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Artificial bee colony (ABC) algorithm is motivated by the intelligent behavior of honey bees when seeking a high quality food
source. It has a relatively simple structure but good global optimization ability. In order to balance its global search and local search
abilities further, some improvements for the standard ABC algorithm are made in this study. Firstly, the local search mechanism
of cuckoo search optimization (CS) is introduced into the onlooker bee phase to enhance its dedicated search; secondly, the scout
bee phase is also modified by the chaotic search mechanism. The improved ABC algorithm is used to identify the parameters
of chaotic systems, the identified results from the present algorithm are compared with those from other algorithms. Numerical
simulations, including Lorenz system and a hyper chaotic system, illustrate the present algorithm is a powerful tool for parameter
estimation with high accuracy and low deviations. It is not sensitive to artificial measurement noise even using limited input data.
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1       Introduction

Nonlinear phenomenon is one of the most popular topics in
the past decades. Hou and Chen [1] applied super-harmonic
responses analysis method to identify the crack faults in ro-
tor system. Zheng et al. [2] also used the nonlinear theory
to research molecular dynamics, which fully illustrates the
necessity of studying nonlinear. Besides, Chaos theory as a
fundamental branch in this subject gains much attention. In-
side, since not all dynamical parameters of these systems are
usually known, and therefore it is significant to estimate these
unknown variables [3].
Until now, variety of optimal techniques are applied

to solve parameters identification for the chaotic systems
[4–7]. Besides, meta-heuristic-based algorithms like genetic

* Corresponding author (email: lvzhr@mail.sysu.edu.cn)

algorithm (GA), differential evolutionary (DE) algorithm,
particle swarm optimization (PSO) [8–10] gain their popu-
larity in the application to tackle with this problem. Zheng
et al. [2] applied GA to identify Lorenz system with one-di-
mensional parameter considered. He et al. [11] seemed to
be the first to introduce PSO to estimate the parameter of
chaotic system. Gao et al. [12] also adopted a novel quan-
tum-behaved PSO to identify parameters of Lorenz system.
Later, Sun et al. [13] inserted a variant mechanism into
PSO and then applied the improved version to identify the
Lorenz and Chen system. Modares et al. [14] estimated the
parameters through PSO modified with a nonlinear factor.
Alfi and Modares [9] used a novel adaptive PSO combining
with an adaptive mutation mechanism and a dynamic inertia
weight to solve the problem. Li et al. [15] and Peng et al.
[16] applied chaotic ant swarm (CAS) algorithm to deal with
chaotic systems as well. Ref. [17] introduced a high-effi-
ciency hybrid quantum-inspired evolutionary algorithm with
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DE to identify the parameters of the Lorenz system. All these
methods mentioned have generally achieved a satisfactory
result.
Apart from the heuristic algorithms presented above, arti-

ficial bee colony (ABC) [18] algorithm aroused much atten-
tion. This meta-heuristic algorithm is motivated by the in-
telligent behavior of honey bees seeking a high quality food
source. It has the advantages of simple structure (as simple
as PSO and DE), ease of use, and high stability. It has been
applied solved many engineering problems, such as structural
optimization design [19,20] and structural damage identifica-
tion [21,22]. In addition, Kang and Li [23,24] used ABC and
PSO to optimize support vector regression and thenmade sys-
tem reliability analysis for slopes. However, only a fewworks
have been reported to the field of parameters estimation for
chaotic systems. Li and Yin [25] introduced a kind of ABC
combined with DE operator to identify the parameters of the
Chen system. Hu et al. [26] put forward a hybrid ABC al-
gorithm to identify the uncertain fractional-order chaotic sys-
tems, in which a new modified search mechanism was used
to describe local search.
Despite good identified results in the mentioned references,

