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Simulation based structural reliability analysis suffers from a heavy computational burden, as each sample needs to be evaluated
on the performance function, where structural analysis is performed. To alleviate the computational burden, related research
focuses mainly on reduction of samples and application of surrogate model, which substitutes the performance function. However,
the reduction of samples is achieved commonly at the expense of loss of robustness, and the construction of surrogate model is
computationally expensive. In view of this, this paper presents a robust and efficient method in the same direction. The present
method uses radial-based importance sampling (RBIS) to reduce samples without loss of robustness. Importantly, Kriging is
fully used to efficiently implement RBIS. It not only serves as a surrogate to classify samples as we all know, but also guides
the procedure to determine the optimal radius, with which RBIS would reduce samples to the highest degree. When used as a
surrogate, Kriging is established through active learning, where the previously evaluated points to determine the optimal radius
are reused. The robustness and efficiency of the present method are validated by five representative examples, where the present
method is compared mainly with two fundamental reliability methods based on active learning Kriging.
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1       Introduction

Input parameters of a structural model have an uncertain na-
ture from a realistic point of view. It has been widely rec-
ognized that these uncertainties should be taken into account
for a more reasonable decision. In this context, the structural
reliability theory is a powerful tool. It provides a rational
treatment of the uncertainties and allows assessment of the
structural safety in the presence of such uncertain parame-
ters. The assessment mainly lies in calculating the structural
failure probability, which is expressed as a probability inte-
gral over all regions associated with structural failure in the
design space. The probability integral is
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x xP f= ( )d ,f
G x( ) 0

(1)

where x is the vector consisting of all basic random vari-
ables, which are simplifications of the uncertain parameters;

xf ( ) is the joint probability density function of the basic ran-
dom variables; xG( ) called performance function, character-
izes structural state according to a specified safety require-
ment. xG( ) = 0 represents the limit state surface separating
the failure domain xG( ) < 0 and the safe domain xG( ) > 0 in
the design space [1].
Simulation methods are oriented to solve this integral and

the fundamental one is Monte-Carlo simulation (MCS). It
provides an asymptotically unbiased and convergent failure
probability estimator, but it needs a large number of sam-
ples to estimate small failure probabilities [2]. Therefore di-
rect MCS is inefficient for practical structures, since they are
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generally well designed with a large safety margin. To im-
prove the efficiency of direct MCS, one important direction
is to reduce samples. In this direction, we can see various
kinds of variance reduction techniques. Typically, they con-
centrate sampling in the important region, which contributes
significantly to eq. (1) [3]. As a result, they are inapplica-
ble to problems with multiple important regions. A robust
sampling strategy is proposed by Harbitz [4]. That is RBIS,
which restricts Monte-Carlo sampling to the tail part of the
joint distribution of the random variables by excluding a cen-
tral hyper sphere from the sampling domain in standard nor-
mal space. Recently, Grooteman [5] designed an adaptive
scheme to implement RBIS efficiently (the corresponding re-
liability method is abbreviated to ARBIS). In this paper, a
more efficient RBIS is developed based on Kriging.
Another important direction is to replace the performance

function by a simple surrogate model (also known as meta-
model), so that it is no longer necessary to run a time demand-
ing structural model for each sample [6]. Popular surrogate
models for this purpose include response surface [7,8], neural
networks [9], support vector machines [10,11], and Kriging
[12]. Recently, Kriging has gained increasing considerations
mainly due to its stochastic properties. With these properties,
one can derive useful information such as the probability of
being negative and the probability of false sign prediction at
any point. Dubourg [13] used the former to approximate the
indicator function in the expression of optimal importance
sampling density. However, more researches focus on the
latter since it provides an efficient way to construct Kriging.
This way is active learning, which means that Kriging is iter-
atively refined by actively selecting a new point to the design
of experiments (DoE) each time [14].
The combination of Kriging and active learning is in-

troduced to the field of structural reliability by Echard et
al. [15]. They built a Kriging through active learning and
then used it to classify Monte-Carlo samples (AK-MCS).
In particular for problems with small failure probabilities,
they replaced the Monte-Carlo sampling by importance
sampling (AK-IS) [16]. As AK-IS is based on the non-ro-
bust first order reliability method (FORM) [17], Cadini et
al. [18] adopted a K-means clustering algorithm instead
of the FORM, while Zhao et al. [19] used Markov chain
metropolis algorithm. Tong et al. [20] combined the active
learning Kriging with subset importance sampling, providing
a more efficient method than AK-IS. In addition, Zhang
et al. [21] took account of the samples probability density
during active learning to improve the accuracy. As to system
reliability problems, Fauriat and Gayton [22] considered
only the component performance function with significant
influence on system failure probability in each learning
step. However, this method is efficient when estimating low
failure probabilities and lacks adaptivity when the initial
samples are insufficient.

