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With the high focus on autonomous aerial refueling (AAR), it becomes increasingly urgent to design efficient methods or algo-
rithms for solving the AAR problems in complicated aerial environments. A vision-based technology for AAR is developed in 
this paper, and five monocular and binocular visual algorithms for pose estimation of the unmanned aerial vehicles (UAVs) are 
adopted and verified in this AAR system. The real-time on-board vision system is also designed for precise navigation in the 
UAVs docking phase. A series of out-door comparative experiments for different pose estimation algorithms are conducted to 
verify the feasibility and accuracy of the vision algorithms in AAR. 
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1  Introduction 

Unmanned aerial vehicles (UAVs) including rotorcrafts and 
fixed wing aircrafts have been highly focused on for their 
various applications in both civilian and military domains 
[1−3]. Since the rotorcrafts have the advantage of hovering, 
vertical take-off and landing, the tasks of aerial photography 
in archaeology [4], topography [5], forest fire detection [6], 
and geography [7] are easier for them to execute. Generally, 
such tasks would cost a large deal of labor. In the military 
domain, missions like surveillance [8] and air combat [9] 
are more likely to be executed by UAVs.  

With the extensive use of UAVs, a problem attracted 
people’s attention: the confined fuel limited the operational 
radius. Under this circumstance, autonomous aerial refuel-
ing (AAR) appears to be especially important. One of the 

approaches of aerial refueling is that the tanker aircraft and 
receiver aircraft get close to each other, and then the boom 
from the tanker aircraft approaches the receiver aircraft and 
precisely sticks into the refueling port on the receiver air-
craft [10]. The prerequisite of accomplishing this mission is 
to obtain the accurate pose information between the UAVs. 
Usually, global positioning system (GPS) [11] and inertial 
navigation system (INS) are used in navigation, while cam-
eras become an important sensor for UAVs [12,13]. In some 
cases, visual sensors [14−18] and geo-referenced images 
[19] can be utilized. To detect the drogue, the VisNav sen-
sor is exploited to supervise the beacons mounted on the 
drogue [15]. The 3D flash lidar is also used for drogue 
tracking [16]. In ref. [17], the vision-based measurements, 
inertial and barometric sensor data and global position sys-
tem (GPS) are fused with unscented Kalman filter (UKF). 
For boom approach, a visual snakes-based vision sensor is 
proposed in ref. [18]. Thus, it has been accepted that com-
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puter vision is a considerable method for docking phase 
navigation in the mission of AAR [20].  

However, AAR is a truly risky mission, thus the accuracy 
of visual algorithm is required to be extraordinary high. 
Hence, both the ground tests and flight tests are necessary. 
Under this circumstance, a verification system is built and 
multiple visual algorithms are prepared and operated to ful-
fill the mission. 

A system based on two UAVs is introduced in this paper. 
The system is used to verify the on-board real-time vision 
system, which serves for AAR. Moreover, relative control 
and communication technology is also included in this plat-
form. In this work, an octo-rotor is used as the tanker UAV 
and a quad-rotor is used as the receiver UAV. An exten-
sion-type rod is attached to the tanker UAV served as the 
boom. Both tanker and receiver UAVs have GPS and Iner-
tial Measurement Unit (IMU) on them to obtain their own 
flight status. Flight controller certainly is a main part of the 
UAVs. Particularly, a vision system includes two cameras 
and an on-board computer is set on the tanker UAV, which 
is exploited to operate visual measurement. Xbee and image 
transmitter are utilized to communicate among tanker UAV, 
receiver UAV and ground station. The binocular cameras on 
the tanker UAV capture images of the point makers on the 
receiver UAV. Then the on-board computer processes the 
images to extract features and estimates the pose of the re-
ceiver UAV. The pose information will be transmitted to the 
control system and used to control the flight status of the 
UAVs. Besides, boom control also depends on the infor-
mation from vision system. Figure 1 is a picture of the ex-
perimenting platform. The configuration of the platform is 
shown in Figure 2. 

This paper is organized as follows: Section 2 presents the 
Hardware system of the platform in detail. The feature ex-
traction and pose estimation done with visual system are 
described in Section 3. Experimental results and compari-
sons are shown in Sections 4 and 5 gives the conclusion. 

2  System design 

The hardware system of our verification platform consists 
of three main parts: two UAVs and a visual sensor on the 
receiver UAV; control and vision processing module; the 
communication module among two UAVs and UAVs and 
ground. 