the models used usually are normal chaotic systems such as
Lorenz system [12,27] and Chen system [25], little research
can be found about the estimation of hyper chaotic systems.
Meanwhile, studies on impacts of artificial noise and num-
ber of sample data are rare as well, so this paper is aiming at
improving the standard ABC and these two problems men-
tioned above. As with the method, it is widely acknowledged
that these heuristic algorithms are easily to trap the local min-
imum or slow convergence [9,12,13,28]. In order to balance
local search and global search ability of original ABC further,
some improvements are also made. Firstly, the local search
mechanism of cuckoo search (CS) optimization is introduced
into the onlooker bee phase to enhance its exploitation abil-
ity. Since something behinds the CS is Lévy flights and this
mechanism has been successfully proved to be effective in CS
[29,30]. In fact, Lévy flights is a kind of stochastic process
subject to power-law distribution and this mechanism can be
utilized to describe many behaviors like collecting honey and
hunter-gatherer. Introducing this mode into the onlooker bee
phase, it means bees can realize detailed research in promis-
ing food source. Secondly, the scout bee phase is also mod-
ified by the chaotic search mechanism. This improvement is
beneficial for algorithm getting rid of local minimum due to
the feature (ergodicity) of chaos [31]. Via such change, the
ceased solution (trapped in local minimum) can continue to
search, which can increase algorithm’s exploration ability.

2       Problem formulation

In general, if one does not have a prior knowledge about the
chaotic system, then the system identification becomes a diffi-

cult problem and we have to choose the system parameters by
trial and error. Consequently, the system identification prob-
lem is usually reduced to a parameters estimation approach
[27].
Considering a n-dimensional chaotic system, given as fol-

lows:

x x xF= ( , , ),0 0 (1)

where x x x x R= ( , , ..., )N
n

1 2
T denotes the state vector, x is

the derivative of x and x 0 is the initial value. It should be
noted = ( , , ..., )0 10 20 d 0 is a set of original parameters,
which must be estimated.
Supposing we have known the basic information of system

(1) in advance, then the calculated system can be presented as

x x xF= ( , , ),0 (2)

where x x x x R= ( , , ..., )N
n

1 2
T is the state vector of calcu-

lated model, and = ( , , ..., )d1 2
T
is a serious of identified

parameters.
Obviously, there appear disparity between the response ac-

quired from the measurement and those obtained from calcu-
lations, therefore we can define themean squared error (MSE)
as the objective function, given as follows:

x x
W

MSE = 1 ,
t

W

t t
=1

2 (3)

where W represents the length of data adopted for parame-
ter identification, x t and x t t W( = 1, 2, ..., ) denote state vec-
tors of the original and the estimated systems at time t , re-
spectively. Because of irregular dynamic behavior nature of
chaotic systems, the parameter estimation for chaotic systems
is always a multidimensional continuous optimization prob-
lem, where the decision vector is 0 and the optimization goal
is to minimize MSE [32]. In addition, when utilizing some
traditional techniques to solve this problem, it easily catches
in local optimal and difficult to obtain the global optimal pa-
rameters due to the complexity of the objective function, so
more and more heuristic algorithms are applied to solve pa-
rameter identification for chaotic systems. Figure 1 presents
the process of parameters estimation as an optimization prob-
lem.

3       Algorithm for parameters estimation

3.1       Description of ABC algorithm

The ABC algorithm is motivated by the real behavior of
honey bees seeking high quality food sources. The related
details can be seen in ref. [19]. In the algorithm, a food
source position is defined as a possible solution and the
nectar quality of the food source matches the fitness of the
relevant solution in optimization process.
The general structure of algorithm is introduced as follows:
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Figure 1         The process of parameters estimation as an optimization problem.

(1) Initialization phase. Food source is expressed as
eq. (4) in a random way

x l u l= + rand(0, 1) ( ),i i im i, (4)

wherem, is the dimension, ui and l i represent the upper bound
and lower bound of the parameter xm,i.
(2) Employed bees phase. Supposing the xm is a food

source that to be exploited and behavior of the employed bee
can be simulated in the following equation:

{ }
v x x x

m SN m k i D

= + ( ),   

= 1, 2, ..., ,   ,   1, 2, ..., ,
m i m i m i m i k i, , , , ,

(5)

where xk is a food source, m i, is a random number from [−1,
1], i is a randomly chosen dimension, D is the dimension
number and SN denotes the number of employed bees (it is
known that the quantity of the employed bees is the same as
the onlooker bees’, which is SN ). After producing a new
candidate source, its profitability is calculated accordingly,
and ‘greedy selection’ is utilized between x m and vm.
The fitness of each solution in this problem is calculated

according to

x xfit( ) = 1 / (1 + fit( )).m m (6)