On the whole, existing reliability methods based on active
learning Kriging can be considered as efficient for only spe-
cific types of problems (e.g., AK-MCS for problems with
large failure probabilities and AK-IS for problems with one
important region). In view of this, RBIS is introduced in this
paper for its robustness. We skillfully use Kriging to fast de-
termine the optimal radius of excluded hyper sphere, so the
samples can be reduced to the most extent. Subsequently, the
obtained Kriging continues to be used to classify samples af-
ter active learning.

2       Fundamental theory

2.1       Radial-based importance sampling (RBIS)

RBIS [4] aims to reduce Monte-Carlo samples in standard
normal space. To this aim, it restricts sampling from a cen-
tral hyper sphere that is inside the safe domain. As the central
hyper sphere carries large probability weight in low dimen-
sional space, the reduction of samples should be remarkable.
When all samples are classified, the conditional failure prob-
ability outside the hyper sphere can be estimated by

uP P G r
n

n
= ( 0 > ) ,fcon

fail

RBIS
(2)

where r, n fail and nRBIS denote the radius of the excluded
sphere, number of the failure samples and total samples
number, respectively.
The failure probability can be rewritten in terms of the con-

ditional failure probability, yielding

uP P P r
n

n
r= ( > ) = 1 ( ) ,f nfcon

fail

RBIS

2 2 (3)

where n
2 is the chi-square distribution function with n

degrees of freedom equal to the dimension of the problem.
Correspondingly, the coefficient of variation on the estimator
Pf is given by

P
P n

COV
1

.fcon

fcon RBIS
Pf

(4)

This equation indicates that RBIS requires fewer samples
than MCS to achieve the same level of accuracy, because
Pfcon is larger thanPf . Moreover, the required number of sam-
ples will decrease to the minimum when the excluded sphere
reaches the largest. Radius of the largest sphere is thus the
optimal radius, which is equal to the shortest distance from
the limit state surface to the space origin. However, it is not
easy to determine the optimal radius with a little computa-
tional effort.

2.2       Kriging model

The unique feature of Kriging is that it assumes a determin-
istic response as Gaussian process. This stochastic property
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provides rich information for structural reliability analysis.
Kriging expresses the deterministic response y x( ), for an n
dimensional input x Rn, by a realization of a regression
model and a random function [23],

x f x xy Z( ) = ( ) + ( ),T (5)

where f x x x xf f f( ) = [ ( ), ( ), ..., ( )]p1 2 is p chosen functions,
= [ , , ..., ]p1 2 is their regression coefficients, xZ( ) is as-

sumed to be a Gaussian process with zero mean and covari-
ance

w x w xZ Z RE( ( ), ( )) = ( , , ),2 (6)

between wZ( ) and xZ( ), where 2 is the process variance and
w xR( , , ) is the spatial correlation function with parameter .

The correlation function is specified by the user, and several
correlation functions exist in the literature. Among them the
Gauss correlation function is mostly used

w xR w x( , , ) = exp .
k

n

k k k
=1

2 (7)

An interpretation of Kriging is that the term f x( )T in
eq. (5) indicates a global model of the design space, which is
similar to the polynomial model in a RSM (response surface
method), and the second part in eq. (5) is used to model the
deviation from f x( )T .
Given m experimental points X x x x= [ , , ..., ]m1 2

T with cor-
responding responsesY y y y= [ , , ..., ]m1 2

T , consider the linear
Kriging predictor

x c x Yy ( ) = ( ) ,T (8)

where c x R( ) m. From the consideration to keep the predic-
tor unbiased and to minimize its mean squared error (MSE),
one can deduce

x f x r xy ( ) = ( ) + ( ) ,T T (9)

where

F R F F R Y= ( ) ,T T1 1 1 (10)

r x x x x x x xR R R( ) = [ ( , , ), ( , , ), ..., ( , , )] ,m1 2
T (11)

R Y F= ( ),1 (12)

where F f x f x f x= [ ( ), ( ), ..., ( )] ;m1 2
T R is the matrix of sto-

chastic-process correlations between different experimental
points ( )x xR R= , , ,i jij i j m, = 1, ..., ; r x( ) is the vector of
stochastic-process correlations between the untried point
x and experimental points. Eq. (10) is also the generalized
least squares solution of F Y .
MSE of the predictor is

x u F R F u r R r( ) = (1 + ( ) ),2 T T T1 1 1 (13)

where u F R r f= ,T 1 the maximum likelihood estimate of
2 in the framework of generalized least squares fit is

Y F R Y F
m

=
1

( ) ( ).2 T 1 (14)

Note that for a fixed set of experimental points the matrices
and are fixed. So for an untried point x we just need to

compute f x( ) and r x( ) to obtain xy ( ) and x( ). The predic-
tor xy ( ) and its MSE x( ) can be regarded as mean and vari-
ance of the Gaussian process of the response, respectively.

