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Recently, the single-shaft series-parallel powertrain of Plug-in Hybrid Electric Bus (PHEB) has become one of the most popu-
lar powertrains due to its alterable operating modes, excellent fuel economy and strong adaptability for driving cycles. Never-
theless, for configuring the PHEB with single-shaft series-parallel powertrain in the development stage, it still faces greater 
challenge than other configurations when choosing and matching the main component parameters. Motivated by this issue, a 
comprehensive multi-objectives optimization strategy based on Genetic Algorithm (GA) is developed for the PHEB with the 
typical powertrain. First, considering repeatability and regularity of bus route, the methods of off-line data processing and 
mathematical statistics are adopted, to obtain a representative driving cycle, which could well reflect the general characteristic 
of the real-world bus route. Then, the economical optimization objective is defined, which is consist of manufacturing costs of 
the key components and energy consumption, and combined with the dynamical optimization objective, a multi-objective op-
timization function is put forward. Meanwhile, GA algorithm is used to optimize the parameters, for the optimal components 
combination of the novel series-parallel powertrain. Finally, a comparison with the prototype is carried out to verify the per-
formance of the optimized powertrain along driving cycles. Simulation results indicate that the parameters of powertrain com-
ponents obtained by the proposed comprehensive multi-objectives optimization strategy might get better fuel economy，
meanwhile ensure the dynamic performance of PHEB. In contrast to the original, the costs declined by 18%. Hence, the strat-
egy would provide a theoretical guidance on parameter selection for PHEB manufacturers. 

multi-objective parameter optimization, single-shaft series-parallel powertrain, plug-in hybrid electric bus (PHEB), 
genetic algorithm (GA), driving cycle, city bus route 
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1  Introduction 

The decline in fossil fuel reserves and the rise in fuel prices 
have motivated the search of alternative technology to re-
duce fuel dependence [1,2]. Recently, plug-in hybrid elec-
tric bus (PHEB) has appealed more attentions, due to its 
better overall fuel economy than the conventional hybrid 

electric vehicles (HEVs) by partly utilizing the cheaper 
electric grid energy [3,4]. HEVs are a complex combination 
of various components, which involve a large number of 
design parameters that could be optimally selected to get 
optimum performance [5]. In practice, component parame-
ters of the PHEB powertrain significantly impact the fuel 
economy, components costs, and dynamic performance. 

The powertrain configuration plays a very important role, 
and different configurations might lead to the difference in 
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overall efficiency of PHEB. Whereas, PHEB is a complex 
electro-mechanical system and the interaction between the 
various components makes it difficult to size specific com-
ponent manually or analytically. In recent years, a large 
amount of approaches have been adopted in solving the 
component sizing problem, which commonly described as 
static optimization algorithms including genetic algorithm 
[6,7] and Particle Swarm Optimization (PSO) [8,9] in the 
research works. A multi-objective genetic algorithm is de-
veloped for parameter optimization of a series hybrid elec-
tric vehicle and the advantages are validated compared with 
single-objective genetic algorithm [9]. A genetic algorithm, 
based on the optimization procedure, is proposed and ap-
plied to optimize the parameters for the key components of 
a parallel HEV to ensure emission reduction and fuel 
economy [10]. PSO is applied to optimize the main compo-
nent size of parallel HEV powertrain to reduce fuel con-
sumption and exhausted emissions of the HEV more effi-
ciently [11]. In addition, other approaches, such as parallel 
chaos optimization algorithm (PCOA) [12], harmony search 
algorithm (HAS) [13] and convex optimization [14], are 
used to solve the component sizing problems. 

All above researches have provided wonderful cases for 
this paper to study the component sizing of this novel ar-
chitecture. The economy is directly related to energy con-
sumptions and component costs. Moreover, the parameters 
of key components would determine the final economy, 
especially the component cost. Compared with the other 
optimization algorithms, GA has the advantages of global 
optimization character, and it is suitable for solving the 
non-linear problem of PHEB parameters optimization. 
However, the special but complex structural characteristic 
of this configuration makes it difficult to obtain the appro-
priate parameters match by using the original algorithm 
without improvement. Considering the structural character-
istics of the novel powertrain, the two motors’ output power 
should be limited by the battery, and the peak power of 
EM2 would satisfy the driving force as shifting. Some new 
constraints or requirements should be taken into account 
during the optimization process of the algorithm, to ensure a 
more suitable result. Moreover, a representative driving 
cycle, where the optimization is evaluated, is established 
from a large number of bus route data by off-line data deal-
ing method and mathematical statistics. And the new driv-
ing cycle is closer to the real-world situation. 

