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A dynamic model is established for an offset-disc rotor system with a mechanical gear coupling, which takes into consideration 
the nonlinear restoring force of rotor support and the effect of coupling misalignment. Periodic solutions are obtained through 
harmonic balance method with alternating frequency/time domain (HB-AFT) technique, and then compared with the results of 
numerical simulation. Good agreement confirms the feasibility of HB-AFT scheme. Moreover, the Floquet theory is adopted to 
analyze motion stability of the system when rotor runs at different speed intervals. A simple strategy to determine the mon-
odromy matrix is introduced and two ways towards unstability are found for periodic solutions: the period doubling bifurcation 
and the secondary Hopf bifurcation. The results obtained will contribute to the global response analysis and dynamic optimal 
design of rotor systems. 
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1  Introduction 

Rotor misalignment is one of the most common faults in the 
operation of rotating machinery. As perfect alignment of the 
driving and driven shafts can never be achieved practically, 
the misalignment condition is virtually always present in the 
machine trains. Even if a perfect alignment is achieved ini-
tially, it will be impossible to maintain it during the ma-
chine operation due to various factors, such as thermal dis-
tortion, movement of foundation, asymmetry in the applied 
load, etc. Thus the problem of misalignment is of great 
concern to the designers and maintenance engineers who 

focus on understanding and diagnosing rotor misalignment 
to avoid any failure or damage may arise. 

Shaft misalignment causes reaction force to be generated 
from the coupling which is often a major cause of machine 
vibration. There has been wide coverage in the literature of 
rotor misalignment. Dewell and Mitchell [1] determined the 
expected vibration frequencies for a misaligned metallic- 
disc flexible coupling and showed experimentally all the 
predicted frequencies through real-time spectrum analysis. 
Sekhar and Prabhu [2] studied shaft misalignment in a ro-
tor-bearing system with flexible gear coupling using high 
order finite element method. They recommended the 2X 
vibration response as the characteristic signature of misa-
ligned rotor shafts. Xu and Marangoni [3,4] presented a 
theoretical research on a misaligned motor-flexible cou-
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pling-rotor system and modeled the misalignment effect 
analytically using the universal joint kinematics. The de-
rived results indicated that coupling misalignment produces 
a frequency that is twice of the shaft rotating frequency, and 
the vibration response due to shaft misalignment largely 
affects the even multiples of running speed. Laboratory ex-
periments were carried out to support their theory. Lee and 
Lee [5] developed a theoretical model of a misaligned rotor 
on ball bearings. Experimental results revealed that the rotor 
whirl orbit tends to collapse towards a straight line as angu-
lar misalignment increases. Li and Yu [6] investigated the 
nonlinearly coupled lateral and torsional vibrations of a ro-
tor system with a misaligned gear coupling. Numerical re-
sults showed the even multiples of running speed in lateral 
vibration and the odd multiples of running speed in torsion-
al vibration. Al-Hussain and Redmond [7] modeled the 
mechanical coupling in the form of a radially rigid joint 
with rotational stiffness and discovered the 1X lat-
eral-torsional coupled vibration response for two Jeffcott 
rotors with parallel misalignment. Al-Hussain [8] presented 
a further study on the effect of angular misalignment upon 
the motion stability of two rigid rotors connected by a flexi-
ble mechanical coupling. Sinha et al. [9] proposed a tech-
nique to estimate both the rotor unbalance and shaft misa-
lignment from the single machine run-down data. Lees [10] 
analyzed the effects of parallel misalignment in rigidly cou-
pled rotors mounted on the linearized bearings. Bouaziz et 
al. [11–13] investigated the dynamic behaviors of a misa-
ligned rotor device supported by two hydrodynamic journal 
bearings. The influence of angular misalignment was essen-
tially characterized in frequency domain by the presence of 
two dominant peaks and the comparison between rolling 
bearing and hydrodynamic journal bearing also showed that 
hydrodynamic bearing permits to attenuate vibration due to 
the misalignment defect. A similar work was subsequently 
reported on a misaligned rotor system with active magnetic 
bearings. Patel and Darpe [14,15] analyzed the influence of 
various types of misalignment on the rotor vibration. A 
coupled rotor system in the bending, longitudinal and tor-
sional modes was modeled by using finite element method 
based upon the Timoshenko beam theory. Experimental 
tests were then carried out to reveal the unique nature of 
misalignment fault leading to reliable misalignment diagno-
sis. Jalan and Mohanty [16] developed a model based tech-
nique for fault diagnosis of a rotor system with coupling 
misalignment and mass unbalance. The fault condition and 
location were successfully detected with the utilization of 
residual generation technique. Redmond [17] introduced a 
flexibly misaligned shaft model that incorporates both the 
angular and parallel misalignment in the presence of mass 
unbalance. A series of numerical simulations were per-
formed on the dimensionless dynamical response to evalu-
ate the influence of several key parameters. Rybczynski [18] 
showed a computer simulation of bearing misalignment 
defects in a power turbo-generator. The obtained results 