3       The proposed method (AK-RBIS)

3.1       Outline of the proposed method

Note that the most probable failure point (MPP) is the clos-
est limit state point to the origin (a limit state point refers to
a point on the limit state surface); hence its distance to the
origin equals the optimal radius. AK-RBIS is designed ac-
cording to the framework of RBIS, which implies two stages
to be performed: search MPP to determine the optimal radius
(Stage 1) and then classify samples to compute the failure
probability (Stage 2). In Stage 1, a progressive scheme is pro-
posed to search MPP. The scheme searches a failure point in
currently defined search domain. The searched failure point is
then used to give a closer limit state point to the origin, which
in turn is used to update the current search domain towards the
origin. The scheme ends with the last limit state point as the
MPP when no failure point can be found. In Stage 2, a Krig-
ing is established by active learning, and serves as a surrogate
to classify the samples which are generated according to the
optimal radius obtained in Stage 1. Then the failure probabil-
ity is estimated with eq. (3).

3.2       Search domain: Initialization and update

The search domains are defined as the inner space between
two central spheres, as shown in Figure 1, so that the distance
of a searched failure point to the origin can be controlled. For
initial search domain, its lower radius rlow

(0) and upper radius
rup

(0) are specified by

( )
( )

( )
( )p r

p r

1 = ,

1 = ,

n

n

1
2

low
2

2
2

up

2

(0)

(0)
(15)

where p1 and p 2 are the probability contents outside the
rlow

(0) sphere and the rup
(0) sphere, respectively. Usually, failure

probabilities involved are larger than 10−6. It is thus adequate
to set p1 and p 2 equal to 10−4 and 10−6 respectively.
Following the adaptive idea of ARBIS, later search do-

mains are restricted by their respective limit state points [5].
Taking the ith search domain as an example, as shown in
Figure 1, the outer sphere (with radius rup

i( )) passes through the
limit state point, and radius of the inner sphere rlow

i( ) is defined
by

726 Xiong B, et al.   Sci China Tech Sci   May (2018)  Vol. 61  No. 5



Figure 1         2-D illustration for the ith search domain.

( )( ) ( )( )r r t1 = 1 / ,n n
2

low
2 2

up

2i i( ) ( ) (16)

where the parameter t controls the ratio of the probability
content in the search domain and that outside the outer sphere.
t is recommended to be 0.8 [5].
According to the definition, a search domain can be updated

towards the origin once a closer limit state point to the origin
is obtained, and any failure point in a search domain is closer
to the origin than the limit state point defining the search do-
main. Note that there exists at least one limit state point on
the line segment connecting a failure point and the origin, be-
cause in a general case the origin is a safe point and the per-
formance function is continuous. Therefore the update can
be made if we can search a failure point in current search do-
main and then locate the limit state point on the line segment.
Along this line of thought, we propose an efficient algorithm
to search a failure point in each search domain, which would
be explained in Section 3.3. Fortunately, it is an integrant
procedure in directional sampling [24] to locate the limit state
point on the line segment between a failure point and the ori-
gin. This procedure can be easily implemented through a lin-
ear fit and several quadratic fits afterwards, till an error under
0.01 [5]. The obtained limit state point is then used to define
the next search domain. With this initialization and update
strategy, the search domains will keep shrinking towards the
origin.