(3) Onlooker bees phase. The employed bees return home
and share their food source information with the onlooker
bees. They select the food source to exploit relying on the
probability value pm:

x xp = fit( ) / fit( ),m m mm

SN

= 1
(7)

after selecting food source, onlooker bees will fly there to
exploit better food source. In the original ABC algorithm,
the behavior is simulated by eq. (5), then fitness value is
calculated applying the ‘greedy selection’ to produce better
food source.
(4) Scout bees phase. limit parameter is used to judge

whether the solution is abandoned or not. If the solution
couldn’t improve after the limit times, as mentioned above,
the solution will be given up and eq. (4) will be used to pro-
duce a new food source to replace the abandoned one. The

limit parameter mentioned in scout phase can be calculated
with eq. (8) [18]:

l SN D= . (8)
3.2       Improvements to ABC algorithm

3.2.1   The search behavior of onlookers
In real honey bee colonies, an employed bee exploits the food
source and then conveys the information to the onlookers by
dancing. And an onlooker will observe variety of dances and
know more information and finally make a decision, there-
fore, the behavior of onlookers should be different with that
of employers [28]. However, in the original ABC, the same
formula (eq. (5)) is adopted to simulate this two honey-col-
lected activities. So in the improved algorithm, the CS local
search mechanism is inverted into the onlooker bee phase.
CS is a bio-inspired optimization method that mimics the

brood parasitism behavior of many species of cuckoos. The
biggest feature of the CS is that it realizes its intensive search
mode through Lévy flights [33]. In past, the flight behavior
of many animals and insects have been analyzed in various
studies which exhibit the important properties of Lévy flights
[29]. Furthermore, the moving direction of this flight mode is
random, but its step-size is subjected to power-law distribu-
tion regular. And thus it frequently moves in a small step-size
and may have a large step once in a while, which can guaran-
tee the detailed search further.
In this research, aMantegna algorithm [30] for a symmetric

Lévy stable distribution is applied for producing random step
sizes. Here, ‘symmetric’ means that the step-size might be
positive or negative. In this method, the step-size s can be
calculated by the following equation:

s u

v
= / ,

1 (9)

where (0 < 2) denotes an index, u and v are submitted
to normal distributions, that is

u N v N~ (0, ), ~ (0, ),u v
2 2 (10)

where
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=
(1 + )sin( / 2)
[(1 + ) / 2]2

,   = 1,u v( 1)/2

1/

(11)

where ( ) denotes the Gamma function and can be acquired
based on the following equation:

t t(1 + ) = e d .
0

t (12)

Then the step sizes can be generated based on Lévy distri-
bution to exploit the search area and given as follows:

x xt s t t tstep_size( ) = 0.001 × ( ) × ( ( ) ( )),kbest (13)

where t is the iteration counter for Lévy search strategy, s t( ) is
obtained from eq. (9). Similar with PSO, x x( )kbest is social
learning component in which x best is the best solution in the
current iteration cycle and xk is the randomly selected solu-
tion within colony and x xk best. The final solution update
equation to simulate the onlookers can be given as follows:

x t x t t U( + 1) = ( ) + step_size( ) × (0, 1),
ij ij
T (14)

where xij is an onlooker bee that is going to exploit the food
source,U (0,  1) is a uniformly distributed random number be-
tween 0 and 1 and t Ustep_size( ) × (0, 1) is the actual random
flights calculated from Lévy distribution. As is mentioned
above, parameter t is the times of exploiting food sources,
and if a more satisfied place is found, the ‘greedy selection’
is also applied. With this expression, the learning compo-
nent and CS search mode are introduced into the second bee
phase, which can not only enhance the dedicated search for
food sources but also fit real honey-collection behavior for
bees.

3.2.2   The search behavior of scouts
In the standard ABC, if a food sources is exploited up to the
limit times, the food source will be abandoned and they will
restart finding another one randomly. In the improved al-
gorithm, the deserted solution, also the solution trapped in
the local minima is utilized to produce chaotic sequence and
the best solution will be replaced the original solution (will
be abandoned). Compared with random motion, chaos has
its own characteristics including randomness, ergodicity and
regularity. Among these features, ergodicity can be viewed as
an effective way to help the algorithm escape from trapping
local minima, so this mechanism is introduced into scout bee
phase. Through such improvement, the solution ceased ex-
ploitation can continue to local search, which can increase
the exploration ability of the algorithm.
The chaotic sequence can usually be produced by the fol-

lowing well-known one-dimensional sine map [34] defined
as follows:

Z Z Z a= sin( ),   (0, 1),   0 < 4,k kk +1 (15)

where Z k is the value of the variable Z at the kth iteration.
Usually after several steps iteration, it will lead to chaos phe-
nomena. Supposing the abandoned solution is xabandoned, the

maximum iteration number is 300 and then the new solution
can be calculated as follows:

x x Z u l= + ( ).j j i k j j jabandoned, min, max  mum , max, min, (16)

4       Numerical simulations

4.1       The Lorenz system

As the most typical chaotic system, Lorenz system is em-
ployed as the first numerical example. The phase diagram
from x x1 2-plane, x x1 3-plane and x x2 3-plane of the Lorenz are
showcased in the Figure 2(a)–(c). Anyone can find the sin-
gular attract-or in the central place and observe the untidy
feature. The general expression of the chaotic system can be
described as follows:

x x x
x x x x
x x x x

= ( ),
= ( ) ,
= ,

1 1 2 1

2 2 3 1 2

3 1 2 3 3

(17)

where x ,1 x2 and x3 are the state variables, ,1 2 and
3 are unknown positive constant parameters. To
produce the chaos phenomena, the vector parameter

= [ , , ] = [10, 28, 8 / 3]1 2 3
T T and it must be esti-

mated. Furthermore, in order to make comparison with
ref. [27], the same searching ranges for this set were:
0 20,1 0 502 and 0 5.3 For the objective
function, first, a fourth-order Runge-Kutta method was used
to solve the system (eq. (17)) with step length h=0.01 to  get

Figure 2         (Color online) The phase diagram of Lorenz system. (a)–(c)With-
out noise; (d)–(f) with noise.

a discrete time series of this system at time
h h h0 , 1 , ..., 300 . And then serious of evolutionary algorithms
are applied to identify these parameters.
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4.1.1   Parameter settings on algorithm
In this case, for the ABC, colony size is N = 50pop ;
for the CS, according to the ref. [35], colony size is
N = 50pop , discovery rate is P = 0.25a ; for the imperial
competitive algorithm (ICA), the related settings is the
same as ref. [36]. N = 100,pop number of imperial coun-
tries is N = 8,imp weight coefficient = 0.1, possession
probability P = 0.2r , angle coefficient = 0.5; for the
present method, colony size is N = 50pop ; parameter t = 15;
C = 50max . For the ant colony-particle swarm optimization
(ACO-PSO), according to the ref. [27], the colony size
is 50, weight factors = 0.9,max = 0.4min acceleration
constants c c= = 1.491 2 passive congregation coefficient
c = 0.73 range parameterd = 0.25. Since swarm intelligence
is a kind of stochastic algorithm, to ensure fairness in com-
parison of the robustness of the examined algorithms, for
each problem the analysis is repeated 30 times indepen-
dently. The final estimation results of all cases including
their averages, standard deviation and the worst result are
listed in the Tables 1–4.

4.1.2   Parameter estimation on Lorenz system
After completing calculation, several typical evolving pro-
cesses for the objective function MSE were carried out.
Figure 3 presents the evolution of the objective function of
the best solution based on mentioned four techniques. it
can be observed that the objective function value from the
proposed algorithm is closer to zero than that from the ABC,
CS and ICA algorithms, implying that the present algorithm
can converge to the global optimum very quickly and also
indicating that the identified results from are closer to preset-
ting values. Figure 4 also shows that all estimated parameters
obtained by the present algorithm are very close to the true
values in all experiments. It also shows that trajectories of
the identified parameters asymptotically converge to their
actual values. Again, it can be easily observed that it only
takes 20 iterations for estimated parameters converging to
actual values. Furthermore, Table 1 summarizes the sta-
tistical results acquired in the estimation of the parameters

,1 2 and 3 using the mentioned algorithms, for a  complete

Table 1        Statistical results obtained for the generalized three-dimensional Lorenz system with the four algorithm used

Parameters
Statistical result Algorithm

1 2 3

ABC 11.1252 26.8145 2.6595

CS 10.0150 27.9814 2.7071

ICA 10.0023 27.9980 2.6703
Average

Present algorithm 10.0000 a) 28.0000 2.6667

ABC 9.4839 28.8635 2.6667

CS 9.9419 28.0717 2.6731

ICA 9.9979 28.0049 2.6664
Best

Present algorithm 10.0000 28.0000 2.6667

ABC 12.4197 26.1719 2.6463

CS 10.2999 27.5283 2.7832

ICA 10.0672 27.8991 2.6854
Worst

Present algorithm 10.0000 28.0000 2.6667

a) Bold values indicate that our algorithm is better than other algorithms.