indicated that bearing trajectories carry much important 
information on the position and direction of bearing dislo-
cations which can be used to diagnose the misalignment 
fault in rotating machines. Lal and Tiwari [19,20] developed 
an identification algorithm to estimate the bearing and cou-
pling parameters along with the mass unbalance parameters 
in a simplified turbine-generator model by using the forced 
response information. This algorithm based upon the 
least-squares fit technique was further extended to the mul-
ti-disc, multi-bearing and multi-coupling rotor systems and 
proved to be effective and robust. The automatic control of 
misaligned rotor systems gained an increasing attention 
from engineers. All the actual engineering systems are typ-
ical complex networks, and the rotor system is no exception. 
Investigation on the synchronization of complex networks is 
of great significance in the various science and engineering 
fields, such as cellular and metabolic networks, the Internet, 
social communities, electric power grids, multi-rotor engine 
systems, etc. These large-scale dynamic networks often 
display some synchronous behaviors among their constitu-
ents, and some rules about this phenomena were demon-
strated in a time-varying dynamic network [21] and a spe-
cific duplex network [22] respectively. Liu et al. [23] uti-
lized the delay-input and discretization approaches to design 
the sampled-data controllers for the robust consensus of the 
multi-agent systems. Two sufficient conditions were de-
duced to ensure the robust consensus of multi-agent systems 
with external noises and the estimates of convergence speed 
of consensus errors were obtained as well. Then Liu et al. 
[24] developed the finite-time consensus criteria for a class 
of multi-agent systems with nonlinear dynamics using adap-
tive technique. Unlike the traditional ones, the proposed 
controllers do not need the prior information on Lipschitz 
constants and eigenvalues of Laplacian matrix. The above 
control strategies in networks are also suitable for other 
engineering systems, especially misaligned rotor systems. 
On the other hand, the research on rotor systems [25,26] can 
be helpful for understanding the dynamical behaviors and 
topological structures of many real-world complex net-
works. 