The paper is organized as follows. Models and prepara-
tive optimization parameters of PHEB are described in Sec-
tion 2. The component sizing optimization of PHEB in-
cluding driving cycle, optimization variables, problem con-
straints, problem formulation, and GA optimization, is pro-
posed in Section 3. The simulation including optimization 
results and analysis, validation and comparison, is given in 
Section 4. Finally, Section 5 presents the conclusion . 

2  Models and optimization parameters of 
PHEB  

2.1  Single-shaft series-parallel models of PHEB 

2.1.1  Vehicle models 
In this paper, a novel single-shaft series-parallel powertrain 
is studied and the configuration is sketched in Figure 1. The 
main components include the internal combustion engine 
(ICE), the electric motor (EM), the energy storage system, 
the automated mechanical transmission (AMT), and final 
drive. An extra motor is added to the output-shaft of AMT 
of the single-shaft parallel powertrain, as shown in [15,16]. 
And due to this characteristic of distribution, the power in-
terruption of transmission, which is caused by the discon-
tinue characteristic of AMT and would reduce the vehicle 
comfort performance, could be avoided by the torque com-
pensation of EM2 during the gear shifting process. In this 
process, the EM2 would supply the power to drive the vehi-
cle. And the EM1 would coordinate the rotation speed of 
the AMT input shaft to shift the gear. While in other situa-
tions, the EM1 would play the role of the auxiliary equip-
ment to supply the power for the bus. In addition, both of 
the EMs, could work as generators simultaneously, so they 
may charge the battery by either regenerative braking or 
absorbing the excess power from the ICE. Therefore, one of 
the advantages of the system is to recover the energy more 
sufficiently. And a quick-charge plug-in hybrid electric bus 
is treated as the original. The basic parameters of the 
powertrain are listed in Table 1. 

 

Figure 1  Single-shaft series-parallel configuration of the PHEB structure. 

Table 1  Basic parameters of the original 

Component Description 

Engine YC6G230N, CNG, 6.454 L, nominal power: 170 kW 

EM1 
Permanent magnet, max torque: 600 Nm, 

nominal power: 60 kW, peak power: 121 kW 

EM2 
Permanent magnet, max torque: 850 Nm, 

nominal power: 100 kW, peak power: 130 kW 

Battery Lithium titanate, capacity: 60 Ah, nominal voltage: 346 V

Gearbox 4-speed AMT, gear ratios: 2.92, 1.63, 1.00, 0.73 

Final drive 5.571 
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A forward simulation model of PHEB is adopted in this 
paper. According to the vehicle longitudinal dynamics 
equation and combining with the configuration simultane-
ously, the torque on the wheel could be expressed as fol-
lows: 

 0 1 0 2[ ( ) ] ,η= ⋅ + + ⋅ +w T g e m m bT i i T T i T T  (1) 

where ηT is the transmission efficiency. ig and i0 represent 
the gear ratio of the AMT and the final drive ratio, respec-
tively. Te, Tm1, and Tm2 are the engine torque, the EM1 
torque, and the EM2 torque, respectively. And the driving 
torque is composed of the three different parts. Tb is the 
braking torque acting on the wheel. And Tw is the torque of 
wheel which can be expressed as follows: 

 21 d
cos sin ,

2 d
θ ρ θ δ = + + + 
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T mgf C AV mg m r

t
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where m is the sum of vehicle mass mv and passenger mass 
mp, is the gravity acceleration, and θ is the road slope angle. 
CD, ρd , and A represent the air drag coefficient, air density, 
and frontal area of the bus, respectively. V, δ, and r are the 
vehicle speed, the correction coefficient of rotating mass, 
and wheel radius, respectively. fr is the rolling resistance 
coefficient which can be represented as follows: 

 1 2 .rf f f V= + ⋅  (3) 

In the equation, f1 and f2 are constants. The relationship 
between the rotating speed of wheel and that of the three 
power sources are described as follows: 

 1 2

0 0 0
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w

g gi i i i i

ω ω ωω = = =
⋅ ⋅

 (4) 

where ωw, ωe, ωm1, and ωm2 are the rotational speed of wheel, 
of the output shafts of the engine, EM1, and EM2, respec-
tively. And we can see it clearly that the rotational speed of 
EM2 is the lowest among the three speeds of the power 
sources, when the vehicle maintain a constant speed. 