Table 2        Results obtained by several parameters estimation algorithm available in the literature (Lorenz system)

PSO [32] EP [37] DE [10] GA [27] PSO-ACO [27] Present algorithm
Parameter

Average Best Best Average Best Average Best Average Best Average Best

1 10.0184 9.9953 10.0162 10.0101 10.0001 10.0033 9.9013 10.0005 10.0000 10.0000 10.0000

2 27.9934 28.0071 27.9961 27.9939 28.0000 28.0011 28.05187 28.0011 28.0000 28.0000 28.0000

3 2.6663 2.6670 2.6659 2.6666 2.6667 2.6673 2.5703 2.6673 2.6666 2.6667 2.6667

MSE 4.18 0.0468 0.0172 3.60
×10–4

2.00
×10–7

6.34
×10–3 Not given 1.20

×10–5 1.03×10–6 1.59
×10–9 a)

1.13
×10–9

a) Bold values indicate that our algorithm is better than other algorithms.
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Table 3        Statistical results obtained for the generalized hyper chaotic system with four algorithm used

Parameters
Statistical result Algorithm

1 2 3 4
MSE

ABC 4.5842 16.5182 1.1819 0.2270 3.2543

CS 5.9629 15.6173 1.3282 0.2416 3.7987

ICA 4.4487 15.5847 0.6330 0.4003 2.0517
Average

Present algorithm 4.9999 a) 15.9999 1.0000 0.5000 2.57×10–8

ABC 5.0014 13.7785 1.2937 0.5399 0.3119

CS 4.9042 16.7636 0.9569 0.5126 0.2864

ICA 5.0781 16.4324 1.0697 0.5201 0.0192
Best

Present algorithm 5.0000 16.0000 1.0000 0.5000 1.98×10–9

ABC 3.8326 24.7651 2.4097 0 7.7600

CS 9.2616 20.1714 1.8928 0 7.4882

ICA 4.2433 11.4808 0.4571 0 2.6434
Worst

Present algorithm 4.9995 16.0012 0.9996 0.5001 3.87×10–7

a) Bold values indicate that our algorithm is better than other algorithms.

Table 4        Statistical results obtained for the generalized hyper chaotic system by the proposed algorithm with different input data

ParametersStatistical
result

Number of
sample data 1 2 3 4

MSE

300 4.9999 15.9999 1.0000 0.5000 2.57×10–8 a)

200 4.9999 15.9999 1.0000 0.5000 3.63×10−7

100 4.9743 16.0031 1.0006 0.5026 9.53×10−6
Average

50 5.0009 15.9996 0.9998 0.5004 8.60×10−7

300 5.0000 16.0000 1.0000 0.5000 1.98×10−9

200 5.0000 16.0000 1.0000 0.5000 4.46×10–9

100 5.0000 16.0000 1.0000 0.4999 1.86×10−8
Best

50 5.0000 16.0000 1.0000 0.5000 5.52×10−9

300 4.9995 16.0012 0.9996 0.5001 3.87×10−9

200 4.9992 15.9956 0.9994 0.4998 8.66×10−7

100 4.9378 15.9986 0.9992 0.5065 4.93×10−5
Worst

50 5.0208 15.9960 0.9983 0.5050 2.74×10−5

a) Bold values indicate that our algorithm is better than other algorithms.

overview of our estimation.
Observing from Table 1, one can find that either the

best identified value, the average one or the worst one
acquired by proposed algorithm are the most accuracy.
In addition, Table 2 also records the results acquired by
other meta-heuristic methods in literature, such as: PSO
[33], evolutionary algorithm (EA) [38], DE [10] and
PSO-ACO [27]. Among these algorithms, in terms of
the average value, the outcome obtained by PSO-ACO is

= [10.0005,  28.0011,  2.6673],which the most satisfactory
identified result in reference. While the outcome from the
present algorithm is = [10.0000,  28.0000,  2.6667]. Fur-
thermore, the MSE got by the suggested method is
1.59 × 10 ,9 which is far less than that acquired by other
algorithms. In general, the  present  algorithm  shows  more

competitive optimization ability in dealing with this problem.