Even the problem of rotor misalignment has been widely 
discussed, not much work is focused on nonlinear dynamics 
of misaligned rotor systems. Other than the linear system, it 
is always difficult to obtain the analytical solution of rotor 
system with strong nonlinear terms, such as piecewise and 
fractional exponential nonlinearities. Particularly with the 
variation of some key parameters, the system may exhibit a 
series of complex nonlinear behaviors, such as the jump and 
hysteresis phenomena, bifurcation and chaos, etc. That can 
not be explained by the typical linear theory. Therefore, it is 
necessary to find an effective way for solving the problems. 
The traditional analytical methods, like the small parameter 
method, the averaging method and the multi-scale method, 
are effective for response study of weakly nonlinear systems. 
When strong nonlinear problems are encountered, the har-
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monic balance method (HB) is often adopted. However, the 
calculation accuracy is hard to ensure [27,28]. Based on the 
classic HB method, some revisions of it, including the per-
turbation HB method [29], the multi-scale HB method [30] 
and the elliptic-function HB method [31] were proposed for 
certain kinds of nonlinear problems. But these methods are 
not widely used in the engineering field due to their inherent 
limitations. The incremental harmonic balance method (IHB) 
is currently widespread in analyzing the response properties 
of strong nonlinear systems. In 1981, Lau and Cheung [32] 
firstly proposed the IHB method by combination of the in-
cremental approach and the harmonic balance method, then 
it was applied to solve various nonlinear problems in engi-
neering. The IHB method is not only suitable for the smooth 
dynamics [33,34], but it could also be used to deal with the 
piecewise-linear issues in gear pairs [35,36] and hinge joints 
[37,38]. However, it has difficulties with solving piecewise- 
discontinuous problem [39] since the incremental equations 
are usually obtained by the Taylor series expansion. A semi- 
analytical method of the implicit harmonic balance analysis 
named harmonic balance method with alternating frequency 
/time domain (HB-AFT) technique was firstly proposed by 
Yamauchi [40] in 1983. Then this method was developed to 
be a complete solution strategy for the periodic response of 
dynamic system by Kim and Noah [41–43]. Groll and Ewins 
[44] presented a homotopy continuation algorithm together 
with HB-AFT technique to compute the hysteresis response. 
Tiwari and Gupta [45] applied the HB-AFT scheme to ro-
tor-bearing systems to validate the steady response obtained 
by numerical integration. Villa et al. [46] reported a whole 
frequency domain analysis method based on the HB-AFT 
and perturbation technique. Zhang et al. [47,48] investigated 
the local resonance and global bifurcation chaos behaviors 
in varying compliance vibration of a ball bearing by 
HB-AFT method with arc-length continuation. The 
HB-AFT method establishes the relation of each order har-
monic term directly from the discrete time frequency fea-
tures, and there is little integration work required during the 
solving process. Thus, the HB-AFT method is considered to 
be more versatile for strong nonlinear systems with the 
piecewise and fractional exponential properties. 

When the nonlinear restoring force of rotor supports and 
the effect of coupling misalignment are taken into consider-
ation, motion equation of the rotor system possesses strong 
nonlinear properties and it is difficult to solve the equation 
analytically. In this case, numerical integration methods are 
often used to obtain the dynamic response of rotor systems. 
However, the mechanism of instability and bifurcation can 
not be revealed via numerical simulation. Thus this paper is 
mainly devoted to nonlinear mechanism analysis of a misa-
ligned rotor system with the help of an improved harmonic 
balance method and the Floquet theory. 

In this paper, a misaligned rotor system is studied when it 
is subjected to both unbalance and misalignment forces. The 
derived governing equation is solved with HB-AFT method 

and the periodic response is obtained. Then motion stability 
is deeply investigated by using the Floquet theory and some 
observations on the system dynamic behaviors are given. 

2  Physical model and governing equation 

2.1  Misaligned rotor model 

The analytical model is comprised of an electric motor and 
an offset-disc rotor that are connected by a mechanical gear 
coupling as shown in Figure 1. The rotor is mounted on ball 
bearings and driven at different speeds. The gear coupling is 
modeled of angular or parallel misalignment and the bearing 
clearance is considered in ball bearing close to the coupling 
because it suffers more severe wear and vibration under the 
alternating force generated from the coupling misalignment. 
Besides, the gyroscopic effects of rotor can not be neglected 
due to the lateral asymmetric rotor and support structures. 

2.2  Reaction force due to coupling misalignment 

Misalignment in gear coupling includes the angular, parallel 
and combined conditions as shown in Figure 2(b)–(d). The 
coupling consists of two half parts, each with the driving 
and driven shaft connection. The two half-couplings rotate 
around their axial center lines and engage with the shell 
separately. The shell is forced to revolve around both center 
lines of half-couplings during a whirl process and its center 
of cross section may move along a planar circle. 

 

Figure 1  Schematic of the misaligned rotor system. 

