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This paper presents a region-based method for extraction of consistent surfaces from raw point clouds. The method uses a new 
robust estimation method of constructing seed regions and a new method of orientating regions or surfaces. The robust estima-
tion method selects good seed regions from candidate regions generated randomly in a structured neighborhood. The orienta-
tion method uses transition vectors from which include angles of adjacent normal vectors are not greater than 90° and thus can 
be orientated correctly crossing sharp features or close-by opposite surfaces. The region-based method consists of two levels of 
segmentation: planar segmentation and quadric segmentation, both of which produce consistent surfaces. The quadric segmen-
tation fits general quadrics by 3 L fitting algorithm in its region growing process and can take consistent planar surfaces as ini-
tials. Experimental results show that the robust estimation method has higher probability of success than the traditional one and 
the orientation method works well. Experimental results also demonstrate the applicability of our method to various data. 
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1  Introduction 

Segmentation is a necessary process in applications such as 
object recognition [1], modeling [2], compression [3], colli-
sion detection [4], and so on. The growing interest in this 
topic is due to the increasing availability of image, vision 
and point cloud data. Typically acquired by a laser scanner, 
the raw point cloud is often incomplete, noisy, non-    
uniformly sampled, and lacking inherent structure or orien-
tation information. Although various segmentation methods 
have been proposed, segmentation of raw point clouds is 
still a challenging problem due to lack of the structures or 
the mathematical model of the input data, geometry shape 
complexity and noise (outliers), and newly arisen applica-
tions [5–7]. 

In this paper, we introduce a multi-level method for di-
viding raw point clouds into consistent surfaces. We denote 

our method by MCS method since Multi-order Consistent 
Surfaces are extracted by our method. The MCS method 
consists of planar segmentation and quadric segmentation. 
For the planar segmentation, seed regions are constructed 
by a neighborhood random sample (NRS) method which is 
a new version of robust estimation techniques [8] by inte-
grating a structured neighborhood. The NRS method intends 
to fit a surface to points that may contain outliers or be 
sampled from different surfaces. Compared with the random 
sample (RS) method used in [9], the NRS method shows 
high probability of success in determining good regions 
each of which consists of points only sampled from a single 
surface. The NRS method lets our region-based method get 
a seed region just sampled from a single surface as possible 
instead of a seed region crossing boundaries of different 
surfaces. The robust estimation method also produces seed 
region excluding outliers. Starting from a seed region, a 
region growing process is carried out by a fitting and con-
quering strategy and adds points as many as possible instead 
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of one by one in each iteration. 
In order to obtain consistent planar surfaces, we intro-

duce transition vectors (nt shown in Figure 1(c) and (d)) 
along border points for transferring orientation information 
between surfaces. The method via normal propagation [10] 
is widely applied for orientating normal vectors. Starting 
from a seed point, it flips inconsistent normal directions 
between close-by points using a minimum spanning tree 
(MST) with edge lengths defined by variations in the nor-
mal directions. However, propagation errors occur in the 
presence of sharp features or close-by opposite surfaces 
[11,12] (shown in Figure 1(a) and (b)). The transition vector 
aided (TVA) method overcomes the shortness of the con-
ventional approach in a simple way. Moreover, the TVA 
method transfers orientation information surface by surface 
instead of point by point. 

The quadric segmentation takes outputs of the planar 
segmentation as initials. Based on consistent orientations of 
planar surfaces, the quadric segmentation produces con-
sistent quadric surfaces. We fit general quadric surfaces in 
the quadric segmentation since these surfaces can be well 
approximated from point clouds with linear cost of the 
computation through the 3 L fitting algorithm [13]. Figure 2 
shows regions and surfaces obtained by the MCS method 
from the noisy point cloud of the Fandisk model, where 
points of regions are rendered for clarity. 

The remainder of this paper is organized as follows. Sec-
tion 2 reviews related work on segmentation and normal 
vector orientation of point clouds. Section 3 introduces the 
neighborhood random sample method. Section 4 presents 
transition vectors and corresponding method of getting con-
sistent orientations. Section 5 details the MCS method 
which uses methods introduced in Sections 3 and 4. Ex-
perimental results are given in Section 6. Finally, conclu-
sions are given in Section 7. 