3.3       Search failure point
As Stage 1 needs to search a failure point in a series of search
domains, an efficient search algorithm is thus important in
terms of the whole efficiency of AK-RBIS. Without knowl-
edge about where is more probable to fail in a specified search
domain beforehand, we uniformly distribute candidate fail-
ure points in the domain, and try to identify a real one among
them. To do the former, the following high dimensional polar
expressions are employed, as they are proper to generate uni-
form points in a domain bounded by two concentric spheres:

u
u

u
u

= cos ,
= sin cos ,

= sin sin cos ,
= sin sin sin ,n

1 1

2 1 2

1

1

n n n

n n

1 2 1

2 1

(17)

where is a random number in the interval ( )( )( )r r,n n
low up

i i( ) ( ) ,
while 1, 2, …, n 2 and n 1 are all independent random num-
bers in (0, 2 ).
Straightway, categories of the candidate points are verified

through performance function evaluations successively, until
a failure point is identified. The order is from high to low in
terms of the probability of being negative. Thanks to Kriging,
the probability of being negative for an unevaluated point can
be obtained by

u u
u

u
uP G

µ
( ) = ( ( ) 0) =

0 ( )
( )

, DoE,G

G

(18)

where u( ) denotes the probability of being negative and is
also called probabilistic classification function [13]; ( ) is
the standard normal distribution function; Kriging treats
the performance function uG( ) as a realization of Gaussian
stochastic field uG ( ) and provides corresponding mean

uµ ( )G and variance u( ).2
G With the MATLAB tool box

DACE, the construction and prediction of Kriging can be
conveniently done.
In this sense, the candidate point with the largest value

is most probable to fail among the candidate population.
This point is henceforth picked for failure verification, where
its performance function is evaluated. The newly evaluated
point is added to the DoE and then the Kriging is updated. If
the point turns out to be safe, values of all the candidate
points are recalculated based on the predictions of the up-
dated Kriging, and then another candidate point is selected
for verification. The verification is repeated until a failure
point is identified, or a convergence condition is satisfied.
To save computational cost, all DoE points are reserved for
constructing later Krigings through out the whole procedure
of AK-RBIS. It is worthy of note that the issue of numerical
singularity commonly encountered during the construction
of Kriging can be avoided in the progressive scheme. This
is because the candidate points are uniformly distributed, so
that any two points in a DoE keep a considerable distance.

3.4       End condition of the progressive scheme

An end condition should be defined for the progressive
scheme. In general, the situation that no failure region exists
in a search domain fully demonstrates the associated limit
state point to be the MPP. However, this is hard to verify
in practical application. As a compromise, an approximate
convergence condition is adopted that all candidate points
fail with a probability below a specified level. This condition
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is easily implemented with the probabilistic classification
function. The condition requires only to compare the largest
value with a threshold pfth. If the former is smaller, the

convergence condition is satisfied. Considering the meaning
of , assignment for pfth with 0.1 is enough.
Nevertheless, it is tricky to determine the number of candi-

date points in a search domain, since insufficient points may
result in a premature convergence, whereas excessive points
bring unbearable computational burden. Importantly, the pre-
mature convergence gives a larger radius, which will produce
an erroneous result of failure probability. One way to solve
this tricky problem is to generate fewer points first, and then
add much more points after the first convergence (if occurs).
The whole progressive scheme ends only when the conver-
gence condition is satisfied twice in one search domain. In
our experience, a failure point is identified quickly without
occurrence of a convergence, except for very few (generally
1 or 2) search domains near the end of the scheme. From this
viewpoint, the solution of the tricky problem is also an ef-
fective approach to improve the efficiency of the progressive
scheme. When the problem dimension increases, it is sug-
gested to increase number of the candidate points.

3.5       Classification of samples
Stage 2 of AK-RBIS is to classify samples outside the hyper
sphere with the optimal radius obtained in Stage 1. To com-
plete this task with least performance function evaluations, a
Kriging is built through active learning, and then serves as a
surrogate to predict signs of all the samples. This is a general
procedure for active learning Kriging based reliability meth-
ods, and the originality here lies in the source of initial DoE.
The final updated Kriging in Stage 1 is directly adopted as the
initial Kriging in Stage 2, so that all DoE points are reserved
for the purpose of cost saving.
Active learning aims to build a Kriging with least cost but

guarantee high classification accuracy with respect to a given
sample population. To this aim, it iteratively refines the Krig-
ing by enriching the DoE with a point from the sample pop-
ulation, until a specific accuracy is reached. The point is se-
lected for the greatest improvement on the classification ac-
curacy of the Kriging. The point is recognized by a func-
tion, which is called learning function. An appropriate learn-
ing function can be u u uU µ( ) = ( ) / ( )G G here. Because,
according to the Gaussian Process assumption of Kriging,

( )u uµ ( ) / ( )G G is the probability that the sample u is cor-
rectly classified according to the predicted value uµ ( )G ; in
this vein, the sample with the smallestU value is most proba-
ble to be wrongly classified; as a consequence, its addition to
theDoE is hoped to improve the current Krigingmost in terms
of the overall classification accuracy. Therefore, at each lean-
ing step,U values of all samples are calculated based on the
predictions of the current Kriging, and then the sample with

the smallest U value is selected for the performance func-
tion evaluation; following this, the current Kriging is refined
based on the enriched DoE. These are repeated untilU values
of all samples are above a predefined threshold, which indi-
cates high overall classification accuracy.