 

Figure 2  Misalignment and the corresponding motion conditions. (a) The 
alignment; (b) the parallel misalignment; (c) the angular misalignment; (d) 
the combined misalignment; (e) the straight line; (f) the cylindrical surface; 
(g) the double-cone surface; (h) the hemi double-cone surface. 
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According to the research of Han [49], central axis of the 
shell moves along a cylindrical surface when the coupling 
works with parallel misalignment. When angular misalign-
ment appears in the coupling, central axis of the shell spins 
and swings continuously between two half-couplings and its 
motion trace is a double-cone surface. If the coupling works 
with both the angular and parallel misalignment, the central 
axis trace of the shell is a hemi double-cone surface which 
is a situation between cylindrical and double-cone surfaces. 
Different motion styles of the shell in various misalignment 
conditions are shown in Figure 2(f), (g) and (h). 

Figure 3 gives the motion trace of the shell center, where 
o is the static center of the shell, o′ is the dynamic center of 
the shell, o1 and o2 are the centers of two half-couplings, ω 
is the rotating speed of rotor, φ is the initial angle, ω′ is the 
revolution speed of the shell, Δe is the equivalent amount of 
misalignment. For the parallel misalignment Δy, Δe=Δy. For 
the angular misalignment Δα, Δe=Ltg(Δα/2), where L is the 
assemble distance between two half-couplings. 

The motion trace of the shell center can be expressed as 
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When the half-couplings rotate around their center lines 
with the speed ω, the shell center revolves around its static 
position with a speed which is twice of ω. Since the shell 
always has a large mass, its motion virtually means apply-
ing an inertial centrifugal force on the rotor system. 

The inertial centrifugal force can be obtained 
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where M is the mass of the shell. 

 

Figure 3  Motion trace of the shell center. 

2.3  Rotor support force and dynamic equation 

Bearing clearance and the nonlinear contacting stiffness are 
considered in the bearing model as shown in Figure 4. The 
bearing is assumed to be isotropic because its deformation 
resistivity can be treated equivalent in each radial direction. 
It gives more intuitive understanding that the ball bearing is 
simplified to be axisymmetric by neglecting the distribution 
of balls in races. 

Due to the point contact between the ball and race in ball 
bearing, the following relationship can be obtained through 
Hertz contact theory [50] 

 
3
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where F is the applied load, γ is the elastic deformation, k is 
the contact stiffness. 

Thus, the rotor support force can be expressed as [51] 
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where r is the radial displacement of shaft, δ is the bearing 
clearance, kb is the bearing stiffness. 

It is assumed that x and y are translational displacements 
of rotor centroid, θx and θy are the rotational displacements 
of rotor shaft. Taking into account the gyroscopic effects of 
rotor, motion equation for the system can be written as 
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Figure 4  Simplified bearing model. 
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where m is the mass of rotor, Jd is the diametric moment of 
inertia of rotor, Jp is the polar moment of inertia of rotor, M 
is the mass of coupling shell, cl and cθ are the damping co-
efficients, fx1 and fy1 are the left bearing force components, 
fx2 and fy2 are the right bearing force components, Δe is the 
equivalent amount of misalignment, e is the eccentricity of 
rotor, ω is the speed of rotor, l1, l2 and l3 are the dimensions 
of rotor system shown in Figure 1, g is the acceleration of 
gravity, φ is the initial eccentric angle. 

According to eq. (4), fx1 and fy1 can be expressed as 
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where x1 and y1 are the displacements of rotor shaft at the 
left bearing, H(q) is the Heaviside function. 

 ( ) 0 ,  0,

1 ,  0.

q
H q

q

≤
=  >

 (7) 

Based on the kinematic analysis of rotor, x1 and y1 are 
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In the same way, fx2 and fy2 can be expressed as 
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where x2 and y2 are the displacements of rotor shaft at the 
right bearing, cb is the bearing damping. 

Then x2 and y2 are given by 
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To give eq. (5) a dimensionless form, it can be assumed 
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then eq. (5) becomes 
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where ′ denotes the derivative with respect to τ. 