 

Figure 1  (Color online) Conventional method keeping normal vectors as 
parallel as possible fails in the presence of (a) sharp features or (b) close-by 
opposite surfaces, while right results as shown in (c) and (d) are obtained 
with the aid of the transition vector nt. 

 

Figure 2  (Color online) Regions and surfaces obtained by the MCS 
method from the noisy point cloud of the Fandisk model: (a) and (c) are 
regions and surfaces obtained by planar segmentation respectively; (b) and 
(d) are regions and surfaces obtained by quadric segmentation respectively. 

2  Related work 

2.1  Segmentation 

Many segmentation methods have been reported, which fall 
into three categories: edge-based, region-based, and hybrid. 
Edge-based methods detect edges [14] or critical points [15] 
separating different regions. Due to the sensitivity to noise 
and the local characteristic of normal or curvature estima-
tion, edge-based methods are sensitive to noise, and suffer 
from edge fragmentation and the need for efficient post 
processing, e.g. gap filling. Using global information such 
as the homogeneity or similarity of surface properties,  
region-based methods are more robust to noise than edge- 
based ones. Normal vectors [16], curvatures [17], color in-
formation [18], special structures of the input data (such as 
scan lines [19] and triangle meshes [20]), and so on, can all 
be used for finding surface properties. There are some de-
merits of region-based methods, including that the possibil-
ity of over or under-segmentation, the difficulty to localize 
region borders accurately, and the sensitivity to the choice 
of the initial seed regions. In order to overcome the limita-
tions involved in edge- and region-based methods, hybrid 
methods have been developed by combining the edge- and 
region-based information. For example, points of edges, 
defective zones and regular regions are identified in [21] 
using the smoothness indicator, shape index and flatness 
index which are constructed from local estimated curva-
tures. 
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Clustering methods are applied for region extracting and 
merging [16,22–25]. A drawback of using k-means cluster-
ing method is that the number of regions is assumed to be 
known a priori [22,23], while using mean shift method 
overcomes such drawback [24,25]. Other methods used for 
region extracting include surface fitting and growing meth-
od [17], 3D-grid method [7], Hough transform [26], 
RANSAC [27], genetic algorithm (GA) [28], and so on. 
Hough transform is usually used to detect lines in 2D and 
planes in 3D [26]. RANSAC is a robust method for robust 
fitting and has been used to detect planes, spheres, cylinders, 
cones, and tori from noisy point clouds [27]. A drawback of 
GA-based methods is the difficulty in setting many param-
eters which must be empirically and carefully determined to 
avoid premature convergence. Since conventional engi-
neering objects are usually bounded by primitive surfaces, 
specific segmentation methods for CAD objects are devel-
oped in [29,30]. Recently, several planar segmentation 
methods are also introduced for processing indoor scenes 
[31] and building roofs [32]. 

Most of existing segmentation methods rely on specific 
information such as inside/outside information or consistent 
surface normal vectors, or that they require the input point 
cloud is defective free, has less noise (outliers), or is a 
structured one such as range image or triangle mesh. As 
demonstrated by Chen et al. [33], the segmentation problem 
is still not solved even for simple scenes containing only 
polyhedral objects. 

2.2  Point cloud orientation 

Consistently oriented normal vectors are necessary for the 
state-of-the-art reconstruction algorithms [34,35] to produce 
high quality results. It is difficult for the consistent normal 
orientation from a point cloud in presence of sharp features, 
close-by opposite surfaces, data defects, and so on. The ex-
isting work in the literature can be classified into two major 
groups: propagation and non-propagation. The widely used 
propagation method [10] spreads orientation information 
from a seed point along the shortest path of a MST with 
edge lengths defined by variations in the normal directions. 
The method keeps normal vectors as parallel as possible and 
fails in the presence of sharp features or close-by opposite 
surfaces. Some variants using a MST have been introduced 
by driving normal propagation with different edge measure. 
In [12], harmonic functions defined on point clouds are used 
to assign edge weights of a MST. However, harmonic func-
tions fail in areas of critical regions. Huang et al. [11] de-
fines a distance between points to prioritize normal propa-
gation. The distance combines variations in the normal di-
rections and the point coordinates. Although such distance 
can avoid propagation between points residing on close-by 
opposite surfaces, it cannot handle the sharp feature with a 
convex crease even if it uses a detection mechanism for 
sharp features. 