3.6       Implementation of the proposed method

The implementation procedure of AK-RBIS is illustrated in
Figure 2 and is explained in detail as follows.
(1) Stage 1: Determination of the optimal radius
Step 1. Transform original design space into standard nor-

mal space by Nataf transformation [25]. Then define initial
search domain according to eq. (15). Next, establish initial
Kriging with least uniform points in the initial search domain.
If a failure point occurs in this step, go to Step 4.
Step 2. Fill current search domain with a certain number

(say 103) of uniform points by eq. (17).
Step 3. Select the point with the largest value to evaluate

the performance function, and update the Kriging once the
DoE is enriched. Repeat these until a failure point is found
or the convergence condition is satisfied. Go to Step 5 for the
first convergence. For the second convergence in the same
search domain, end Stage 1 with the current rup

i( ) as the optimal
radius.
Step 4. Determine the limit state point on the line segment

between the failure  point  and the origin.  Then  update  the

Figure 2         Flowchart of AK-RBIS.
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search domain based on the limit state point according to
eq. (16). Next, return to Step 2.
Step 5. Increase the number of points in current search

domain to 104 by eq. (17). Then go back to Step 3.
(2) Stage 2: Classification of samples
Step 1. Generate Monte-Carlo samples outside the hyper

sphere with the optimal radius obtained in Stage 1. To be
simple, name the population S.
Step 2. Starting from the final updated Kriging in Stage 1

and for S, perform active learning by adding the sample with
the smallest U value to the DoE in each learning step, until
all U values are above 2 (corresponding to a probability of
making a mistake on the sign of ( 2) = 0.023) [15].
Step 3. Classify S by means of the well-learned Kriging

surrogate. Based on the classification results, compute the
failure probability and corresponding coefficient of variation
according to RBIS principles. Then compare the coefficient
of variation with an up limit. If the former is smaller, end
AK-RBIS.
Step 4. Add samples to S by the same way as Step 1 and

then go back to Step 2.

4       Validation of the proposed method

Five representative examples are presented to validate the
robustness and efficiency of AK-RBIS. They cover typical
features such as highly non-linear limit state surface, mul-
tiple important regions, small failure probability, structural
system reliability, and non-normal random variables. They
are solved by AK-RBIS and three related methods, ARBIS,
AK-IS and AK-MCS, with the latter three in contrast to
AK-RBIS. Among the latter three methods, ARBIS is robust
and accurate, whereas AK-MCS and AK-IS, as two active
learning Kriging based reliability methods, are efficient.
Hence the comparison with the three methods is expected to
give rise to a relatively convincing conclusion for AK-RBIS.
In addition, for all the examples: (i) Kriging employs con-

stant model as the regression model and Gaussian model as
the correlation function. (ii) To ensure comparable results,
the up limit of the coefficient of variation on the failure prob-
ability estimator is set to 0.1, if there is no special note (how-
ever, relative errors of different methods are still difficult
to precisely compare since all are computed from a specific
Monte-Carlo or importance sampling population). (iii) As

evaluations of the performance function govern the compu-
tational cost for practical structures, the number of calls to
the performance function (Ncall) is used to measure the com-
putational cost. For AK-IS and AK-RBIS, Ncall is presented
as sum of the number in Stage 1 (searching MPP) and that in
Stage 2 (classifying samples).

4.1       Example 1: Highly non-linear limit state surface

This example [26] is studied due to its highly non-linear limit
state surface, as shown in Figure 3. Its performance function
reads

G u u= 3 + (4 ) ,2 1
4 (19)

where u1 and u 2 are standard normal random variables.
Figure 3 also shows that the example involves a low condi-
tional failure probability and a small important region.
Table 1 lists the results, which show that AK-RBIS,

AK-MCS and AK-IS exhibit a great superiority upon ARBIS
for order reduction of the magnitude of computational cost.
Among these three methods, AK-RBIS and AK-IS are more
accurate and slightly more efficient than AK-MCS. Actually,
this example exactly belongs to the type of problems for
which AK-IS is competitive. AK-IS is efficient in particular
for problems with a unique and small important region,
since fewer importance samples are able to cover a small
region. However, this is not the case with AK-RBIS, as
this example has a very small conditional failure probability
outside the optimal sphere. According to eq. (4), a small
conditional failure probability implies a large number of
samples to be simulated. Nonetheless, AK-RBIS turns out to
behave slightly better than AK-IS in terms of both accuracy
and efficiency. This strongly proves the efficiency of the
algorithm of AK-RBIS. One can also find that Stage 2 of
AK-RBIS evaluates only three samples on the performance
function, which should attribute to the reuse of the evaluated
points in Stage 1.