3  HB-AFT scheme and stability analysis 

3.1  HB-AFT scheme 

Since eq. (12) is a nonlinear dynamic equation with piece-
wise and fractional exponential properties, it is difficult to 
solve it analytically. Thus the HB-AFT scheme is em-
ployed. 

For convenience, the variables are redefined as 
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According to eq. (12), FX, FY, FZ and FW are given by 
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where 
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then DX, DY, DZ and DW are given by 
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The periodic solution of eq. (14) can be represented as 
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where aX0, aY0, aZ0 and aW0 are the constants, aXk, aYk, aZk and 
aWk are the coefficients of cosine terms, bXk, bYk, bZk and bWk 
are the coefficients of sine terms, K is the maximum number 
of the considered harmonic terms. 

Similarly, the nonlinear restoring force can be written as 

 ( ) ( )
0

0

10

0

cos sin ,

X X Xk Xk

K
Y Y Yk Yk

kZ Z Zk Zk

W W Wk Wk

F c c d

F c c d
k k

F c c d

F c c d

τ τ
=

        
        
        = + −                         

  (20) 

where cX0, cY0, cZ0 and cW0 are the constants, cXk, cYk, cZk and 
cWk are the coefficients of cosine terms, dXk, dYk, dZk and dWk 
are the coefficients of sine terms, K is the maximum number 
of the considered harmonic terms. 

Substituting eqs. (19) and (20) into eq. (14) and balanc-
ing the coefficients of harmonic terms in each order, the 
following algebraic equations Gs are obtained. 

For the constant terms, 
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for the cosine terms, 
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for the sine terms, 
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The desired periodic solution can be obtained by solving 
eqs. (21)−(23) that are implicit algebraic equations hard to 
be solved directly. Thus a Newton-Raphson iteration pro-
cedure is adopted. Let 
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Taking P as an unknown variable, the fix point P* can be 
found from an initial guess P0 through the Newton-Raphson 
iteration procedure for eqs. (21)–(23). That is 
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where J is the Jacobian matrix, i.e. J=dG/dP. 
The values of Q, G and J in each step of iterations can be 

obtained by an alternating frequency/time domain technique. 
For a supposed P, the discrete values of X, Y, Z, W in time 
domain are given by the inverse discrete Fourier transform 
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where N is the number of samples in a period, n=0,1, 
 ,N–1. 

According to eqs. (16) and (27), the discrete values of FX, 
FY, FZ and FW can be obtained 
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then, the discrete values of FX, FY, FZ and FW in frequency 
domain are given as Q by the discrete Fourier transform 
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where k=1,2,···,K. 
To calculate the derivatives in J, eqs. (27)−(29) are uti-

lized to yield 
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where j, k=1,2,···,K, 
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To get a desired periodic solution, P* can be determined 
in proper accuracy through an iteration procedure utilizing 
eq. (26) as follows. 

(1) With an initial guess P(0), calculate Q(0) and J(0) by 
using eqs. (27), (29) and (30). 

(2) Iterate eq. (26) once, and get P(1). 
(3) Continue (1) and (2) until the iteration converges to 

P* which is accurate within an allowed error tolerance. 
Multiple solutions may appear in some conditions. With 

the different initial guess, the iteration will trace a different 
path. Thus proper initial guessed values are the key points. 

3.2  Stability analysis 

Periodic solutions of the system can be obtained by using 
the HB-AFT method and their stability will be checked with 
the Floquet theory for bifurcation analysis. Let 

 [ ]T
 ,′=V U U  (32) 

then eq. (14) is transformed into 

 ( )( ),  ,  ,τ τ μ′ =V F V  (33) 

where μ is the bifurcation parameter. 
It is assumed that eq. (33) has a periodic solution 

 ( ) ( ) ,Tτ τ∗ ∗= +V V  (34) 

v is given to perturb the assumed periodic solution V * and 
the perturbed equation is obtained 

 ( ) ( ),  ,  ,τ μ∗ ∗′+ = +V v F V v  (35) 

then F is dealt with the Taylor series expansion at V * and 
the linear terms are kept for eq. (35) 

 ( ) ,τ∗

∂′ = =
∂
Fv v A v
V

 (36) 

where A is a Jacobian matrix whose varying period is T. 
Thus, the stability of V * depends on v in eq. (36) which 

is a set of first-order time-varying differential equations. If 
the zero solution of v is stable, V * is stable. Otherwise, V * 
is unstable. It is further elaborated as follows. 