2.1  UAV Platform and cameras 

The octo-rotor S1000 from DJI technology Inc. is used as 
the tanker UAV. Its maximum takeoff weight is about 11 kg, 
and its diameter with eight arms spread is about 150 cm. 
The 15000 mAh LiPo battery on it can support the oc-
to-rotor fly for 10 to 20 minutes. The receiver UAV is de- 

 

Figure 1  (Color online) Experimenting platform. (a) A photo of the 
flying UAVs; (b) magnified photo of the UAVs close to each other. 

 

Figure 2  Configuration of the platform. 

signed based on the quad-rotor X650 pro from XAIRCR- 
AFT Technology Co. Ltd. Human pilot can control the 
UAVs via a radio control (RC) transmitter, while the simul-
taneous control signal from on-board computer is the chief 
command. 

The visual sensor on board consists of a binocular cam-
era system including two color video cameras. The camera 
has a compact size equipped with Mini USB 2.0 interface 
and has a gross weight around 100 g using a 12 mm lens. Its 
view field is 40 degree and resolution is up to 1292×964 
pixels. While the vision algorithms compute at a rate of 10 
frames per second (FPS), the frame rate can reach 30 FPS. 

2.2  Control and vision processing module 

Since the image processing algorithm occupies a great deal 



1732 Li H, et al.   Sci China Tech Sci   November (2016) Vol.59 No.11 

of memory, a separated mini PC, Intel NUC is employed to 
process the visual information. The PC is equipped with a 
4th generation Intel Core i5 processor running at 1.3 GHz 
and a compact solid-state disk. The total weight is around 
650 g. All our visual algorithms such as feature extraction, 
pose estimation run under Linux on this computer. The 
communication between vision system with flight controller 
and vision system with ground station is also coordinated on 
this computer. 

Our ground station is a LENOVO ThinkPad PC, which is 
employed to display the video captured by the on-board 
cameras and the position and pose data computed by the 
vision system and GPS together with IMU. With the ground 
station, it is easy to monitor the status of the UAVs and to 
check the image captured by the cameras. 

2.3  Communication module 

Although the video captured by the on-board camera is di-
rectly processed with the on-board computer, the processing 
result should also be transmitted and displayed in the 
ground station using the DJI Lightbridge 2.4 G HD digital 
video downlink. The device can offer 1080p video data 
transmission from up to 1.7 km away. The air system is 
connected to the on-board computer by high-definition mul-
timedia interface (HDMI). When transmitting the position 
and pose data, a pair of Xbee Modules from Digi Interna-
tional are employed based on user data protocol in our sys-
tem.  

The sketch map of the system including subcomponent 
and connection of the systems is shown in Figure 3. 

3  Feature extraction and pose estimation 

Generally, image processing procedure includes two major 
steps: feature extraction and pose estimation. Feature ex-
traction aims to generate the coordinates measured in pixels 
of the labeled markers. Then, the pose estimation algorithm 
is employed to calculate the relation matrix between the 
cameras and the marker coordinate system. Camera calibra-
tion should be conducted first to obtain the initial rotation 
matrix R and translation vector t between different coordi-
nates. The original R and t are given in Table 1. The 
flowchart of the processing procedure is shown in Figure 4. 

3.1  Feature extraction 

Feature extraction is the premise of pose estimation includ-
ing two main procedures, marker detection and point 
matching. The accuracy of feature extraction has a direct 
influence on pose estimation, which may lead to the unsta-
bility of the whole system including the control module. 

3.1.1  Marker detection 
When the two UAVs are far away from each other, GPS and  

Table 1  Initial value of R and t 

 Initial value 

R 
1 0 0 
0 0.7547 0.6561 
0 −0.65 0.75 

t (cm) 219.95 7.23 113.11 

 

 

Figure 3  (Color online) Sketch map of the system including subcomponent and connections. 
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Figure 4  Flowchart of the processing procedure. 

IMU are employed to lead the two UAVs getting closer. 
The marker detection process is implemented when the re-
ceiver UAV approaches to the distance where the markers 
are capable to be viewed clearly. Red markers are set on the 
receiver UAV, and the color feature is the main characteris-
tic for feature extraction. 