4.2       A new 4-D hyper-chaotic system

A more complex hyper-chaotic system is adopted as the sec-
ond numerical example to test the proposed algorithm further.
At least, such mentioned autonomous system should have the
following distinguishing features. It is usually dissipative,
which has more dimension number and one or more nonlin-
ear terms. The most important thing is that the system has
two positive Lyapunov exponents with some given parame-
ters and initial conditions [37]. In brief, compared with the
traditional Lorenz system, it becomes more difficult to esti-
mate these original parameters. In this case, according to ref.
[37],  the  governing  equation  of  a  new  four-dimensional
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Figure 3         (Color online) Convergence process of means of the objective
values by four algorithms used (Lorenz system).

Figure 4         (Color online) Searching process for the Lorenz system with the
present algorithm.

continuous autonomous hyper-chaotic system is given as fol-
lows:

x x x x
x x x x
x x x x
x x x x

= ( ) + ,
= ,
= ,
= .

1 1 2 1 4

2 1 3 2

3 2 1 2 3 3

4 4 4 2 3

(18)

The control parameters can be set as:
= [ , , , ] = [5, 16, 1, 0.5] .1 2 3 4

T T Resulting after
5 × 104 iterations: four Lyapunov exponents are 1.400240,
0.313208, −0.968585 and −3.327758. It implies that there
exists a hyper-chaotic attractor and reflects very rich
chaotic and hyper-chaotic behaviors. The three-dimensional
phase portrait of the hyper-chaotic attractor is illustrated
in Figure 5(a). The searching ranges for this set were:
0 50, which is larger than that of Case 1. For the
objective function, the same sampled data as the Lorenz
system is used for parameter estimation in this example.

Figure 5         (Color online) Three-dimensional plot of the trajectory in the x1-
x2-x3 space. (a) Without noise; (b) with noise.

Parameter estimation on hyper-chaotic system: Similar
with Case 1, typical evolutionary processes for the objective
function MSE were carried out. Figure 6 records the local
evolution (from 50th cycle to 100th cycle) of the objective
function based on mentioned four techniques. This picture
shows that the value of the proposed algorithm decreases
to zero very fast while the other three methods trap in local
minima, which means the present algorithm can still ac-
quire a satisfied estimated results in this case and the other
techniques may obtain the results with some big errors.
Figure 7 exhibits the evolutionary process of all estimated
parameters. It only needs 50 cycles’ for the hybrid algorithm
to converge, adequately implying its high efficiency. The
statistical outcomes of the best objective function value, the
average , the best and the worst of identified parameters are
listed in Table 3. From observing this table, it can be found
the values acquired by the proposed algorithm is much better
than ABC, CS and ICA, which fully demonstrate the high
accuracy of the present method further.

4.3       The influence of the sample data
In this part, the influence of different input data is investi-
gated. Because for the 4-D hyper chaotic system, the other
threementioned algorithms cannot obtain a rational estimated
result, only the present method is adopted to calculate. Be-
sides  the  previous  300   data    h h h(0 , 1 , ..., 300 ),   we   also
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Figure 6         (Color online) Convergence process of means of the objective
values by four algorithms used (Hyper chaotic system).

Figure 7         (Color online) Searching process for the Lorenz system with the
present algorithm.

introduced 200 data h h h(0 , 1 , ..., 200 ), 100 data
h h h(0 , 1 , ..., 100 ), and 50 data h h h(0 , 1 , ..., 50 ), to calculate.

Figure 8 shows the evolutionary process based on the four
group data. One can find different input has a distinct
influence on the initial iteration, but for all situations, it cost
nearly 50 iterations for the algorithm to converge to zero,
which indicates these four situations can all obtain a relative
accuracy estimated outcomes. Table 4 records the final
identified results of different input data. As with average
results, the best is coming from the 300 data used while the
worst is the 100 data. In brief, this four group input data can
obtain a satisfied estimated outcome, but the deviation of
the 300 data is the smallest.