If S(τ ) is a fundamental solution of eq. (36), S(τ +T) is 
the fundamental solution as well since A(τ )=A(τ +T). The 
relation between S(τ ) and S(τ +T) can be expressed as 

 ( ) ( ).Tτ τ= +S M S  (37) 

It is assumed that the initial condition S(0)=I is satisfied, 
I is the identity matrix, therefore 

 ( ) ,T=M S  (38) 

where M is called the monodromy matrix. Its eigenvalues 
are the Floquet multipliers. 

The Floquet multipliers can determine the stability of V *. 
If all Floquet multipliers are within the unit circle centered 
at the origin of the complex plane, V * is stable. Otherwise, 
V * is unstable and bifurcation will occur in three ways. 

(1) If a Floquet multiplier leaves the unit circle through 
+1, the transcritical, symmetry-breaking or cyclic-folding 
bifurcation may occur. 

(2) If a Floquet multiplier leaves the unit circle through 
–1, the period-doubling bifurcation occurs. 

(3) If two complex conjugate Floquet multipliers move 
out of the unit circle away from the real axis, the secondary 
Hopf bifurcation occurs. 
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According to Hsu method, the approximate monodromy 
matrix can be expressed as [52] 

 ( ) ( )1 1

1

exp ,
!

j
jN

n
n

jn N n N

T
T

j== =

 Δ
= Δ = + 

  
∏ ∏

A
M A I  (39) 

where Nj denotes the number of terms in the approximation 
of the constant matrix An exponential. It is reasonable to 
replace the time-varying matrix A(τ) by using the following 
constant matrix An in the nth time interval provided that N is 
chosen to be sufficiently large, ΔT denotes the time interval 
equally divided in a period. 

The constant matrix An is given by 

 ( )
1

1
d ,

n

n

n T

τ

τ
τ τ

−

=
Δ A A  (40) 

where 

 ,  1,2, , .n n T nT N n Nτ = Δ = =   (41) 

Therefore, if the periodic solution of eq. (34) is obtained 
by the HB-AFT method, the desired monodromy matrix and 
the associated Floquet multipliers can be calculated accord-
ing to eq. (39). Consequently, the stability and bifurcations 
of the periodic solutions can be investigated. 

4  Computation results and discussion 

The initial parameters of the system used for computation 
are as follows: 
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When ω =150 rad/s, K=8, N=256 and the allowed error 
tolerance ε =10−12, the periodic solution obtained by the 
HB- AFT scheme is (higher harmonic terms are omitted 
here) 
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As illustrated in Figure 5, the HB-AFT results agree well 
with the numerical solutions obtained by the Runge-Kutta 

method. The calculation of the HB-AFT scheme possesses 
fast convergence speed and large convergent domain, which 
can be observed in Figure 6. With the initial guessed values 
P(0)=0 except P(0)(1)=-0.1, the target solution is arrived via 
three HB-AFT iterations. 

Taking ω as a control parameter, periodic solutions of the 
system can be found by the HB-AFT scheme from 450 to 
800 rad/s, and the corresponding Floquet multipliers are 
calculated as well. The stability of periodic solutions will be 
checked by using the leading Floquet multipliers that are the 
largest ones in absolute value among the Floquet multipliers 
calculated. In this way, the instable speed interval for a rotor 
system can be determined and controlled. 

When ω =500 rad/s, the periodic solution obtained by the 
HB-AFT scheme is (higher harmonic terms are omitted): 
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Figure 5  Axis orbit of the rotor at 150 rad/s. 