2.1.2   Key component model related to fuel economy 
With the fuel economy as one of the evaluations, the com-
pressed natural gas (CNG) consumption rate Qg(t) of a CNG 
engine can be described as follows. 

 
( )

( ) ,
367.1

e
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g
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Q t
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=  (5) 

where Pe(t) is the engine power calculated through the 
equation: Pe(t)=Te(t)·ωe(t). b is the compressed natural gas 
consumption rate corresponding to the current engine torque 
and rotational speed. ρg is the density of CNG.  

The two motors might work at the same time or only one 
is in working condition. The motors power can be written as 
follows. 
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According to the expression of EMs power, the equation 
of the sum of electricity power consumption can be de-
scribed as follows. 

 1 2( ) ( ) ( ).EM EM EMP t P t P t= +  (8) 

In the discrete-time format, the battery SOC can be cal-
culated as follows: 
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The equation is an iteration and t represents the sequence 
number of sampling point. Uoc and Rint(t) are the open cir-
cuit voltage and internal resistance of the battery, respec-
tively. 

The energy consumption includes CNG and electricity 
consumption. So the cost per hundred kilometers, Megy (yu-
an/100 km), can be calculated as follows. 

 egy CNG CNG( ) / 100,e eM P C P C D= ⋅ + ⋅ ×  (10) 

where PCNG (yuan/m3) and Pe (yuan/kWh) represent the 
market price of CNG and electricity. D(km) is the driving 
cycle mileage. CCNG (m

3) and Ce (kWh) are the gas con-
sumption and electricity consumption which described as 
follows: 
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where N and Δt are the number of sampling points and sam-
pling time, respectively. The aforementioned parameters are 
listed in Table 2. 

Table 2  Basic Parameters for PHEB models 

Parameter Value 

Vehicle mass mv ( kg) 12500 
Gravity acceleration g (m/s2) 9.8 

Vehicle speed V (m/s) − 
Rolling resistance coefficient fr fr=0.0076+0.0002016 V

Road slope angle θ (rad) − 
Air drag coefficient CD 0.51 

air density ρd (kg/m3) 1.2258 
Frontal area A (m2) 8.25 
Wheel radius r (m) 0.48 

Correction coefficient of rotating mass δ 1.1 
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2.2  Cost of key components 

The optimization objective of components parameters is to 
enhance the economy of PHEB in the condition of ensuring 
the dynamic performance. And the cost of components is an 
important part to influence the economy. Furthermore, in 
order to simplify this optimization problem, the drivetrain 
cost only includes the component cost of the engine, two 
motors, and battery. Other components are assumed to be 
the same for all types of PHEB. So, the costs of some com-
ponents, like charger, AMT, and final drive, are ignored. To 
unify the evaluation criterion, the key hybrid driving com-
ponents wear cost per hundred kilometers MWC (yuat/100 
km) can be given as follows.  

 ICE 1 2( ) 100WC EM EM BTM M M M M= + + + × , (13) 

where MICE, MEM1, MEM2, MBT are the wear cost per hundred 
kilometers of ICE, EM1, EM2, and battery described as 
follows. 

 ICE ICE ICECOST /M LM= , (14) 

 1 1 1COST /EM EM EMM LM= , (15) 

 2 2 2COST /EM EM EMM LM= , (16) 

 COST / /BT BT BTM LC D= , (17) 

where COSTICE, COSTEM1, COSTEM2, COSTBT represent 
ICE cost, EM1 cost, EM2 cost, and battery cost, which are 
deduced with the statistical analysis of Chinese market of 
PHEB. They can be described as follows: 

 ICE ICECOST 400 12000P= + , (18) 

 1 1COST 450 8000EM EMP= + , (19) 

 2 2COST 450 8000EM EMP= + , (20) 

 COST 216( ) 3000,BT BP BSN N= ⋅ +  (21) 

where PICE is the nominal power of ICE in kW, PEM1 and 
PEM2 are the peak power of EM1 and EM2, respectively. 
NBP and NBS are the numbers of parallel and series cells, 
respectively. 

