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The focus of this study is to explore the mechanisms during seizure behavior using a physiologically motivated by corticothalamic
circuity. The model is based on the assumption that, the inhibitory projects from thalamus reticular nucleus (TRN) to specific
relay nuclei (SRN) are mediated by GABAA and GABAB receptors which react different time scales in synaptic transmission.
Secondly, we include the effects of slow modulation on the threshold current of TRN population that were found to generate
bursting behavior. Our model can reproduce healthy and pathological dynamics including wake, spindle, deep sleep, and also
seizure states. In addition, contour maps are used to explore the transition of different activity states. It is worthy to point out
seizure duration is significantly affected by a time-varying delay as illustrated in our numerical simulation. Finally, a reduced
model ignoring the cerebral cortex mass can also capture the feature of spike wave discharge as generated in the full network.
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1             Introduction

Epilepsy is one of the most common neurological disorders
characterized by recurrent seizures which affects up to
1%–5% of people all over world as reported [1]. The recur-
rent seizures are synchronized, paroxysmal, and excessive
discharges of neural populations, and they are classified into
two main categories: partial and generalized [2]. In essence,
a partial seizure can remain confined to its focus, or can
migrate to other brain areas, causing a secondary generalized
seizure. Therefore, seizures are generated by synchronized
bursting of a group of cortical neurons, leading to increased
coherence in the recorded signal. Generalized seizures are
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pathological brain rhythms across most or all of the cortical
regions and are associated with loss of cognitive activity,
while absence and tonic-clonic seizures are two common
generalized seizures in human. In clinical, these transient
seizure events can be observed by the electroencephalogram
(EEG) [3]. Electrode probes measure the mean local field
potential generated by synchronous activity of large assem-
blies of pyramidal cells as well as excitatory and inhibitory
interneurons located in the vicinity of the probe contact [4].
The cause of epilepsy and its effects on cerebral functions

is so complex that it is a formidable task to conceive a single
framework to characterize all the pathophysiological changes
in epilepsy at molecular, cellular and neuronal network level
[5]. Considering seizures can be viewed as a time involving
or dynamical disease [6,7], mathematical modeling can be
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conducted to obtain new insights into epileptic seizures
[8–11]. Indeed they have been successfully used to gain
in-depth knowledge and generate novel hypotheses related to
the cellular and network level brain mechanisms of epileptic
seizure, and as a tool to guide the prediction of impending
seizure and alternative therapeutic treatment [12,13].
Neural mass models initiated by Freeman [14,15] and then

used in mathematical models are so successful in modeling
[16–18] and produce brain rhythm observed in macroscopic
measurements such as EEG [19–22]. It is known that the
thalamus and cortical interactions are found to play an essen-
tial role in the generation of epilepsy spike-wave discharge
[23,24] as a classical symptom of absence seizure [25–27].
Therefore amacro scalemodel using neural field theory based
on corticothalamic system has been often used and modified
and enhanced in seizure [28–31]. This class of neural field
model describes the dynamical behaviors of large interact-
ing groups of neurons in cortex and thalamus, which are re-
ferred as two neural layers [32–34]. Thalamic component is
assumed to consist of two neural masses, an excitatory mass
of SRN and a inhibitory mass of TRN. Similarly, the cortical
component incorporates both a mass of excitatory pyramidal
cell and inhibitory interneurons.
Here we study the seizure behavior through enhancing

Freeman’s corticothalamic neural field model, which de-
scribes the relevant brain activity through a second order
delay differential equation. Our model has been able to
reproduce many properties of EEG observation in a physio-
logically plausible parameter region.

2             Methods

The cortico-thalamic circuity studied here is a mean field neu-
ral model since the variables represent the local mean value of
a physiological process [35,36]. It is based on several dynam-
ical variables within three masses: a mass of cortical pyra-
midal neurons, cells in SRN and cells in TRN as illustrated
schematically in Figure 1.
Combining some realistic assumptions extracted from the-

oretical studies and experimental clinical data [37–39], espe-
cially crucial works in refs. [40,41] which enable the partial
differential equation (PDE) description of the cortical prop-
agation and a reduction to an ordinary differential equation
(ODE) model, our model can be described by a system of de-
lay differential equations:
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Each of the neural mass (cortex, TRN, SRN) is described
by its average membrane potential Ve,r,s, while cortical neu-
rons are described by the sequence firing ratio e,r,s to take into
account long range connections among cortical cells, and ex-
ternal inputs into SRN are represented by n. The parameter
νab(i,e,r,s,n) denotes the weighting of inputs via synapse from
population b onto population a.
In addition, the X-H system is slow currents modulating

the bursting behavior in TRN via changes to the firing rate.
Sigmoid function S, Sr is a good approximation for the firing