Non-propagation methods are based on volumetric rep-
resentations or underlying surfaces of point clouds. In [36], 
an octree is used to represent the pace of point clouds by 
cells whose corners are associated with in/out tags deter-
mined by a visibility checking method. However, a corner is 
tagged as out with only one view with respective to point 
clouds. In [37], normal vectors of triangular meshes roughly 
representing underlying surfaces are used to orientate origi-
nal point clouds. The triangular meshes are generated 
through an adaptive spherical cover of point clouds which 
results in degenerated reconstruction on thick structures and 
data with heavy noises. In [5], point clouds are shrunk via 
constrained Laplacian smoothing. Then point clouds are 
orientated by the visibility checking of the shrunk and the 
input points. Recently, a method [38] is introduced that es-
timates normal vectors through a WPA model with both 
distance and normal variation weights and transfers orienta-
tion information from one or more sources. However, the 
method cannot handle flat models well in experiments. 

3  NRS method 

We introduce NRS method to construct a good seed region 
which consists of points sampled from a single surface and 
considers points sampled from other surfaces as outliers. 
Assume the neighborhood of a point on a surface consists of 
points whose distances to the point are not greater than a 
given constant. The NRS method takes into account the fact 
that there always exists a neighborhood of a point in a sur-
face (not on boundaries of the surface) that the neighbor-
hood only contains points sampled from the surface. Farther 
from the point to boundaries of the surface, bigger such 
neighborhood could be found. 

Let d be the farthest distance from a point p to its k near-
est neighbors. As shown in Figure 3(a), the region RS1±d 
consists of points whose absolute distances to the surface S1 
are not greater than d and is bounded by two surfaces which 
are obtained by offsetting the surface S1 by distances ±d. If 
p is a point sampled from the surface S2 and lies in RS1±d, 
then it is most possible that the k nearest neighbors of p 
contain points sampled from both surfaces S1 and S2. In fact, 
the points whose k nearest neighbors are sampled from both 
surfaces S1 and S2 are always included in the region RS1±d∩

RS2±d as shown in Figure 3(b). In other words, it is most 
possible that the k nearest neighbors of p only contain points 
sampled from a single surface if p∉RS1±d∩RS2±d. 

Based on the above intuitions, the NRS method divides 
n=mk nearest neighbors of a seed point p into m subsets 
based on distances from the neighbors to the point p. The 
number of neighbors in each subset is k. The m subsets are 
separated by concentric circles in 2D (dashed circles shown 
in Figure 3(c) and (d)) or concentric spheres in 3D. And a 
candidate point q (shown in Figure 3(d)) is selected at ran-
dom from each subset. Then the k nearest neighbors (points  
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Figure 3  (a) The region RS1±d consists of points whose absolute distances 
to the surface S1 are not greater than d; (b) the region RS1±d∩RS2±d consists 
of points whose absolute distances to both surfaces S1 and S2 are not greater 
than d; (c) neighbors of a seed point p (denoted by an empty circle) are 
separated by concentric circles in 2D (dashed circles); (d) three candidate 
points are selected at random from points in three areas separated by three 
dashed circles all centered at the seed point p. Three candidate seed regions 
are specified as points in three solid line circles centered at three candidate 
points. 

in solid line circles in Figure 3(d)) of a candidate point are 
selected to form a candidate seed region. Total m candidate 
seed regions are obtained finally. 

A surface is fitted to each candidate seed region. Residu-
als of all the neighbors of the seed point p are computed. 
The residuals are sorted ascending and the lth residual is 
used to evaluate the candidate seed region. The seed region 
corresponding to minimal lth residuals is selected as the 
final seed region. In our experiments, l = k is applied. 

Assume Pi (i = 1,···, m) is the probability that all of points 
of the ith candidate seed region are good points belonging to 
a single surface. Then the NRS method has a probability of 
success of P = max Pi (i = 1,···, m). As indicated by Figure 
3(a) and (b), Pi=1 if the ith candidate point qi∉ RS1±d∩RS2±d. 
Such candidate points are points near the seed point p and 
not in RS1±d∩RS2±d. As shown in Figure 3(d), the sub-space 
between circles with radius 2d and 3d does not intersect 
with RS1±d∩RS2±d. A candidate seed region generated from 
any point in such sub-space should have all of their points 
be good points. 