In eqs. (14) to (17), LMICE, LMEM1, LMEM2, and LCBT are 
the ICE life mileage, the EM1 life mileage, the EM2 life 
mileage, the battery life charge-discharge cycle times, re-
spectively. The above are constants, with the lifetime, daily 
mileage, every-year running-days, and lifecycle is taken 
into account.  

3  PHEB component sizing optimization 

In this section, a multi-objective GA is adopted to solve the 
component sizing optimization problem of PHEB, with the 
consideration of the properties of the single-shaft se-
ries-parallel powertrain. The schematic diagram of the pro-
posed methodology is shown in Figure 2. The scheme is a 
flow of GA optimization combined with driving cycle and 
the powertrain. 

3.1  Driving cycles 

Driving cycles are defined as test cycles to standardize the 
evaluation of vehicle economy or dynamic performance. To 
achieve reasonable values of the design variables, selecting  

 

Figure 2  (Color online) Flow chart of optimization. 



1180 Chen Z, et al.   Sci China Tech Sci   August (2016) Vol.59 No.8 

an appropriate driving cycle is essential [17,18]. Bus driving 
cycles are more repeatable and regular due to the fixed 
routes, but differences still exist due to the random change 
during various driving periods. Therefore, in this paper, a 
representative driving cycle is developed based on a large 
number of trips traffic data through the off-line dealing 
method.  

First, a large number data collected from the bus route 88 
in Jinan, China, are selected. The bus route has a one-way 
distance of 20.1 km and 26 stations including the initial one. 
To simplify the driving cycle, a part of the bus route, which 
has a distance of 7.8 km with 10 stations, is selected to con-
struct the represented cycle. Each trip traffic data is the rela-
tion between speed and time. In order to analyze the proper-
ties of the bus route, the speed-time curve is converted to a 
distance-speed curve. And all the curves of trips are plotted 
in a coordinate system which is shown in Figure 3. 

The bus stations and traffic lights information are ob-
tained by GPS. When the driving cycles are drawn together, 
it can be found that the curves show regularity. Then, the 
curves are cut up into 9 segments at the locations which 
represent the stations, shown in Figure 4. Next, for each 
segment, the large number of data is fitted into a single 
curve, and then the fitted curve is smoothed. For example, 
one segment route data is shown in Figure 5. After fitting 
and smoothing, the final curve is obtained, and the curve is 
shown in Figure 5. In this way, for each segment, a pro-
cessed curve could be obtained. Finally, all of the processed 
curve segments would be spliced together, and then, a com-
pleted cycle curve is obtained which is shown in Figure 6. 
Moreover, to evaluate the dynamical performance of PHEB, 
a special linear peed-increasing driving cycle is defined. 
Contrast to a typical driving cycle, the new curve can rep-
resent the certain bus route and is more suitable for the fol-
lowing optimization. This section corresponds to the red 
dashed box in Figure 2. 

3.2  Optimization variables 

As we can see from Figure 1, the key components of the 
single-shaft series-parallel configuration are the ICE, two 
EMs, the AMT, the final drive and a Lithium titanate bat- 

 

Figure 3  (Color online) The simplified driving cycles curves. 

 

Figure 4  (Color online) The segments after cutting up. 

 

Figure 5  (Color online) An example of obtaining the fitting curve. 

 

Figure 6  (Color online) The final speed-distance curve. 

tery. So it is significant to match the parameters of all these 
key components suitably. The parameters related to the hy-
brid powertrain optimization are listed in Table 3. In the 
system, a 4-speed AMT is adopted and its ratios are ap-
proximately considered as a geometric sequence. Then rati-
os of the lowest and highest gears might be selected as the 
optimization parameters of AMT. The relationship between 
the costs of key hybrid driving components and their pa-
rameters can be expressed as follows. 