Figure 1         (Color online) Schematics diagram of principle neural fields and
loops within the corticothalamic model, representing three neural masses as
the main components of the thalamocortical dynamics. The lines represent
connections between different masses, the mass response are ϕe (excitatory
and inhibitory), ϕr (inhibitory) and ϕs (excitatory), while ϕn represents sub-
cortical input, including a noise component.
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rate produced by the voltage at each population Ve,r,s, which
generates outgoing activity propagated to other population
[42]. Qmax is the maximal firing rate at which the sigmoid
firing function saturates, the threshold voltage θ is relative to
the threshold current Iθ and the conductance per unite area μ.
The X-H system acts as a feedback system due to the follow-
ing principle: when the firing rate of SRN is high, it shifts the
sigmoid to the right, and when the firing rate of SRN is low,
the sigmoid is shifted to the left. This mechanism is a key
point to modulate bursting between seizure episodes. More
explanation and default values can be found in refs. [43,44].
The post synaptic membrane conductance of SRN neurons

for both AMPA (excitatory) and GABA (inhibitory) from the
TRN cell population is responsible for sustaining and modu-
lating the firing activity. Particularly, inhibition in TRN neu-
rons has been found to be a crucial component in the develop-
ment of spike wave activity, and thus we focus our attention
on modeling two important receptors ligand-gated GABAA
and the secondary messenger-gated GABAB [37]. Moreover,
GABAB mediated synapses, unlike GABAA synapses, acti-
vate G-proteins which in turn act as the secondary messen-
gers and initiate the opening of ion channels. The inhibitory
post-synaptic potential mediated by GABAB receptors has a
much slower time scale than those mediated by GABAA, then
we expect if TRN neurons fires, the GABAB mediating con-
nection to the SRNwill be delayed compared to others or not.
Hence, we incorporate a time delayed connection from TRN
to SRN populations in our model.

3             Simulation results

As we know, the mean field models have been used to
describe the brain mass activity recorded by EEG signals
and then try to explore the mechanism from normal states
to pathology states. Since EEG detection is operated in the
cortex layer and is a summation of activity from a group
of neuron scalp within the adjacent region, so we assume a
functional relationship between cerebral cortex variable ϕe
and the scalp EEG voltage. Accordingly, we mainly focus
on ϕe as an approximation of EEG signals.

3.1             EEG pattern

Essentially, our proposed model can reproduce normal states
and also seizure states as other corticothalamic neural field
models have already realized. Under different excitatory and
inhibitory synapses, activity of each cell population in cor-
tex-thalamus circuit undergoes significant changes. In our
model simulation, varying connection strength between each
population, such as νse, νrs, and firing ratio of cortex denoted
by ϕe behaves differently, including normal states and also
seizure states.
The comparison of different brain states wake, spindle,

sleep, seizure, produced by our model can be outlined in

Figure 2. We can have a simple and brief explanation: in
normal state, the firing rate is lower as shown in Figure 2(a),
(c) and (e) while in seizure state the firing state is much
higher as shown in Figure 2(g). More specially, wake state
has the lowest firing ratio of cortex denoted by ϕe lower than
5 Hz, while spindle state and deep sleep state are around
7–9 Hz. This implies that magnitude of firing rate is one
distinguishing feature among different states.
Another remarkable characteristics is demonstrated by

Figure 2(b), (d), (f) and (h), in which the frequency of firing
ratio in seizure state alternating with obvious oscillation
and other normal states seems to smoothly decrease in the
spectrogram. One point should be pointed that the main
frequency is around integral multiple of 3 Hz which is con-
sistent with EEG sequence, since during active seizures high
amplitude spikes in the EEG alternate with slow positive
waves around 3 Hz.

