupled
IMNNs eq. (5) can be changed as

d2xi(t)
dt2 = − D

dxi(t)
dt
−Cxi(t) + A(xi(t)) f (xi(t))

+ B(xi(t)) f (xi(t − τ(t))) + J(t)

+ c
N∑

j=1

Gi jΓr j(t) +
N∑

j=1

Gi jΓsign
(
r j(t) − ri(t)

)
,

i = 1, 2, · · · ,N. (14)

Similarly, the matrix form of system eq. (14) can be written
as

dx(t)
dt
= −x(t) + r(t),

dr(t)
dt
= −Θx(t) −Λr(t) + A(x(t))f(x(t))

+B(x(t))f(x(t − τ(t))) + J(t) + cGr(t) + Ψ,

(15)
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where

Ψ =


∑N

j=1 G1 jΓsign(r j − r1)
...∑N

j=1 GN jΓsign(r j − rN)

 ∈ RnN .

Theorem 2. Under Assumption (H1) and τ̇(t) 6 µ < 1(µ >
0), coupled IMNNs eq. (5) can reach to synchronization if
there exist positive definite matrix P ∈ Rn×n, and positive
diagonal matrices Q = diag{q1, q2, · · · , qn}, T , S 1 ∈ Rn×n,
such that the following LMIs hold:

Υ1 =


−QΛ − ΛTQ P − QΘ QB QA

∗ −P − PT + LTT L + LTS 1L 0 0

∗ ∗ −(1 − µ)T 0

∗ ∗ ∗ −S 1


< 0, (16)

and

Υ2 = QH +HTQ < 0,

α j − γ jζi,i+1 6 0,
(17)

where k = max16i6n(ki), α j = 2
∑n

s=1 k[(a js−a js)+(b js−b js)],
ζi,i+1 = Gi,i+1+Gi+1,i−

∑N
m,i,i+1(Gim+Gi+1,m) and A = (ak j)n×n,

B = (bk j)n×n, P = IN−1 ⊗ P, Q = IN−1 ⊗ Q, T = IN−1 ⊗ T .
Proof. Consider the following Lyapunov-Krasovskii func-
tional:

V(t) =xT(t)MTPMx(t) + rT(t)MTQMr(t)

+

∫ t

t−τ(t)
fT(x(s))MTTMf(x(s))ds.

Calculating the derivative of V(t) along the trajectories of
system eq. (9), it yields that

V̇(t) 62xT(t)MTPMẋ(t) + 2rT(t)MTQMṙ(t)

+ fT(x(t))MTTMf(x(t))

− (1 − µ)fT(x(t − τ(t)))MTTMf(x(t − τ(t)))

6 2xT(t)MTPM[−x(t) + r(t)] − 2rT(t)MTQMΘx(t)

− 2rT(t)MTQMΛr(t) + 2rT(t)MTQMA(x(t))f(x(t))

+ 2rT(t)MTQMB(x(t))f(x(t − τ(t)))

+ 2rT(t)MTQMJ(t) + 2crT(t)MTQMGr(t)

+ fT(x(t))MTTMf(x(t)) + 2rT(t)MTQMΨ

− (1 − µ)fT(x(t − τ(t)))MTTMf(x(t − τ(t))). (18)

Obviously,

rT(t)MTQMΘx(t) = rT(t)MTQΘ1Mx(t),

rT(t)MTQMΛx(t) = rT(t)MTQΛ1Mx(t),

rT(t)MTQMGr(t) = rT(t)MTQHMr(t),

(19)

then, we get

V̇(t) 6 − 2xT(t)MTPMx(t) + 2xT(t)MTPMr(t)

− 2rT(t)MTQΘ1Mx(t) − 2rT(t)MTQΛ1Mr(t)

+ 2rT(t)MTQMA(x(t))f(x(t))

+ 2rT(t)MTQMB(x(t))f(x(t − τ(t)))

+ 2rT(t)MTQMJ(t)

+ 2crT(t)MTQHMr(t) + 2rT(t)MTQMΨ

+ fT(x(t))MTTMf(x(t))

− (1 − µ)fT(x(t − τ(t)))MTTMf(x(t − τ(t))). (20)

Since

MA(x(t))f(x(t)) =MAf(x(t)) +M(A(x(t)) − A)f(x(t)),

MB(x(t))f(x(t − τ(t))) =MBf(x(t − τ(t)))

+M(B(x(t)) − B)f(x(t − τ(t))).