Since the resolution of the cameras is high, the captured 
images are shrunk by half to speed up the following com- 
putation. HSV space is always used in image processing for 
its well performance in describing color features. Thus, the 
captured images are mapped from RGB space to HSV space. 
Only the hue and saturation channels are selected to do the 
threshold segmentation and obtain binary images. Then the 
morphology methods such as erosion and dilation operators 
are used to eliminate undesired noise. Connected compo-
nents from every binary image are extracted and their cen-
ters are calculated and grouped by their coordinates. Close 
centers form one group that corresponds to one blob, which 
is controlled by a set of parameters. From the groups, we 
estimate the final centers of blobs and their radiuses, then 
return them as locations and sizes of marker points. Several 
filtrations including color, area, and circularity are per-
formed during estimating of blobs. 

3.1.2  Point Matching 
After the feature extraction procedure, the coordinates of 
the makers are achieved. However, in order to estimate pose, 
the detected makers need to be matched with the corre-
sponding actual makers. The detected points are reprojected 
to the image according to prior pose information. The Eu-
clidean distance matrix of the detected points set {p1, p2, ··· , 
pn} and reprojected points set { }1 2ˆ ˆ ˆ, ,···, mp p p  is denoted as 
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Munkres algorithm [21] is employed to calculate the Eu-
clidean distance matrix of two points sets. 

3.2  Pose estimation 

Pose estimation calculates the geometry relationship of the 
actual markers’ position and their position in the images. 
Then the relative position and pose of the tanker UAV and 
receiver UAV are known as the rotation matrix R (describ-
ing the rotation relationship between the camera coordinate 
and receiver UAV coordinate) and translation vector t (de-
scribing the translation relationship between the camera 
coordinate and receiver UAV coordinate).Both monocular 
and binocular visions are used in our experiment.  

3.2.1  Monocular vision 
1) The Efficient Perspective-n-Point (EPnP) algorithm. 

The EPnP algorithm used in our experiment was proposed 
as a non-iterative solution to the Perspective-n-Point (PnP) 
problem by Lepetit et al. [22] in 2008. The world coordi-
nates of the 3D scene points Xi are known and the points are 
expressed as a weighted sum of four virtual and 
non-coplanar control points Cj. That is  
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where wi are the projective parameters and K means the 
camera matrix. Therefore, the expression of 3D points is  

 
0 4

0
1

0

0 ,

0 0 1

C
i x j

C
i i y j

j C
j

f x

f y
=

    
    
    
         


1

ij

x X
w y = α Y

Z
 (4) 

where xf  and yf  are the focal length coefficients, 0x  

and 0y  are the coordinates of the principal points and 
T

  
C C C
j j jX Y Z  are the coordinates of the control points. 

The solution of this linear system leads to the camera coor-
dinates C

iX  of the 3D points. Namely both the world co-
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ordinates and the camera coordinates of the 3D points are 
known, hence the rotation and translation parameter can be 
retrieved. 

2) The Gaussian Least Square Differential Correction 
(GLSDC). The problem of pose estimation is always con-
verted to a problem of nonlinear optimization problem, thus 
nonlinear least square method is used to iterate and solve 
the problem. The GLSDC algorithm based on the method of 
Gauss-Newton method has been proposed by Haralick et al. 
[23]. 

The estimation ( )X k  of the unknown vector ( )X k  is 

updated according to the iteration equation: 

 ( ) ( ) ( ) ( ) ( ) ( )1 T
1 ,i i i i iX k X k R k A k W k G k−

+ = + Δ  (5) 

where i represents the count of iteration.  
The iteration will be terminated until the maximum itera-

tion count is reached or the error is smaller than the set up 
criterion. Then the rotation matrix and translation vector can 
be achieved. 

3.2.2  Binocular vision 
1) Lu et al. [24] proposed the algorithm LHM in 2000, 

which is to formulate pose estimation problem by minimiz-
ing an error metric based on collinearity in object space. 

Assume that the coordinate of marker point j is given as 
pj. From eq. (11), it is obvious that to estimate the optimal 
translation vector t , the rotation matrix R need to be calcu-
lated first. Suppose Yj(k)(RKpj+tk)=qj, the collinearity error 
can be defined as 
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Therefore, the problem is converted to the pose calcula-
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Consequently 
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2) Least squares algorithm. This algorithm is a basic and 
direct method for pose estimation, which calculates the pose 

information depending on the measured pixel coordinates of 
the marker points. Suppose that the normalized coordinates 
of the maker points in camera coordinate system are 

T
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system are [ ]T

i i i iP = x y z . 