4.4       The influence of the noise

In practical measurements of responses in systems, there can
be a possibility of errors due  to  measurement  noise  or/and

Figure 8         (Color online) Convergence process of means of the objective
values by the proposed algorithm with different input data (Hyper chaotic
system).

modeling error. In order to account for these errors in
the measurements; uniformly distributed random noise
[35,39,40] can be added to the simulated responses data with
zero mean and a variance of 1. The noise for responses can
be incorporated by using the following equation:

f f n= (1 + (2 rand 1)),i i l (19)

where fi is the ith measured response with noise, f i is the ith
measured response without noise, nl is the noise level for re-
sponses (e.g., 0.01 refers to a 1 percentage noise level). In
this study, in order to simulate the experimental responses in
a realistic way, 10% random noise is added to the analytic re-
sponses. Furthermore, from observing Figures 2(d)−(f) and
5(b), one can point that singular attract-tors of two phase di-
agram become more obscure and the untidy feature is more
prominent, which greatly increase the difficulty for identifi-
cation.
Parameter estimation with noise: Because the present algo-

rithm can acquire a more competitive estimated result, so in
this case, only the proposed algorithm is adopted to calculate.
Figure 9 exhibits the evolutionary processes of parameters of
the Lorenz system, respectively. It can be observed that the
algorithm could still obtain results without much deviation;
even the data used is polluted by artificial noise. Furthermore,
Figure 10 shows the relative estimation errors from 30 runs
of the proposed algorithm with each single run executing 100
iterations. The estimation error can be calculated as follows:

error = | |/ , (20)

where denotes the estimated vector, while represents the
pre-assumed vector. The mean estimated errors for these
three parameters maintain at ten of the negative power. This
fully illustrates the robustness of the proposed algorithm.
For the 4-D hyper chaotic system, the same noise level

(10%) is considered. Similar with the Lorenz, Figure 11 also
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Figure 9         (Color online) Searching process for the Lorenz system with the
present algorithm (with noise).

Figure 10         (Color online) The relative estimation error of Lorenz system
with each run (with noise).

shows the relative error of each estimated parame-
ter of each run. The final results are = [5.0079,
16.0468, 1.0064, 0.5032] (300 input data),

= [5.0169,  16.5089,  1.0488,  0.5116] (200 in-
put data), while the results from 100 and 50 input
data are = [5.0244,  16.1729,  1.0942,  0.5242] and

= [5.1012,  16.3949,  1.1341,  0.5087] respectively. It
can be observed that the outcome of 300 data is the most
accuracy without much deviation, which presents that the
more input data is beneficial to enhance the robust of the
algorithm. On the other hand, although the same noise level
is introduced, the identified result of the Lorenz is closer
to the assumed value. This may be attributed to the strong
nonlinear feature of the 4-D hyper chaotic system.

5       Conclusion

In this work, parameter estimation for chaotic systems
(Lorenz and a 4-D hyper chaotic  system)  is  formulated  as

Figure 11         (Color online) The relative estimation error of 4-D hyper chaotic
system with each run (with noise).

multidimensional optimization problem, and the proposed
hybrid artificial bee colony algorithm is implemented to
solve these problems on three-dimensional chaotic systems.
Based on the results and discussion presented in this study,

the following main conclusions are given:
(1) Numerical simulations show that the present algorithm

can estimate the parameters for chaotic systems with low de-
viations. Compared with other evolutionary algorithms, the
proposed method can acquire a more accuracy result with less
iteration. This result can be attributed to the Lévy walk and
chaotic search mechanism.
(2) For the different input data, one can find this difference

sample data mainly affect the initial iteration and it seems has
no significant influence on global convergence. As with final
estimated results, the result coming from 300 data used is the
most accuracy and less deviation, which fully presents that
the number of input data has a notable effect on the stability
of the algorithm.
(3) Even the input data is contaminated with artificial noise,

the present algorithm could still acquire a good identified re-
sult, especially for the Lorenz system, the error is particularly
small. Moreover, for the 4-D hyper chaotic system, the identi-
fied result from 300 input data is also the best. This illustrates
the more sample data can enhance the robust of the algorithm
further. The future work is to apply the proposed hybrid al-
gorithm to other chaotic systems and make this method as a
powerful tool for various numerical optimization problems in
physics.
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