The time complexity of the NRS method is O(km2). The 
minimum number k of a seed region is determined by the 
surface model fitted. Bigger k is required for higher order 
surfaces. 

4  TVA method 

Assume there are regions each of which is approximated by 
a single surface. The task is to define consistent orientations 

of these surfaces (or regions). The normal propagation 
keeping normal vectors as parallel as possible between two 
close-by points implies that the underlying curves in 2D are 
approximated by two lines S1 and S2 in the form shown in 
Figure 4(a). Although a point and a normal vector at the 
point are enough for defining a line, but these are insuffi-
cient for defining the underlying curves. A line is unbound-
ed and the part of the line to define the underlying curves is 
not clear. Figure 4(b) shows another possibility that the un-
derlying curves are approximated by the two lines. The 
normal propagation keeping normal vectors as parallel as 
possible between two close-by points results in the failure in 
cases shown in Figure 1(a) and (b). 

We introduce transition vectors which give an approxi-
mation of the normal vector of the underlying surface be-
tween two close-by points. Let p1 and p2 be two close-by 
points. And assume n1 and n2 are normal vectors at p1 and 
p2 respectively. Since n1 and n2 may be inconsistent, both 
n+t= (n1 + n2) and n-t= (n1 – n2) are possible normal vectors 
of the underlying surface between p1 and p2. The transition 
vector nt between p1 and p2 is selected from n+t and n-t 
through the size of overlapping areas of underlying surfaces 
projected along n+t and n-t. The overlapping area can be 
approximated through projecting spheres (or circles in 2D 
shown in Figure 4 (c) and (d)) centered at each point. As-
sume Alap(R1,R2,n) is the overlapping areas of adjacent re-
gions R1 and R2 along the direction n. Then the goodness of 
the vectors n+t and n-t are evaluated by Alap(R1,R2,n+t) and 
Alap(R1,R2,n-t) respectively. The vector with the smaller Alap 
is specified as the transition vector nt. According to the 
above strategy, the n-t shown in Figure 4(d) should be se-
lected as the transition vector. 

One of n+t and n-t constructed in the above process  

 

Figure 4  (Color online) Lines in (a) and (b) give two possible definitions 
of the underling curves using two lines without further information. Con-
sidering more points shown in (c) or (d), the definition shown in (b) should 
be selected. The transition vector n-t shown in (d) instead of n+t shown in (c) 
is used to select one of possible definitions since the line with normal vec-
tor n-t is a better approximation of the underlying curves. 
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becomes a zero vector if n1 is parallel to n2 (shown in Fig-
ure 5 in 2D). We replace the zero vector by a vector per-
pendicular to the non-zero vector n+t or n-t. As shown in 
Figure 5(c), the n-t is the vector replacing such zero vector 
and is selected as the transition vector according to overlap-
ping areas. The n1 and n2 shown in Figure 5(a) should be 
orientated as shown in Figure 5(d). 

Vectors n1 and n2 are consistent if they have the same 
direction relative to nt, i.e. (n1·nt)(n2·nt)>0. However, 
(n1·nt)(n2·nt)>0 doesn’t work if n1 is parallel to n2 as 
shown in Figure 5. In fact, the n1 and n2 can be orientated 
by comparing Alap(R1,R2,n+t) and Alap(R1,R2,n-t) without us-
ing the nt explicitly. There are four cases. 

1) If Alap(R1,R2,n+t)>Alap(R1,R2,n-t), then nt = n-t, and one 
of n1 and n2 needs to be reversed. 

2) If Alap(R1,R2,n-t)>Alap(R1,R2,n+t), then nt = n+t, and n1 
and n2 have already been consistent. 

3) If Alap(R1,R2,n-t)=Alap(R1,R2,n+t) and n1·n2<0, then one 
of n1 and n2 needs to be reversed. 

4) If Alap(R1,R2,n-t)=Alap(R1,R2,n+t) and n1·n20, then n1 
and n2 have already been consistent. 

In order to orientate two close-by surfaces, the TVA 
method examines points near their common borders instead 
of on whole surfaces. The TVA method does not calculate 
points exactly on common borders of adjacent surfaces. It 
uses points in a narrow band of borders of corresponding 
regions. A point of a region lies in narrow bands if at least 
one of the k nearest neighbors of the point belongs to other 
regions. Points in narrow bands can also be used to calcu-
late overlapping areas of adjacent surfaces projecting along 
transition vectors. 