So according to the design requirement, the optimization 
variables can be expressed as Xp, then 

 ICE 1 2 0 1 4[ , , , , , , , ] .p EM EM BP BS g gX P P P N N i i i=  (22) 
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Table 3  Preparative parameters for powertrain optimization 

Parameter Description 

PICE The nominal power of ICE (kW) 
PEM1 The peak power of EM1 (kW) 
PEM2 The peak power of EM2 (kW) 
NBP The number of battery modules in parallel 
NBS The number of battery cells in series 
i0 Final drive ratio 
ig1 Ratio of the lowest gear (1st gear) 
ig4 Ratio of the highest gear (4th gear) 

 

3.3  Optimization problem constraints 

For the optimization problem, the dynamic performance 
requirements, such as gradeability, acceleration time, max-
imum speed and maximum acceleration, are defined as con-
strains. According to the unique characteristic of the sin-
gle-shaft series-parallel powertrain, one of the advantages is 
that the powertrain may avoid interruption during the gear-
shift. As a result, a higher requirement of the EM2 would be 
proposed in order to realize this function. That is to say, the 
EM2 would provide enough power to drive the bus alone 
and ensure the acceleration keeping still in the shifting pro-
cess. So the constraints of electric motors’ peak-power 
might be taken into consideration. In summary, the bus re-
quires to meet kinds of dynamic performance constrains and 
physical constraints, which are shown in Table 4. 

3.4  Optimization problem formulation 

As mentioned previously, the PHEB design in this paper 
aims to minimize components cost and energy consumption 
without impairing dynamic performance. The components 
wear cost per hundred kilometers MWC and the energy con-
sumption cost per hundred kilometers Megy, are defined as 
economy objectives, that is proposed in Part 2. Due to the 
costs unified with the dimension of yuan, a new optimiza-
tion objective of the economy Meco would be described as 
follows: 

 eco egy .= + WCM M M  (23) 

In addition, another two optimization objectives, 0–50 
km/h acceleration time Tacc and maximum speed Vmax are  

Table 4  PHEB performance constraints 

Constraint Description 

Grade ability >20%, at 10 km/h 

0−20 km/h Acceleration time ≤9 s 

0−50 km/h Acceleration time ≤25 s 

Maximum speed ≥80 km/h 

Maximum acceleration ≥0.1 g 

PEM2 
at least keep the acceleration 

unchanged when shifting 

defined as the dynamic optimization objectives. The prob-
lem is a highly constrained nonlinear multi-objective opti-
mization problem described by the following equations: 

 
eco acc max

con

Minimize [ ( ), ( ), ( )],

. . ( ) 0, 1, 2, , ,···

X

i

M X T X V X

s t h X i n

∈ Ω



= ≤
 (24) 

where X is the vector of decision variable and Ω is the fea-
sible solution space, ncon is the quantity of constraints, 
hi(X)≤0 represents a group of nonlinear inequality con-
straints. 

For the multi-objective optimization problem, the critical 
step is to define an objective function including the econo-
my and dynamic optimization objectives. And to balance 
the value of the function, M0, T0, and V0 are obtained from 
the prototype, which represent the economy index, accelera-
tion time, and maximum speed, respectively. 

The objective function equation is described as follows: 

 eco acc 0
eco acc max 1 2 1 2

0 0 max

( , , ) ,ω ω α α
 

= ⋅ + ⋅ + ⋅ 
 

M T V
J M T V

M T V
(25) 

where ω1, ω2, α1, and α2 are defined as the weighting fac-
tors to investigate the effect of different objectives on the 
optimization result. And the above three parts are shown in 
the blue dashed box in Figure 2. 

3.5  GA optimization 

Genetic algorithm (GA) is a kind of heuristic searching al-
gorithm based on the mechanics of natural selection and 
natural genetics [19,20]. The main process of GA optimiza-
tion is illustrated in the green dashed box in Figure 2. The 
global solution could be found for both linear and nonlinear 
formulations [21]. The optimal solution searching process is 
independent of the form of the objective function, and will 
not be trapped in the rapid descending direction introduced 
by local minima. 

3.5.1  Range of variation for decision variables 
In order to enhance the performance of the GA for optimi-
zation of powertrain, the upper bound and lower bound of 
variables should be specified in advance. They are deter-
mined according to the real vehicle calibrations test, and the 
performance constraints. And the characteristics of compo-
nents are illustrated in Table 5. 