 

Figure 6  Convergence of the HB-AFT scheme. 
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and its leading Floquet multipliers calculated are 0.7160± 
0.4037i whose absolute value is equal to 0.8220 less than 1. 
Thus, the periodic motion is stable. 

Comparisons of the HB-AFT scheme and Runge-Kutta 
method in phase portraits are shown in Figure 7, and the 
HB-AFT results agree well with the numerical simulation. 
Based on the numerical results obtained with Runge-Kutta 
method, spectrums of rotor response are also given in Fig-
ure 8 by FFT technique. It can be found that the first four 
order frequencies dominate the response of the system and 
thus the HB-AFT solution with eight order harmonic terms 
is accurate enough that is also confirmed by Figure 7. The 
coefficients of harmonic terms in X and Y match well with 
the magnitudes of frequencies shown in Figure 8. Moreover, 
the HB-AFT scheme facilitates saving of computation time 
because it is essentially a frequency-domain method. 

Calculations indicate that two complex conjugate Floquet 
multipliers move out of the unit circle at 537 rad/s and then 
get back inside the unit circle at 547 rad/s. Thus the periodic 
solution will lose stability between 537 and 547 rad/s, and 
the secondary Hopf bifurcation occur. Table 1 gives the 
leading Floquet multipliers in detail and the varying process 
is illustrated in Figure 9(a). Calculations also point out that 
a real Floquet multiplier leaves the unit circle through –1 at 
655 rad/s and then returns at 722 rad/s. Hence, the periodic 
solution is unstable from 655 to 722 rad/s, and the period- 

doubling bifurcation occurs. The leading Floquet multipliers 
are given by Table 1 and illustrated in Figure 9(b). 

To confirm the above results obtained with the HB-AFT 
scheme and Floquet theory, a numerical bifurcation diagram 
of the system is presented by Runge-Kutta method as shown 
in Figure 10. When the rotor runs from 450 to 537 rad/s, the 
periodic motion is stable and its attractor is a single point in 
Poincare map as shown in Figures 11(a) and 12(a). As rotor 
speed exceeds 537 rad/s, the periodic motion loses stability 
and the quasi-periodic motion appears as shown in Figure 
11(b) and (c). The points of its attractor are separated into a 
closed curve in Poincare map as shown in Figure 12(b) and 
(c). This nonperiodic motion continues until the rotor speed 
reaches 547 rad/s and it returns to the periodic motion state. 

The periodic motion remains stable when rotor runs from 
547 to 655 rad/s. As rotor speed continues to increase, the 
period-2 motion occurs and two isolated points are seen in 
the Poincare map as shown in Figure 12(e) and (f). The pe-
riod-2 motion lasts for a wide range of speed. When the 
rotor runs over 722 rad/s, the system goes back to periodic 
motion again. Therefore, the numerical simulation confirms 
the results obtained by HB-AFT scheme and Floquet theory. 

To further confirm the feasibility of HB-AFT scheme, a 
numerical bifurcation diagram is calculated by Runge-Kutta 
method when the bearing clearance is set as zero as shown 
in Figure 13. Based on the HB-AFT scheme, the amplitude  

 

Figure 7  Phase portraits of the rotor response at 500 rad/s. (a) The phase portrait of X; (b) the phase portrait of Y. 

 

Figure 8  Spectrums of the rotor response at 500 rad/s. (a) The spectrum of X; (b) the spectrum of Y. 
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Table 1  The leading Floquet multipliers at different rotor speeds 

Rotor speed (rad/s) Floquet multiplier Absolute value 

536 0.5369±0.7727i 0.9409 

537 0.5537±0.8125i 0.9832 

538 0.5668±0.8384i 1.0120 

539 0.5773±0.8557i 1.0322 

546 0.5966±0.8360i 1.0270 

547 0.5897±0.8155i 1.0064 

548 0.5785±0.7888i 0.9782 

549 0.5601±0.7523i 0.9379 

654 –0.9804 0.9804 

655 –1.0045 1.0045 

656 –1.0282 1.0282 

657 –1.0538 1.0538 

721 –1.0070 1.0070 

722 –1.0010 1.0010 

723 –0.9954 0.9954 

724 –0.9899 0.9899 

 

 

Figure 9  Illustration of the leading Floquet multipliers. (a) The Floquet multipliers around 537 rad/s; (b) the Floquet multipliers around 655 rad/s. 