The TVA method first selects a seed region at random 
and fixes its orientation. Then the TVA method propagates 
orientation information between close-by regions. Along 
common borders between an inconsistent region and con-
sistent regions, each border point of the inconsistent region  

 

Figure 5  (Color online) Transferring orientation information between 
two parallel opposite lines: (a) Inconsistent normal directions; (b) and (c) 
selecting transition vector from two vectors through overlapping areas of 
projected circles; (d) consistent normal directions. 

is paired with a border point that is the nearest one of the 
border points of consistent regions. And the inconsistent 
region is orientated according to the four cases introduced 
previously. The orientation process is finished until all the 
regions become consistent. 

The cost of computation of the TVA method dependents 
on the number kN of nearest neighbors of a paired border 
point and the number mN of paired border points. The kN 
nearest neighbors can be found by a data structure such as 
k-d tree. Then the time complexity of the TVA method is 
O(mN kN logn), where n is the number of input points. 

5  MCS method 

The MCS method consists of planar segmentation and 
quadric segmentation. The planar segmentation uses the 
NRS method to obtain seed regions, a region growing pro-
cess to extract planar regions, and the TVA method to ori-
entate planar regions. Planar regions obtained from the pla-
nar segmentation are taken as seed regions of the quadric 
segmentation. Although we can extract consistent quadric 
surfaces directly from point clouds using the NRS method 
and the TVA method, starting from planar regions has at 
least two merits. First, high possibility of success of the 
NRS method is obtained by specifying few number of 
points in a seed region since points required for determined 
a planar surface is smaller than a quadric surface. Second, 
planar regions can provide an order of extracting quadric 
surfaces which gives priority for bigger regions. The quad-
ric segmentation starts from the biggest seed region and 
proceeds according to decent order of the size of planar seed 
regions. Note that if some points of a planar region have 
been grouped in the quadric segmentation before the planar 
region is taken as a seed region, seed region corresponding 
to the planar region should exclude the grouped points. 

Each seed region is expanded through a region growing 
process which relies on deviations from ungrouped points to 
a surface fitted to the growing region. The deviation from a 
point to a plane is specified as the geometric distance from 
the point to the plane. Geometric distance from a point to a 
general quadric surface has no closed form solution. For a 
general quadric surface S0, the deviation d(p) from a point p 
to S0 is approximated by the distance from p to a point p′ on 
S0. The p′ is selected as the closer point to p of the two in-
tersection points obtained by intersecting S0 and the line 
through p with direction vector ∂f(x)⁄∂x|x=p, where f(x)=0 is 
the formula of S0. Since S0 is a quadric surface, the p′ can be 
obtained by solving a quadratic equation with one unknown. 
In the case that the point p′ cannot be found, the deviation 
d(p) is replaced by the first order approximation of the real 
distance from p to S0 [39]. 

It is computationally expensive if deviations at all the 
ungrouped points are calculated. As an alternative, an effi-
cient strategy is to perform work only in a neighborhood of 
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the growing region. A point of the region lies in the narrow 
band if at least one of the k nearest neighbors of the point is 
an ungrouped point. Let p be a point in the narrow band and 
q1, …, qk be its k nearest neighbors. And assume q1,…, qk 
are ordered ascending according to their distances to p. The 
conditions that qi (1ik) can be grouped into the current 
region are that d(qj) (1 j i), where ε is the threshold 
of maximal tolerated residual and d(qj) is the deviation from 
qj to the surface fitted to the current region. Such conditions 
require points closer to p than qi have been in the current 
region or can be grouped into the current region. Such con-
dition is originated from the observation that a region 
should not be separated by points not belonging to the re-
gion. After all neighbors of points in the narrow band are 
examined, an iteration of the region growing process is fin-
ished. If no more points can be grouped, the region growing 
process is ended and the MCS method finds another seed 
region from ungrouped points to start a new region growing 
process. Otherwise, the MCS method increases current re-
gion, fits surfaces to increased region, and goes into the next 
iteration of the region growing process. Examining k nearest 
neighbors of points in the narrow band of the growing re-
gion can group a set of points in one time. If there are still 
ungrouped points after all possible seed regions have been 
dealt with, these points are identified as outliers. 