3.5.2  Fitness function 
In the genetic algorithm optimization process, a fitness 
function, which related to the objective function and the 
performance constraints above mentioned, is established. 
And the constraints are implemented by using penalty func-
tions that indicate the inferior individuals by decreasing 
their fitness values. Here, the fitness function is finally de-
fined as follows. 
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Table 5  Range of variation for decision variables 

Parameter Lower bound Upper bound 

PICE 50 200 
PEM1 55 105 
PEM2 120 200 
NBP 4 8 
NBS 120 150 
i0 5 6 
ig1 0.7 1 
ig4 2.5 3 

 
con

1

( ) ( ) ( ),
n

i i
i

f X J X P Xα
=

= +  (26) 

where f(X) and J(X) are the fitness function value and the 
objective function value, respectively. Pi(X) is the penalty 
function corresponding to the ith constraint and αi is a pen-
alty factor. Here, Pi(X) ( )iP X  and αi corresponding to the 

performance constraints listed in Table 4, are simply de-
fined as follows. 

 

i

0, the th constraint is satisfied,
( )

1, otherwise,

0.2, 1,2,3, 4,5,6.

i

i
P X

iα


= 


= − =
 (27)

 

3.5.3  Multi-objective GA process 
As seen in Figure 3, the flow of GA methodology for the 
optimization of powertrain component sizes could be 
generalized as follows. 

Encode and randomly generated initial population 
according to the range of variation for decision variables. 
Evaluate objective function value and fitness individuals 
over the driving cycle. 

If the range of sequence several generation fitness values 
satisfies the condition of migrate, migrate to generate new 
generation and jump to the step 5, if not, do the next step. 

The process of natural biological evolution includes 
selection, crossover and mutation. After the series of 
operation, a new generation is produced. 

The optimization process is checked against termination 
criteria. The criteria might be a fixed number of iterations or 
a stable fitness function value. 

If the optimization termination criterion is not met, the 
new generations are used to repeat the step 2) to 5) until the 
optimization termination criterion is achieved. 

If the optimization termination criterion is satisfied, the 
optimum component parameters are obtained and decoded. 

4  Simulation 

4.1  Optimization result and analysis 

After introducing the series-parallel model and the genetic 
algorithm in the previous sections, the optimization based 

on GA is evaluated by using the proposed driving cycle. 
The initial population is 30, and individuals of the design 
parameters are selected randomly according to the solution 
space shown in Table 5. The generations are set to 50. The 
terminating conditions are set to the generations 50 or the 
change of objective function value less than 0.0000001 for 
10 generations. And the process of fitness function values 
based on multi-objective GA is presented in Figure 7. Table 
6 shows the optimization result of design components for 3 
times and the average one. 

As seen in Table 6, the optimized parameters are refer-
ence values. Taking into account the actual bus speed may 
be higher than the fitting curve of bus speed at the same 
time point, it will lead to a smaller parameter optimization 
results. In order to ensure optimized parameters can provide 
enough power, a domain coefficient is proposed to adjust 
the power of engine and motors. According to the results of 
engineering experience and numerous optimization, the 
domain coefficient is set to 1.1, which means the parameters 
after the correction are 1.1 times the optimized ones,shown 
in Table 6. 

As shown in Figure 7, with the increase of generation, 
the objective function value declining until the 40th genera-
tion. That is to say, the GA optimization is effective to the 
multi-objective components. And the result can ensure to 
improve the economy without sacrificing dynamic perfor-
mance. In contrast to the basic parameters of the original, 
the optimization parameters are more reasonable.  

Table 6  Result of optimization component parameters 

Parameter Value1 Value2 Value3 AV CV 

PICE 118.8 121.4 120.5 120 132 

PEM1 55 55 55 55 60 

PEM2 120 120 120 120 132 

NBP 4 4 4 4 4 

NBS 150 150 149 150 150 

i0 5.857 5.332 5.798 5.6 5.6 

ig1 0.7 0.7 0.7 0.7 0.7 

ig4 3.0 3.0 3.0 3.0 3.0 

Note: AV, average value; CV, correction value. 