4.2       Example 2: Series system with four branches

A reliability problem of series structural system is presented
as the second example. The example originates from litera-
ture [27] and is modified here to have a small failure prob-
ability. Figure 4 shows that the problem has four important
regions. The problem is formulated as

Table 1        Reliability results of Example 1

Method Pf a) (Relative error) β Ncall

ARBIS 2.03×10−4 (12.8%) 2.925 4867

AK-MCS 1.66×10−4 (7.8%) ‒ 31

AK-IS 1.68×10−4 (6.7%) 3.000 6+22

AK-RBIS 1.84×10−4 (2.2%) 3.004 24+3

a) The reference Pf value is 1.80×10−4 [26]; results of ARBIS are from reference [5].
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Figure 3         Illustration for the implementation of AK-RBIS in Example 1.

( )
( )

( )
( )

g u u

u u

g u u

u u
g u u
g u u
G g g g g

= 0.1 / 1.5 / 1.5

/ 1.5 + / 1.5 / 2 + 3,

= 0.1 / 1.5 / 1.5

+ / 1.5 + / 1.5 / 2 + 3,

= / 1.5 / 1.5 + 3.5 2 ,
= / 1.5 + / 1.5 + 3.5 2 ,

= min( , , , ),

1 1 2
2

1 2

2 1 2
2

1 2

3 1 2

4 1 2

1 2 3 4

(20)

where u1 and u 2 are standard normal random variables.
As shown in Table 2, AK-RBIS outperforms the other three

methods. AK-MCS expends toomuch computational cost be-
cause it requires a large number of samples to simulate such a
small failure probability. AK-IS yields erroneous results even
though we have enlarged the sample population to decrease
COVPf

to 0.02. This is because the population is centered
at one point, thus unable to cover all important regions. As
a result, AK-IS converges early to a wrong solution only ac-
counting for part of all the important regions. But with regard
to AK-RBIS, it only restricts Monte-Carlo sampling from a
hyper sphere in the safe domain. So it can reach all important
regions like MCS. On the other hand, as shown in Figure 4,
AK-RBIS makes most DoE points near the limit state surface
(limit state curve for this 2-D problem). This is important to
avoid waste of computational cost, because only points near
the limit state surface play an important role to improve the
accuracy of the surrogate.

Contrary to Example 1, this example shows a large condi-
tional failure probability. Then a small number of samples
are feasible for AK-RBIS without loss of accuracy. In fact,
structural system reliability problems commonly have mul-
tiple important regions, thus they are more likely to show a
large conditional failure probability. As a result, AK-RBIS is
more efficient for general system reliability problems.

4.3       Example 3: Creep-fatigue reliability problem

This section deals with a creep-fatigue reliability problem
[28] from engineering environment. The problem involves
exponential function, moderate dimensions and non-normal
random variables. Its performance function is

( )
( )

G N N n n

D D D

, , , , ,

= 2 exp + (exp( ) 2)(exp( ) 1)
exp( ) 1 ,

c f c f

c f

1 2

1
c1 2

2
(21)

where D n N= /c c c and D n N= / .f f f All basic random vari-
ables are listed in Table 3.
Table 4 presents the results of ARBIS, AK-IS, AK-MCS

and AK-RBIS. As shown in this table, on the whole, all meth-
ods except ARBIS obtain accurate results with a little com-
putational cost. More specially, AK-RBIS expends the least
computational cost, but reaches a similar level of accuracy
compared with AK-IS and AK-MCS. Besides, Table 4 indi-
cates that the proposed progressive scheme is more efficient
than FORM for this example, as Stage 1 of  AK-RBIS  needs

Figure 4         Illustration for the implementation of AK-RBIS in Example 2.