The relation of the rotation matrix and translation vector 
of the marker points to virtual camera system (R, T), left 
camera to virtual camera system (R1, T1) and right camera to 
virtual camera system (R2, T2) can be obtained with 
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From eq. (16), it is known that 
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Meanwhile, (R, T) can be calculated from eq. (17). 
3) A solution of absolute orientation involving or-

thonormal matrices. This algorithm was developed by Horn 
et al. [25]. Since the algorithm supposes that the coordinates 
of one point in different coordinate systems are known, set 
the left coordinate system as the camera system and the 
right coordinate system as the virtual camera system. The 
coordinates of the maker points in camera system are 

known as [ ]TC
i i i iP = X Y Z , and the corresponding co-

ordinates in virtual camera system are [ ]T

i i i iP = x y z , 

which can be derived from the least squares algorithm. 
The coordinates of three given noncollinear points in the 

left and right coordinate systems are known as ,1lr , ,2lr , 

,3lr  and ,1rr , ,2rr , ,3rr . According to ref. [24], the new left 

and right coordinate systems can be set as ˆ ˆ ˆl l lx y z  and 

ˆ ˆ ˆ .r r rx y z  Define matrixes lM  and rM  as 

[ ]ˆ ˆ ˆl l l lM = x y z , ˆ ˆ ˆ
rr r

  lM = x y z . Hence the rota-

tion matrix between the two coordinate systems is 
T

r l=R M M . The coordinates sets of n  points in the left 

and right coordinate systems are { },l nr  and { },r nr . One of 

the points in the right coordinate system can be denoted as 

 , . ,r i l ir s r T= +R  (12) 

where s is a scale factor, T is the translational offset, and 
Rrl,i denotes the rotated vector rl,i. Since the data are not 
perfect, a residual error exists 
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Thus, the translation vector can be formulated as 
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4  Experimental results 

All the algorithms above are fully tested and proved to be 
valid in simulations “on land”. A series of experiments are 
conducted in air to prove and compare the efficiency of the 
algorithms in the mission of AAR. In addition, the efficien-
cy of the whole system is also verified via the experiments. 
To compute the relation matrix between the cameras and the 
marker coordinate system, the camera calibration is con-
ducted first. During flight, all the images are processed on- 
board; and the estimated pose information is immediately 
transmitted to the flight controller; and relative flight order 
is given. The images taken by the cameras are also trans-
mitted to the ground station and are saved for further study.  

The independent experimental results obtained with dif-
ferent pose estimation algorithms are shown below. Figures 
5 and 6 are the results of monocular algorithms while Fig-
ures 7−9 are the results of binocular algorithms. 

The images in Figure 5 are the experimental results of 
the EPnP algorithm. The images on the left show the point 
detected with the EPnP algorithm and the projection results 
after pose estimation are shown on the right images. It can 
be seen from the results that there always exists a small 
projection error, but in most conditions the error is consid-
ered to be acceptable. This algorithm performs considerably 
well. The results of the GLSDC algorithm in Figure 6 have 
significant differences in different frames. In some frames, 
the algorithm performs unstable; however at most time, the 
results are reliable.  

From the images in Figure 7, it is clear that the LHM al-
gorithm performs well. The reprojected points almost cover 
the real markers. Also the LHM algorithm performs best 
among binocular algorithms. The experimental result of 
another binocular algorithm, least square algorithm, is indi-
cated in Figure 8. As the binocular algorithms demand, the 
markers could be found in both left and right images. There 
are only few effective experimental results of the least 
square algorithm. Like the result in the first row, sometimes 
the feature extraction results appear to be not that accurate. 
The effect of this algorithm is unstable. The absolute orien- 

 

Figure 5  (Color online) The pose estimation result using the EPnP algo-
rithm. (a) and (c) The feature extraction results on images captured with 
left camera; (b) and (d) Relative projection result of the EPnP pose estima-
tion algorithm on images captured with right camera. 

 
Figure 6  (Color online) The pose estimation result using the GLSDC 
algorithm. (a) and (c) The feature extraction results on images captured 
with left camera; (b) and (d) Relative projection result of the GLSDC pose 
estimation algorithm on images captured with right camera.  