3.2             Seizure dynamics
Coupling strength between cortex and thalamus cells is found
to be crucial for generating different states, so in this section
we focus on the seizure pattern. Results demonstrate that pe-
riodic patterns that closely resemble the EEG data recorded
during human seizure can be carried out through different
route. Consistent to experimental finding, seizure patterns
can be induced by modulation of varying synaptic transmis-
sion as shown in Figure 3.
Figure 3(a) and (b) are presented the seizure initiation

through corticothalamic excitation where we linearly in-
crease νse to observe the effects of continuous changes of ϕe.
There is a gradual increase in the amplitude of ϕe presented
as abnormal seizure state when νse climbs to reach seizure
state, and on ramping down of νse, ϕe also declines back to
the original normal level.
Similarly, seizure onset by TRN inhibition denoted by νsr

can also be found in Figure 3(c) and (d). With the increase of
inhibition strength νsr from TRN to SRN, seizure onset activ-
ity appears, and then disappears when inhibition strength is
set back. Furthermore, it is pointed that the strength of burst-
ing variable gX and gH have predominant effect on T-type cur-
rent which is involved in bursting dynamics of thalamic neu-
rons [45]. Therefore, we study the activities modulated by gX
with the ratio gH =4gX fixed and show the seizure phenom-
enon due to gH by upward adjustment of T-current displayed
in Figure 3(e) and (f).
The seizure onset by shifting of GABAergic activity to-

wards longer timescale in thalamus appears different that il-
lustrated in Figure 3(g) and (h). We change α with a fixed
ratio =4α to observe the variations of firing ratio ϕe, where
a lower value of α means a longer timescale.
Besides, it is arguably that there are four classical firing

states observed in brain activity as shown in Figure 4. Our
modeling can successfully repeat these four state: low  firing
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Figure 2         (Color online) Four classical activity states produced by our model. (a) Sequential firing ratio of the normal wake state; (b) frequency spectrum
analysis of the normal wake state; (c) sequential firing ratio of the normal spindle state; (d) frequency spectrum analysis of the normal spindle state; (e) sequential
firing ratio of the deep sleep; (f) frequency spectrum analysis of the deep sleep state; (g) sequential firing ratio of the seizure state; (h) frequency spectrum
analysis of the seizure state. For the convenience of analysis, in the spectrum graphs vertical axis shows the log10 scale of the power spectral density.
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Figure 3         (Color online) Seizure state produced by varying model parameters. (a) Sequential firing ratio arising from increasing excitatory strength νse; (b) time
series of parameter νse; (c) sequential firing ratio arising from increasing the inhibitory strength νsr; (d) time series of parameter νse; (e) sequential firing ratio
arising from elevating activation of T channels by increasing νgX; (f) time series of parameter gX; (g) sequential firing ratio arising from decreasing dendritic α;
(h) time series of parameter α.
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Figure 4         (Color online) Four classical rhythm induced under different set of parameters in our model. (a) Low firing state; (b) spike-wave state; (c) simple
oscillation; (d) saturation state.

(Figure 4(a)), spike wave (Figure 4(b)), simple oscillation
(Figure 4(c)), and saturation (Figure 4(d)) under different pa-
rameter ranges. The phenomenon will be further discussed in
the next section.

3.3             Seizure evolution

We first study the effects of νse on the brain activity with the
assumption that changes of νse obey linear function. A revo-
lution of rising in the firing ratio can be easily observed from
Figure 5(a), (b), (c) and (d). As we escalate νse to high lev-
els, the amplitude of firing ratio in cortex mass increases in
size from low firing state (< 5 Hz) which can be classified as
normal state, then evolves into the seizure state where the am-
plitude is above 20 Hz and finally reaches the maximum firing
ratio Qmax =250 Hz as the limit set in our model.
Recently, a number of studies on the mean field models

have pointed that time delay τ also plays a significant role in
the dynamics of spikes. Here the effect of time delay is also
studied in abnormal states, which demonstrates that time de-
lay has great effects on the wave forms ofϕe. Figure 6 depicts
the wave transformation of seizure states as the time delay al-
tering, including simple oscillation to spike wave (Figure 6(a)
and (b)) and also to saturation state (Figure 6(c) and (d)).

3.4             State contour

Based on the analysis presented above, we illustrates that the
coupling strength νse is a crucial model parameter in the cor-

tex activity. Likewise, data confirms the fact that time delay
from RTN to SRN transmission is a key factor mediating the
behavior of ϕe.
To investigate this further, we employ two parameter con-

tinuations to draw a contour plane of νse and τ. This kind of
activity maps is an effective method to study the variation of
firing activity resulted from two parameters expressed by co-
ordinate axes. Four typical dynamical states are depicted by
four colors as explained in the caption of Figure 7, namely,
each region within one color can be classified as one from
these four states.
It is noted that, along the horizontal coordinate of

Figure 7(a), it is confirmed that the coupling strength is in
charge of firing rate: from low firing rate to saturation point.
However, from the vertical point of view, time delay also
affects the wave form in seizure states. Within a certain
range of νse, no matter the changes of time delay, it maintains
in the same activity status, while what has changed is the
wave form of seizure state.
As displayed in Figure 7(b), this kind of phenomenon oc-

curs in the contour graph of inhibitory connection νsr and
time delay τ between two GABAergic channels. Comparing
Figure 7(a) and (b) have a slight variation on the state se-
quence, bigger strength of νsr means lower firing state while
smaller inhibitory strength leads to saturation.
When considering the effects of both gX and α with τ, situ-

ations become not quite the same as that of synapse  strength
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Figure 5         (Color online) Effect of cortico-thalamus excitation on activity states under different νse values, while other model parameters are same fixed. (a)
Normal low firing state; (b) pathological state; (c) seizure state; (d) saturation state.