(21)

Under the Assumption (H1), it obtains

rT(t)MTQM[(A(x(t)) − A)f(x(t))

+ (B(x(t)) − B)f(x(t − τ(t)))]

=

N∑
i=1

n∑
j=1

q jvi j(t)
n∑

s=1

((a js(xis) − a js) fs(xis(t))

− (a js(xi+1,s) − a js) fs(xi+1,s(t))

+ ((b js(xis) − b js) fs(xis(t − τ(t)))

− (b js(xi+1,s) − b js) fs(xi+1,s(t − τ(t))))

6
N∑

i=1

n∑
j=1

q jα j|vi j(t)|, (22)

where v(t) = Mr(t) = [vT
1 (t), vT

2 (t), · · · , vT
N−1(t)]T, vi(t) =

ri(t) − ri+1(t), u(t) = Mx(t) = [uT
1 (t), uT

2 (t), · · · , uT
N−1(t)]T,

ui(t) = xi(t) − xi+1(t).

2rT(t)MTQMAf(x(t))

6
N−1∑
i=1

|ri(t) − ri+1(t)|TQAS −1
1 (A)TQ|ri(t) − ri+1(t)|
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+

N−1∑
i=1

| f (xi(t)) − f (xi+1(t))|TS 1| f (xi(t)) − f (xi+1(t))|

6
N−1∑
i=1

|vi(t)|TQAS −1
1 (A)TQ|vi(t)| +

N−1∑
i=1

|ui(t)|TLTS 1L|ui(t)|,

(23)

and

rT(t)MTQMΨ

=

N−1∑
i=1

n∑
j=1

q jγ j(ri j(t) − ri+1, j(t))

×
[ N∑

m=1

Gimsign(rm j(t) − ri, j(t))

−
N∑

m=1

Gi+1,msign(rm j(t) − ri+1, j(t))
]

=

N−1∑
i=1

n∑
j=1

q jγ j

[
− (Gi,i+1 +Gi+1,i)|ri j(t)

− ri+1, j(t)| + (ri j(t) − ri+1, j(t))

×
( N∑

m,i+1

Gimsign(rm j(t) − ri j(t))

−
N∑

m,i

Gi+1,msign(rm j(t) − ri+1, j(t))
)]

6 −
N−1∑
i=1

n∑
j=1

q jγ jζi,i+1|vi j|. (24)

Next, it is easy to verify that

fT(x(t))MTTMf(x(t)) 6
N−1∑
i=1

|ui(t))|TLTT L|ui(t)|,

fT(x(t − τ(t)))MTTMf(x(t − τ(t)))

6
N−1∑
i=1

| f (xi(t − τ(t))) − f (xi+1(t − τ(t)))|TT | f (xi(t − τ(t)))

− f (xi+1(t − τ(t)))|. (25)

Substituting eqs. (19)–(25) into eq. (18), according to Lemma
4, we have

V̇(t) 6
N−1∑
i=1

{|ui(t)|T[−P − PT + LTS 1L + LTT L]|ui(t)|

+ 2|ui(t)|T[P − QΘ]|vi(t))| + |vi(t)|T[−QΛ

− ΛTQ + QAS −1
1 (A)TQ]|vi(t))|

− (1 − µ)| f (xi(t − τ(t)))

− f (xi+1(t − τ(t)))|TT | f (xi(t − τ(t)))

− f (xi+1(t − τ(t)))| + 2|vi(t)|TQB| f (xi(t − τ(t)))