The general quadric surface fitted in the quadric seg-
mentation is given by S0={x=(x,y,z)T| f(x,y,z)=0}, where 
f(x,y,z)=∑i,j,k≥0, i+j+k≤2 aijkx

iyjzk=mTa, m is the vector of mo-
nomials, a is the polynomial coefficient vector, and the su-
perscript T denotes the matrix transposition. The surface S0 
is fitted by the 3L fitting algorithm introduced in [13]. 
Normal vectors required by the 3L fitting algorithm are un-
known for raw point clouds. At the beginning of the region 
growing process, normal vectors at points of a seed region 
are estimated by normal vectors of the initial surface fitted 
to the seed region. In following iterations of the region 
growing process, normal vectors at points of a region are 
estimated by normal vectors of the surface fitted to the re-
gion in the previous iteration. 

The MCS method is a multi-order segmentation method. 
If point clouds are sampled from planes, then the planar 
segmentation is enough. If point clouds are sampled from 
higher order surfaces, then the quadric segmentation is nec-
essary. If a smooth surface can’t be well approximated by a 
single quadric surface, it will be represented by two or more 
quadric surfaces through the quadric segmentation. There-
fore many quadric patches may be produced from a model 
consisting of free form surfaces. And the model can be ap-
proximated by combining quadric patch through a Poisson 
surface [34] or a point set surface (PSS) [40]. 

The time complexity of the MCS method is determined 
by the cost of computation of planar segmentation and 
quadric segmentation. The time complexity of the planar 
segmentation is determined by the cost of seed region con-
struction and region growing process. A model that is rep-

resented by more number of planar surfaces consumes more 
cost of computation since the seed region construction and 
region growing process need to be carried out for planar 
surfaces one by one. The cost of computation of the planar 
segmentation also increases with the number of points of 
the input. More number of iterations of the region growing 
process is usually required for a region containing more 
number of points. The cost of the seed region construction 
of the quadric segmentation is relative low since it takes 
outputs of the planar segmentation as initials. The cost of 
computation spent on the region growing process of the 
quadric segmentation is similar with that of the planar seg-
mentation. 

6  Experiments 

The MCS method has been implemented in MATLAB. All 
the experiments in this paper are carried out on a PC with a 
single 3.3 GHz Intel processor. Our implementation was 
tested on a variety of synthetic and raw point clouds. 

For a method of constructing seed regions, we quantify 
the probability of success of the method as a function of the 
number k of points of a seed region and the number m of 
candidate seed regions. Uniformly spaced points are sam-
pled from the two planes. For each value of k and m, total 
50 uniformly spaced points along the sharp edge formed by 
the two planes are used as seed points. A seed region at 
each seed point is selected from m candidate seed regions 
through the method to be examined. Then total 50 seed re-
gions are constructed. If all the points of a seed region are 
sampled from a single plane, the seed region is considered 
as a good region. The percentage r of good regions in the 50 
seed regions is calculated. Higher such percentage means 
higher probability of success of the examined method. A set 
of the percentage r is obtained by changing k and m. Then a 
surface is constructed according to points whose x, y, and z 
coordinates are k, m, and r respectively. We denote the sur-
face as success rate surface whose height represents the 
probability of success of a method as a function of the k and 
the m intuitively. 

Figure 6 shows success rate surfaces of our NRS method 
and the RS method used in [9] on points sampled from two 
planes with different included angles, where the k changes 
from 6 to 20, the m changes from 10 to 100, and both 
methods fit planar surfaces to candidate seed regions. As 
shown by Figure 6, the probability of success of the RS 
method increases with m and deceases with k. The RS 
method produces low percentage of good regions in the 
experiments if k≥10. The results of the RS method coin-
cide with the success probability 1–(1–gk)m given in [8], 
where g is the probability of selecting a single good point at 
random. The probability of success of the NRS method is 
stable and is bigger than that of the RS method. The NRS 
method produces a hundred percent of good regions in most  
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Figure 6  (Color online) The probability of success of the NRS method 
and the RS method on points sampled from two planes whose included 
angle is (a) 120 degrees; (b) 60 degrees, where k is the number of points of 
a seed region, m is the number of candidate seed regions, and r is the per-
centage of good seed regions. The bigger r means higher probability of 
success. 

cases. Similar results are obtained in the experiments where 
points are sampled from two planes with other included 
angles or are contaminated by noises. 