 

Figure 10  Bifurcation diagram with rotor speed as control parameter. 

of each harmonic in periodic solution can also be obtained 
from 200 to 800 rad/s as shown in Figure 14. It should be 
noted that not all the periodic solutions are stable, and they 
will lose stability between 657 rad/s and 694 rad/s because  
of the period doubling bifurcation. Several resonance re-
gions are found for higher order harmonics, and the third 
harmonic resonance located at 527 rad/s is the most obvious 
one among them. Of course, more resonance regions will be 
found in high speed interval, such as the primary resonance 
regions of rotor unbalance (the first harmonic) and coupling 
misalignment (the second harmonic) that are not discussed 
here due to space limitations. It can be observed that the HB 
AFT results keep consistent with the numerical simulation. 

For the third harmonic resonance, comparisons between 
the HB-AFT results and numerical simulations are shown in 
Figure 15. Unlike the linear system, resonance curve leans   
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Figure 11  Phase portraits of Y at different rotor speeds. (a) Phase portrait at 537 rad/s; (b) phase portrait at 538 rad/s; (c) phase portrait at 539 rad/s; (d) 
phase portrait at 656 rad/s; (e) phase portrait at 657 rad/s; (f) the phase portrait at 658 rad/s. 

 

Figure 12  Poincare maps of Y at different rotor speeds. (a) Poincare map at 537 rad/s; (b) poincare map at 538 rad/s; (c) poincare map at 539 rad/s; (d) 
poincare map at 656 rad/s; (e) poincare map at 657 rad/s; (f) poincare map at 658 rad/s. 

to the right with hard spring property that causes the jump 
and hysteresis phenomena. The two bold points A and B are 
actually the saddle-node bifurcation points, and the periodic 
solutions located on A-B branch are unstable. It can be seen 
that the numerical simulation confirms the HB-AFT results 
in Figure 15. Moreover, the resonance curves with different 
bearing parameters are also given by the HB-AFT scheme, 
as shown in Figure 16. It is indicated that bearing dampin 
can effectively suppress the peak value of resonance curve 
and prevent the jump behavior that is dangerous to the rotor 

system. As bearing clearance increases, natural frequency of 
the system decreases and the rotor amplitude is enlarged. 

5  Conclusion 

The HB-AFT scheme is well-suited for solving strong non-
linear problems, even the tough issues with both piecewise 
and irrational nonlinearities. Based on the HB-AFT scheme 
and the Floquet theory, a misaligned rotor system is focused 
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on and its periodic response properties are investigated. 
Two ways towards unstability are found for periodic solu-
tions in the different speed ranges. The secondary Hopf bi-
furcation occurs early and leads to the quasi-periodic mo-
tion. Later as the rotor runs up the period-doubling bifurca-
tion occurs and lasts for a wide range of rotor speed. Finally, 
the numerical simulation confirms the results obtained with  

 

Figure 13  Bifurcation diagram with rotor speed as control parameter. 

 

Figure 14  Amplitude of each harmonic varying with rotor speed. 

 

Figure 15  Comparisons of the HB-AFT and Runge-Kutta results. 

 

Figure 16  Resonance curves with different bearing parameters. (a) The 
resonance curves with different bearing damping; (b) the resonance curves 
with different bearing clearance. 

the HB-AFT scheme and Floquet theory. Therefore, an ef-
fective way to estimate the dangerous speed range is pre-
sented, which may be significant for the global response 
analysis and dynamic optimal design of nonlinear rotor sys-
tems. 
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