 

Figure 7  (Color online) The pose estimation result using the LHM algo-
rithm. (a) and (c)The feature extraction results on images captured with left 
camera; (b) and (d) Relative projection result of the LHM pose estimation 
algorithm on images captured with right camera. 
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Figure 8  (Color online) The pose estimation result using least squares 
algorithm. (a) and (c) The feature extraction results on images captured 
with left camera; (b) and (d) Relative projection result of the least squares 
pose estimation algorithm on images captured with right camera. 

 

Figure 9  (Color online) The pose estimation result using absolute orien-
tation algorithm. (a) and (c) The feature extraction results on images cap-
tured with left camera; (b) and (d) relative projection result of the absolute 
orientation pose estimation algorithm on images captured with right cam-
era. 

tation algorithm is accurate and easy to realize “on land”. 
However, if the coordinates matching of the feature point 
exists bulky error, the algorithm would not work. The ex-
perimental results of the absolute orientation algorithm are 
shown in Figure 9. As is illustrated, the algorithm has a 
poor performance. 

Since different algorithms obtain different pose estima-
tion results, the consequence of flight status is rather dis-
similar. To compare the algorithms, a same sequence of 100 
frames taken during flight is used. Figure 10 displays a 
comparison of the relative distance estimation obtained with 
different algorithms. Since the real value of the distance 
between two UAVs is unknown, it is unreasonable to con-
firm “the most” reliable algorithm. However, from the 
curves below it is rational to infer that the least square algo-
rithm performs far from satisfactory, while there is no big 
difference between the other algorithms. Figure 11 presents 
a comparison of the rotation angle between two UAVs ob-
tained with different algorithms. Theta represents the pitch 
angle and phi represents the roll angle while psi represents 
the yaw angle. Since the UAVs are flying forward, change 
of theta is comparably fierce. While the flight does not 
conduct a distinct change in orientation, psi keeps steady. 
Figure 11 gives a likely information from Figure 10 that the 
least square algorithm is not stable at all. Figure 12 shows 
the comparison of the reprojection error computed with dif-
ferent algorithms. It is the error between the reprojection 
results on the right images and the makers detected from the 
right images. The error value more than one hundred is set 
to be zero. Together with the figures above, it is obvious 
and reliable that when the UAVs fly unstable, the error is 
correspondingly increased a great deal. It can also be in-
ferred that the algorithms of EPnP, GLSDC and LHM per-
form better. The absolute orientation algorithm is proposed 
to use three of the seven feature points in the pose estima-
tion process. Thus, fewer information is taken into consid 
eration, which could cause a larger error. The least squares 
algorithm does not iterate during calculating. As a result, it  

 

Figure 10  (Color online) Comparison of the relative distance estimation obtained with different algorithms. 
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Figure 11  (Color online) Comparison of the rotation angle between two UAVs obtained with different algorithms. 

 

Figure 12  (Color online) Comparison of the reprojection error computed with different algorithms. 

is sensitive to the parameters in the equations, including the 
intrinsic and extrinsic parameters of the cameras, and the 
markers coordinates in the image coordinate system and 
world coordinate system. While an inevitable error exists in 
the measurement of the parameters above, the least squares 
algorithm would enlarge it, especially in the estimation of 
the rotation angle. The average performance of the binocu-
lar algorithms is worse than the monocular algorithm, which 
is considered to be caused by the relative movement of the 
cameras derived from UAV’s shaking. Also the possibility 
of inaccurate binocular camera calibration should not be 
ignored. 

5  Conclusion 

In this paper, a vision-based technology for AAR is devel-
oped in this paper. The monocular vision algorithms of 

EPnP, GLSDC and binocular vision algorithms of LHM, 
least squares algorithm and absolute orientation algorithm 
for pose estimation of UAVs are adopted and verified in this 
AAR system. The real-time on-board vision system is also 
designed for precise navigation in the UAVs docking phase. 
The experimental results indicate that the system is capable 
of verifying the algorithms expected to be applied to AAR. 
Besides, the results also give some hints about the matters 
that need to be paid attention to, like the shaken of the UAV, 
the influence of the UAVs on each other, the collision 
avoi-dance etc. Since the rapid and fierce movement of the 
UAVs is a challenge for visual algorithms, our future re-
search will focus on improving the robust of the visual sys-
tem in both hardware and software. 
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