− f (xi+1(t − τ(t)))|} + 2crT(t)MTQHMr(t)

6
N−1∑
i=1

ξT
i Υ1ξi +ϖ

T(t)Υ2ϖ(t), (26)

where ξi = (|vi(t)|T, |ui(t)|T, | f (xi(t−τ(t)))− f (xi+1(t−τ(t)))|T)T,
ϖ(t) = (rT(t)MT)T. From conditions in Theorem 2, one can
get V̇(t) < 0, hence, we can draw the conclusion, the coupled
IMNNs can reach synchronization under conditions in eqs.
(16) and (17). The proof of Theorem 2 is completed.

Remark 4. In this paper, consider the synchronization
problem for the coupled IMNNs [40] with or without design-
ing controller. It should be noted that the topology structure
can be directed or undirected, which means the configuration
coupling matrix can be symmetric or asymmetric, and the
derived conditions are delay-dependent, which means that the
results in this paper are more less conservative.

5 Two illustrative examples

In this section, two illustrative examples are given to check
the validity of the results obtained in Theorem 1 and Theorem
2.

Example 1. Consider the following IMNNs with time delay
and the nearest neighboring topology:

d2xi(t)
dt2 = − D

dxi(t)
dt
−Cxi(t) + A(xi(t)) f (xi(t))

+ B(xi(t)) f (xi(t − τ(t))) + J(t)

+ c
5∑

j=1

Gi jΓ

(
dx j(t)

dt
+ x j(t)

)
, i = 1, 2, 3, 4, 5, (27)

where the activation function f (xi(t)) = tanh(|xi| − 0.1),
τ(t) = eT

eT+1 , the coupling strength c = 1, and the external
input vector J(t) = [0, 0]T. Obviously, Assumption (H)1

is satisfied with L = I. The network parameters and
configuration matrix are set as

D =

8 0

0 8

 , C =

7.2 0

0 7.2

 ,

G =



−2 1 0 0 1

1 −2 1 0 0

0 1 −2 1 0

0 0 1 −2 1

1 0 0 1 −2


, Γ =

1 0

0 1

 ,

A(xi(t)) =

a11(xi1) a12(xi2)

a21(xi1) a22(xi2)

 ,
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B(xi(t)) =

b11(xi1) b12(xi2)

b21(xi1) b22(xi2)

 ,
with

a11(x) =

 0.02, |x| 6 0.1,

−0.02, |x| > 0.1,

a12(x) =

 0.04, |x| 6 0.1,

−0.04, |x| > 0.1,

a21(x) =

 0.01, |x| 6 0.1,

−0.01, |x| > 0.1,

a22(x) =

 0.03, |x| 6 0.1,

−0.03, |x| > 0.1,

b11(x) =

 0.05, |x| 6 0.1,

−0.05, |x| > 0.1,

b12(x) =

 0.01, |x| 6 0.1,

−0.01, |x| > 0.1,

b21(x) =

 0.02, |x| 6 0.1,

−0.02, |x| > 0.1,

b22(x) =

 0.06, |x| 6 0.1,

−0.06, |x| > 0.1.

According to the above parameter matrices, let p = 1.
By computing, we can get ξ1 = −0.73, ξ2 = 0.07 and
ξ1 + ξ2 = −0.66 < 0, which mean that the condition in
Theorem 1 is satisfied, then the coupled IMNNs can reach
synchronization.

To make numerical simulation for the coupled IMNNs, the
initial values are randomly choose in the set [0, 1] × [0, 1]
with step h = 0.01. The undirected topology structure is
shown in Figures 1–3 depict the switching trajectories of the
memristor parameters a11(x11) and b11(x11). Figures 4 and 5
display the synchronization error trajectories of xi1 − x11 and
xi2−x12, respectively, which indicate that the synchronization
can be reached. This is in accordance with the conclusion of
Theorem 1.