Figure 6         (Color online) Effect of time delay. Different τ under same νse results in different dynamical state. (a) Simple oscillation state; (b) spike-wave state;
(c) simple oscillation state; (d) saturation state.
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Figure 7         (Color online) Contour graph in two parameter panel. (a) νse – τ; (b) νsr – τ; (c) gX – τ; (d) α– τ. Region in green color for low firing rate state, red for
saturation state, and deep blue for simple oscillation state, light blue for spike-wave state. Dotted regions are not classified due to the margin error.

νse and νsr. The two-dimensional map in (νsr, τ)-space given
in Figure 7(c) implies the spike-wave state can hardly exist
and will still unlikely arise no matter when either time delay
or conductance gX increases. Situations obtained in the (α, τ)
contour get more complex due to the unclear margin  caused
by simulation error as revealed in Figure 7(d). But it is certain
that when time delay is small, firing rate remains low what-
ever the value of the receptor offset time α and β are.

3.5             Uncertain time-delay

In Figure 7(a), we know that time delay does not affect much
on the states if time delay is fixed already, while νse makes
a great difference on the states. For a further study, here we
propose a random time delay τ instead of fixed time delay
which is used in all the above analysis.
Sequence diagraph and spectrogram are plotted in

Figure 8 (a)–(h) which demonstrates random time delay has
unique effects on activity states. Unlike fixed time delay,
time-varying time delay which may vary randomly within
a time range can manage seizure state at normal states.
Comparing Figure 8(b) and (h), the dominant frequency is
gradually down to a normal level lower than 5 Hz as the max-
imum of time delay increases. In this situation, increasing
time delay can suppress the seizure duration.

3.6             Reduced network
Research both in vivo and in vitro experiments has demon-
strated that spike wave activity is first initiated SRN and then
propagated to the cortex and finally is induced in the TRN
[35,36,40,46]. As mentioned in ref. [18], periodic signal can
simulate the excitatory drive to the TRN as an approximation
to the full mode when seizure state is generated. In this sec-
tion, we try a reduced model using sinusoidal input to replace
the effect of ϕe in the completed network.
From Figure 9 wemaymake a conclusion, this reduced net-

work can emulate the full network model, since spike-wave
state and simple oscillation state can be found under some
appropriate parameter conditions when studying dynamical
behavior of SRN denoted by ϕs and TRN denoted by ϕr.

4             Conclusion

We have developed a typical and widely used mean-field
model to study the clinical EEG data in seizure patients
and extensively simulated the dynamical behavior in the
cortex-thalamus circuitry. Besides four dynamical states
including normal activity and pathological seizure activity
were successfully modeled by changing some parameter
value in our present model, we mainly studied the generation
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Figure 8         (Color online) Suppression of time-varying delay on dynamical state. (a) Time series of seizure state; (b) spectrogram of seizure state; (c) time series
of suppressed seizure duration; (d) spectrogram of suppressed seizure duration; (e) time series of transient attack; (f) spectrogram of transient attack; (g) time
series of eliminated seizure; (h) spectrogram of eliminated seizure.
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Figure 9         (Color online) Comparison of reduced network and full model. (a) Spike wave form of SRN in simple network; (b) simple oscillation of SRN in
simple network; (c) spike wave form of TRN in full network; (d) simple oscillation of TRN in full network.

of seizure state and seizure evolution under different brain
connections.
Our results demonstrate that model parameters related to

synaptic connection, time delay, conductance, and also slow
variable have great effects on the activity state of brain, which
implies that multiple pathways can be provided to control
and even eliminate seizure spike wave in theoretical model.
Based on the  simulated  results  of  uncertain  time  delay il-
lustrated in the Section 3.5, time-varying time delay can also
be used to explore for monitoring seizure states. As addi-
tion, a reduced work is proved to present the main feature
of seizure behavior in general full model, which provides an
alternative choose for some situation such as theoretical anal-
ysis.
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