Table 2        Reliability results of Example 2

Method Pf a) (Relative error) β Ncall

ARBIS 4.87×10−6 (8.9%) 4.505 918

AK-MCS 4.69×10−6 (4.9%) − 197

AK-IS 2.23×10−6 (50.1%) 4.500 6+11

AK-RBIS 4.81×10−6 (7.6%) 4.509 14+52

a) The reference Pf value is 4.47×10−6, obtained by MCS with 1×108 samples.
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Table 3        Distributions of the basic random variables in Example 3

Random variable Distribution Mean Standard deviation

Nc Log-normal 5490 1098

Nf Log-normal 17100 3420

nc Log-normal 549 109.8

nf Log-normal 4000 800

θ1 Normal 0.42 0.084

θ2 Normal 6.0 1.2

Table 4        Reliability results of Example 3

Method Pf a) (Relative error) β Ncall

ARBIS 1.64×10−4 (15.5%) 3.734 23175

AK-MCS 1.49×10−4 (4.9%) − 90

AK-IS 1.38×10−4 (2.8%) 3.652 42+38

AK-RBIS 1.35×10−4 (4.9%) 3.656 26+35

a) The reference Pf value is 1.42×10−4, obtained by MCS with 1×108 samples.

less computational cost than the first stage of AK-IS (the first
stage of AK-IS is the application of FORM). From all the
examples, one can find that the progressive scheme is roughly
as efficient as FORM.However, in view of the non-robustness
of FORM, the progressive scheme is considered to be more
robust.

4.4       Example 4: Dynamic response of a non-linear oscil-
lator

This example is a non-linear undamped dynamic system with
single degree of freedom (Figure 5) [29]. Its performance
function reads

G c c m r t F r
F

m
t

( , , , , , ) = 3
2

sin
2

,1 2 1 1
1

0
2

0 1 (22)

where c c
m= +

0
1 2 . Table 5 gives the distributions of the

basic random variables.
As shown in Table 6, both AK-MCS and AK-RBIS pro-

duce accurate results with a little computational cost. Again,
ARBIS produces accurate results but with an unacceptable
computational burden. This can be explained by the absence

Figure 5         The non-linear oscillator.

Table 5        Distributions of the basic random variables in Example 4

Random variable Distribution Mean Standard deviation
c1 Normal 1 0.1
c2 Normal 0.1 0.01
M Normal 1 0.05
R Normal 0.5 0.05
t1 Normal 1 0.2
F1 Normal 1 0.2

Table 6        Reliability results of Example 4

Method Pf (Relative error) β Ncall

ARBIS 2.82×10−2 (1.1%) 1.963 50775
AK-MCS 2.83×10−2 (0.7%) − 58
AK-IS 2.52×10−2 (11.6%) 1.865 21+32

AK-RBIS 2.89×10−2 (1.4%) 1.918 14+51

a) For all the methods, coefficients of variation on the failure probability estimators are about 0.022; the reference Pf value is 2.85×10−2, obtained by MCS
with 5×106 samples; results of AK-MCS are from literature [15].
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of a surrogate. Thus ARBIS is efficient only in traditional
sense. In this example, AK-IS is efficient, but the accuracy is
not satisfactory.
AK-RBIS and AK-MCS take the same way to classify

samples, but adopt different sampling strategies. AK-RBIS
neglects Monte-Carlo samples in the optimal excluded
sphere, but needs additional effort to determine the optimal
radius in advance. Accordingly, AK-RBIS is more efficient
for problems with more probability content in the optimal
sphere. However, the probability content in the optimal
sphere of this example is only 0.27, so the reduction of sam-
ples is rather limited for AK-RBIS. AK-RBIS is therefore
less efficient for this example, compared with a more general
case. Nonetheless, AK-RBIS still expends roughly equiv-
alent computational cost with AK-MCS. Without doubt,
this should attribute to the inherent efficient algorithm of
AK-RBIS, especially the progressive scheme.
Generally, the optimal excluded sphere contains much

probability content for low dimensional problems, because it
locates in the central part of the joint probability distribution
function of the standard normal random variables. Hence
AK-RBIS will do better for a more general case. Theoreti-
cally, in contrast with AK-MCS, AK-RBIS is robust against
the variation of failure probability, because, according to
eq. (4), the required number of samples depends on the con-
ditional failure probability instead of the failure probability.
Consequently, the superiority of AK-RBIS upon AK-MCS
should be more significant for problems with small failure
probabilities.