 

 

Figure 7  (Color online) Optimization result of fitness value. 
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4.2  Validation and comparison 

In order to test and verify the effectiveness of the optimiza-
tion result, a trip of bus route 88 in Jinan, Shandong Prov-
ince, China is selected as the driving cycle. And the bus 
routine obtained from Baidu Maps is shown in Figure 8. 
The driving cycle starts from Kuangshan Community sta-
tion (point A in Figure 8) to North of Liberation Bridge 
station (point B in Figure 8). And it has a one-way distance 
of 14.06 km and 22 stations. The road grade information is 
not considered in this paper due to the flat terrain of the area. 
And the average number of the passengers along the routine 
was adopted for simulation. And the corresponding veloci-
ty-time curve of the test cycle was shown in Figure 9. And 
the simulation results about the optimization parameters and 
the original parameters were shown in Figures 10 and 11, 
respectively. 

As seen from Table 7, which shows the dynamical per-
formance of original and optimal parameters, the dynamic 
requirement is satisfied. To measure the fuel economy of 
the proposed method, another four actual driving cycles 
along the same routine were selected and simulated sepa-

rately. And the final simulation results about the economy 
costs, which are composed of energy consumption costs and 
component costs, are listed in Table 8. Comparing the sim-
ulation results with that of the original, the costs declined by 
18% and the effective of optimization is validated. 

5  Conclusion 

In this paper, a novel single-shaft series-parallel architecture 
was first studied. Due to the specified structure, it has vari-
able working modes, excellent fuel economy, and good 
adaptive capacity for driving cycles. Based on large number 
trips of datas from a certain bus route, a representative 
driving cycle, which could well reflect the real-world gen-
eral regular pattern, is developed. Then, a multi-objective 
optimization strategy based on GA is presented to solve the 
parameter selection problems for the powertrain.  

In this way, the best component combination of the 
powertrain is achieved by evaluating the objective function 
value in the condition of considering dynamic performance  

Table 7  The dynamical performance of original vs. optimal parameters 

Parameters 0−20 km/h accelerated time 0−50 km/h accelerated time Maximum speed Maximum acceleration Grade ability 

Original parameters 7.3 s 23.7 s 133.0 km/h 2.27 m/s2 32% 
Optimal parameters 7.3 s 24.1 s 121.7 km/h 1.95 m/s2 25% 

Reference value 9 s 25 s 80 km/h 0.98 m/s2 20% 

Table 8  The economy perform ance of original vs. optimal parameters 

Cycle 
Original parameters Optimal parameters Improvement

(%) FC (m3) EC (kWh) CC (RMB) TC (RMB/100 km) FC (m3) EC (kWh) CC (RMB) TC (RMB/100 km) 

1 26.26 29.33 84.47 231.97 19.22 35.40 66.28 188.17 18.88 
2 24.92 32.37 84.47 228.98 18.93 36.13 66.28 187.60 18.07 
3 28.32 30.89 84.47 242.80 20.01 35.69 66.28 192.02 20.91 
4 22.19 36.44 84.47 220.77 17.58 39.60 66.28 184.99 16.21 
5 25.77 31.10 84.47 231.54 20.03 34.18 66.28 190.60 17.68 

Average 25.49 32.03 84.47 231.21 19.15 36.20 66.28 188.66 18.40 
Note: FC, fuel consumption per 100 km of the engine in m3; EC, electricity consumption per 100 km motors in kWh; CC, cost per 100 km of the main 

component in RMB; TC, total cost per 100 km of FC, EC and CC in RMB. 
 

          

Figure 8  (Color online) The bus routine of the test cycle.                            Figure 9  (Color online) The velocity-time curve. 



1184 Chen Z, et al.   Sci China Tech Sci   August (2016) Vol.59 No.8 

 

Figure 10  (Color online) The original parameter results. 

 

Figure 11  (Color online) The optimization parameter results. 

constraints. At last, a certain driving cycle is selected to 
validate the effectiveness of the optimization. The results 
show that, the preferable parameters for the powertrain 
components could be obtained by the proposed strategy. 
And the economical costs, including energy consumption 
and components costs, are minimized effectively without 
sacrificing dynamical performance. 
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