For quadric surfaces extracted by the MCS method, we 
quantify surface reconstruction error as a function of noise 
and density of points by using a unit sphere as the test shape. 
Randomly spaced points are sampled from the unit sphere. 
And the coordinates of the sample points are contaminated 
by Gaussian noise of zero mean and standard deviation σ to 
obtain noisy data sets. Then the root-mean-squared (RMS) 
distance between the ideal and reconstructed spheres is cal-
culated and used as the reconstructed error. The threshold ε 
of maximal tolerated residual in our region growing process 
is specified as 3σ in the experiments. 

Results in Table 1 of the MCS method shows that RMS 
error generally increases with decreasing density of points 
under the same noise level. RMS error also increases with 
increasing noise on point sets with same number of points. 
The table does not show results of noiseless point sets since 
RMS errors under no noise are smaller than 0.000001. Sim-
ilar results are obtained in the experiments using other 
quadric surfaces such as cylinders and cones. Compared 
with results in [41], the proposed method produces a more 
accurate reconstruction of quadric surfaces from small to 
very large noise levels. The high accuracy reconstruction 
can be attributed to the fact that almost all points sampled 
from a quadric surface are grouped into a single region and  

Table 1  RMS error in reconstruction of the unit sphere as a function of 
the standard deviation of the Gaussian noise σ when using randomly 
spaced points 

# points: σ 0.01 0.03 0.05 0.1 

128 0.00222 0.00880 0.01445 0.02941 

256 0.00140 0.00562 0.00864 0.00866 

1024 0.00072 0.00180 0.00654 0.01051 

4096 0.00037 0.00192 0.00392 0.00574 

16384 0.00015 0.00072 0.00095 0.00315 

 
 
are fitted by a single surface in our method. The results also 
indicate that our segmentation method works well from 
small to very large noise levels. 

Results of the above experiments also provide cues to 
specify parameters of our method. In the following experi-
ments, both the number k of points of a seed region and the 
number m of candidate seed regions are specified as 10. The 
threshold ε of maximal tolerated residual in our region 
growing process is specified according to noise level. One 
can fit a small smooth region and measure the largest resid-
ual to set the value of ε. Or the ε is specified as half of the 
average distance from a point to its nearest neighbors on the 
assumption that the residual of a well sampled point should 
be not greater than half of the sample interval. 

Real data shown in Figure 7 is used in experiments. The 
points shown in Figure 7(a) are obtained by aligning mul-
ti-view scanned points of a laser scanner. The resultant 
points are noisy and non-uniformly sampled. Due to the 
specular reflection on planar surfaces of the box part, trips 
are appeared in the points as shown in the enlarged view of 
points sampled from the up surface in Figure 7(a). The 
points shown in Figure 7(b) are obtained by a laser scanner 
in one set up. The holes of the sheet mental part leave holes 
in the points. Figure 7(c) shows points sampled from a 
screwdriver whose cusp is formed by two close planar sur-
faces. The right of Figure 7(d) shows the points obtained 
from the inner of a vase. Some points are missing in the 
inner of the vase since the inner is occluded by the other 
portion of the vase and cannot be reached by measurement 
devices such as a laser scanner. Figure 7(e), (f), and (g) are 
a fish model, a duck model, and a statue model respectively 
from the AIM@SHAPE shape repository [42]. 

Figure 8 shows segmentation results of the box, the sheet 
metal part, the screwdriver, the vase, the fish, the duck, and 
the statue shown in Figure 7. The first column of Figure 8 is 
the results obtained from the commercial software: Ge-
omagic Studio which first wraps points into triangle meshes 
and then extracts regions from triangle meshes. The first 
column of Figure 8 is obtained by manually adjusting some 
parameters provided by Geomagic Studio, especially the 
sensitive parameter of curvatures. Different regions are sep-
arated by triangles where high curvatures are detected. In all 
the results of Geomagic Studio, points near borders aren’t 
grouped into adjacent regions. It is known that curvature  
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Figure 7  Serval point clouds used in experiments: (a) box part; (b) sheet 
metal part; (c) screwdriver; (d) vase and its inner; (e) fish; (f) duck; (g) 
statue. 

estimation is sensitive to noises although the triangulation 
process of Geomagic Studio can smooth out noises. More-
over, it is difficult to select the curvature threshold for cur-
vature-based segmentation. As shown in the first column of 
Figure 8, the sensitive parameter needs to be increased to 
separate some smooth connected surfaces (for example the 
two cylindrical surfaces on the top of the sheet mental part), 
but a bigger sensitive parameter will divide points sampled 
from a single surface into several regions (for example the 
planar surfaces at the base of the vase).  