Example 2. Consider the coupled IMNNs eq. (27) with
the nearest neighboring topology shown in Figure 1, and the
system parameters are taken as

Figure 1 (Color online) The nearest neighbor networks with five nodes.
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Figure 2 (Color online) The trajectories of connection weight coefficient
a11(x11).
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Figure 3 (Color online) The trajectories of connection weight coefficient
b11(x11).
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Figure 4 (Color online) The error trajectories of xi1 − x11, i = 2, 3, 4, 5.

D =

7 0

0 7

 , C =

14 0

0 14

 , Γ =
8 0

0 8

 ,
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Figure 5 (Color online) The error trajectories of xi2 − x12, i = 2, 3, 4, 5.

G =



−1.2 1 0 0 0.2

1 −2.2 1.2 0 0

0 2 −3.5 1.5 0

0 0 3 −4.4 1.4

0.2 0 0 4 −4.2


,

a11(x) =

 1.78, |x| 6 0.05,

2.04, |x| > 0.05,

a12(x) =

 2.03, |x| 6 0.05,

1.58, |x| > 0.05,

a21(x) =

 0.11, |x| 6 0.05,

0.12, |x| > 0.05,

a22(x) =

 1.52, |x| 6 0.05,

1.61, |x| > 0.05,

b11(x) =

 −2.21, |x| 6 0.05,

−1.34, |x| > 0.05,

b12(x) =

 0.12, |x| 6 0.05,

0.11, |x| > 0.05,

b21(x) =

 0.15, |x| 6 0.05,

0.14, |x| > 0.05,

b22(x) =

 −1.92, |x| 6 0.05,

−1.71, |x| > 0.05,

where the activation function f (xi(t)) = tanh(|xi| − 0.05), the
other parameters not mentioned are the same as defined in
Example 1. From the given parameters, it is easy to verify
that ζi,i+1(i = 1, 2, 3, 4) make 15 hold. Then, solving the LMIs
in eqs. (14) and (15)) in Theorem 2, by using the LMI solver
in Matlab, feasible positive definite matrices P, Q, T, S 1

could be found as

P =

101.1 −0.5

−0.5 101.9

 , Q =

10.7 0

0 10.7

 ,
T =

70.8 0

0 70.8

 , S 1 =

71.3 0

0 71.3

 .
For making numerical simulation for the coupled IMNNs

with time delay, the trajectories of the connection weight
parameters a11(x11) and b11(x11) are shown in Figures 6–9
show the synchronization errors of xi1 − x11 and xi2 − x12,
which indicate xi1 − x11 → 0 and xi2 − x12 → 0 as t → ∞,
hence, synchronization can be reached. This is in accordance
with the conclusion in Theorem 2.

6 Conclusions

In this paper, we investigate the multiple MNNs with cou-
pling and inertial term. Firstly, by choosing appropriate
variable transformation, networks model with inertial term
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Figure 6 (Color online) The trajectories of connection weight coefficient
a11(x11).
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Figure 7 (Color online) The trajectories of connection weight coefficient
b11(x11).



Li N, et al. Sci China Tech Sci April (2018) Vol. 61 No. 4 621

0 2 4 6 8 10 12 14 16 18

−0.4

−0.2

0

0.2

0.4

0.6

t

x
i1
(t
)−

x
1
1
(t
),
 i
 =
2
,3
,4
,5

Figure 8 (Color online) The error trajectories of xi1 − x11, i = 2, 3, 4, 5.
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Figure 9 (Color online) The error trajectories of xi2 − x12, i = 2, 3, 4, 5.

are rewritten as first-order differential equations. Secondly,
by using differential inclusion and matrix measure method,
some algebra conditions have been derived to guarantee the
self-synchronization for multiple MNNs. Furthermore, via
designing discontinuous controller, different synchronization
criteria have been presented by LMIs. Finally, two illustrative
examples have also been provided to demonstrate the validity
of the proposed algebraic and LMIs synchronization criteria.
In the future, the passivity and control issues of the coupled
IMNNs will be conducted, which form some interesting
research topics.
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