4.5       Example 5: Three-bay twelve-story frame

Finally, a frame structure (Figure 6) [30] is used to validate
AK-RBIS with regard to real structures. The corresponding
reliability problem is characterized by six basic random vari-
ables which are completely uncorrelated. They are member
cross-section areas A1, A2, A3, A4, A5, and the wind load P,
respectively. Here, subscript i refers to members with label i
as shown in Figure 5, i = 1, 2, ..., 5. The distributions of the
basic random variables are given in Table 7. Elastic modulus
of all the members equals 2.0×107 N m−2. The sectional mo-
ments of inertia are expressed as

I A i= , = 1, 2, ..., 5,i i i
2 (23)

where I i are the sectional moments of inertia, i are the coef-
ficients shown in Table 7.
The concerned performance function is

x xG u( ) = 0.096 ( ),max (24)

where xu ( )max represents the maximum horizontal displace-
ment of the frame.
The results are given in Table 8. Again, AK-IS is inaccu-

rate. It can be seen that AK-RBIS and AK-MCS show simi-
lar performance for this example; they obtain sufficiently ac-
curate result with equivalent number of calls to the perfor-
mance function, and the numbers are small. In this exam-
ple the probability content in the optimal sphere is as low as
0.0594. Therefore, this example is amore extreme casewhere
AK-RBIS requires almost the same amount of samples with

Figure 6         The three-bay twelve-story frame structure.

Table 7        Distributions of the basic random variables and the sectional coefficients in Example 5

Random variable (unit) Distribution type Mean Standard
deviation Coefficient αi

A1 (m2) Lognormal 0.25 0.025 0.08333

A2 (m2) Lognormal 0.16 0.016 0.08333

A3 (m2) Lognormal 0.36 0.036 0.08333

A4 (m2) Lognormal 0.20 0.020 0.26670

A5 (m2) Lognormal 0.15 0.015 0.20000

P (N) Gumbel 3×104 7.5×103 −
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Table 8        Reliability results of Example 5 a)

Method Pf (Relative error) β Ncall

ARBIS 7.76×10−2 (3.3%) 1.386 1210

AK-MCS 7.59×10−2 (1.1%) − 41

AK-IS 6.22×10−2 (17.2%) 1.325 28+23

AK-RBIS 7.57×10−2 (0.8%) 1.326 28+19

a) The reference failure probability is 7.51×10−2, obtained by importance sampling with 2000 samples [30].

AK-MCS. It then seems that Stage 1 of AK-RBIS is useless.
Note that all the points evaluated in Stage 1 are reused in the
following active learning procedure. So the computational
cost expended in Stage 1 is not wasted. In essence, the se-
lection between AK-RBIS and AK-MCS is a trade-off be-
tween taking part of the cost to reduce samples first (and then
classifying the reduced population) and directly taking all the
cost to classify samples. For this extreme example, AK-RBIS
still performs as well as AK-MCS. It then can be inferred that
AK-RBIS would be more efficient than AK-MCS for general
cases. The exception is highly dimensional problem, where
the excluded hyper sphere possibly carries little failure prob-
ability content.

5       Summary and conclusions

This study focuses on two aspects to improve the efficiency of
a simulation method for structural reliability analysis. They
are the reduction of samples and the use of a surrogate model
to classify samples, respectively. Kriging is adopted to ef-
ficiently implement both aspects. Based on Kriging, a pro-
gressive scheme is proposed to determine the optimal radius,
with which RBIS would reduce samples to the highest degree
while maintaining its robustness; by active learning an accu-
rate Kriging is established with least number of performance
function evaluations. As Kriging is updated throughout the
whole procedure of the proposed method, evaluated points in
the progressive scheme can also play an important role dur-
ing active learning.
The proposed method (AK-RBIS) achieves sufficiently ac-

curate failure probability with a little computational cost for
all the five representative examples, which include typical
features that may be encountered in real engineering context.
This demonstrates that AK-RBIS is robust and efficient. With
regard to problems for which AK-MCS or AK-IS is particu-
larly suitable, AK-RBIS can also performs as well as (or even
better than) it. With respect to the robustness of AK-RBIS,
three critical points are noteworthy. First, AK-RBIS is still
efficient for problems with small conditional failure proba-
bilities outside the optimal excluded sphere, although these
problems needs a large number of samples; second, the per-
formance of AK-RBIS is not affected by the level of fail-
ure probability; third, AK-RBIS can solve problems with one
important region satisfactorily, and could do even better for

problems with multiple important regions, which are gener-
ally the cases with system reliability.
However, it still should be pointed out that the progressive

scheme can possibly neglect a closed failure region near the
origin if it exists, hence produces a smaller failure probability
than the exact one. More work remains to be done on this as-
pect. Besides, as all the surrogates suffer the so-called “curse
of dimensionality” and radial-based importance sampling is
designed specially for low dimensional space, AK-RBIS can
deal efficiently with only low dimensional problem. And it
can be concluded from the examples that the highest applica-
ble dimension can be at least 6. A more specific applicable
dimension range of AK-RBIS would be targeted in our next
work.
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