The second and third columns of Figure 8 are results ob-
tained by our planar segmentation and quadric segmentation 
respectively. Our method directly divides point clouds in-
stead of triangle meshes into different regions. Regions 
corresponding to planar surfaces are extracted by both the 
planar segmentation and the quadric segmentation. Regions 
corresponding to quadric surfaces are divided into many 
small planar regions by the planar segmentation and are 
extracted by the quadric segmentation. Compared with 
Geomagic Studio, our method doesn’t need to triangulate 
point clouds, avoids to produces excessive regions in ex-
tracting quadric surfaces, and divides regions and fits sur-
faces at the same time. As indicated by the results of the 
fish, the duck, and the statue shown in Figure 8, a smooth 
surface that can’t be well approximated by a single quadric 
surface will be divided into several quadric surfaces by our 
method. 

 

Figure 8  (Color online) Segmentation results of the box, the sheet metal 
part, the screwdriver, the vase, the fish, the duck, and the statue: (a1)–(a7) 
are from Geomagic Studio; (b1)–(b7) are from our planar segmentation;  
(c1)–(c7) are from our quadric segmentation. 

Figures 9 and 10 show normal vectors orientated by our 
method. The box part is an object with sharp features. The 
sheet metal part is a flat object. The screwdriver and the 
vase are objects with sharp features and close-by opposite 
surfaces. Since normal vectors of point clouds are estimated 
from corresponding surfaces, normal vectors are orientated 
correctly as long as corresponding surfaces are orientated  



1164 Liu Y   Sci China Tech Sci   August (2016) Vol.59 No.8 

 
Figure 9  (Color online) Orientated normal vectors in our planar segmen-
tation: (a) box, (b) sheet metal part, (c) screwdriver, (d) vase. 

 

Figure 10  (Color online) Orientated normal vectors in our quadric seg-
mentation: (a) box, (b) sheet metal part, (c) screwdriver, (d) vase. 

correctly. Visual checking Figures 9 and 10 indicates that 
all the normal vectors of these examples are orientated cor-
rectly. 

Besides points corresponding to surfaces, our method al-
so identifies outliers. Figure 11 shows outliers identified 
from point clouds of the box, the sheet metal part, the 
screwdriver, and the vase shown in Figure 7. These outliers 
consist of points whose distances to extracted surfaces are 
greater than given threshold ε. We also add outliers to noise 
point clouds in experiments. The first row of Figure 12 
shows point clouds contaminated by 50% outliers, where 
outliers spread at random in a box containing the original 
point cloud. The second row of Figure 12 shows extracted 
surfaces and identified outliers by our method. Figure 12 
indicates that our method can reliably extract surfaces from  

 

Figure 11  (Color online) Outliers identified from serval real point clouds 
by our method: (a) box, (b) sheet metal part, (c) screwdriver, (d) vase, 
where outliers are denoted by black dots and extracted surfaces are plotted 
transparently. 

 

Figure 12  (Color online) Results of our method on point clouds contam-
inated by 50% outliers. (a) Input point clouds; (b) extracted surfaces and 
identified outliers. 

data that contains up to 50% outliers. 
To visually demonstrate results under noise, noisy data is 

obtained by adding Gaussian noise of zero mean and σ=0.1 
to original data. Figures 13–15 are the Carter model, the 
Chinese lion model, and the happy Buddha model respec-
tively from the AIM@SHAPE shape repository [42]. The 
first row of Figures 13 and 14, and Figure 15(a) show Pois-
son surfaces using normal vectors estimated by principal 
component analysis and oriented according to orientation 
information provided by our method. The second row of 
Figures 13, 14, and 15(b) show Poisson surfaces over quad-
ric surfaces obtained through our method. The figures 
demonstrate that Poisson surfaces directly constructed from 
point clouds preserve surface details but cannot smooth out 
noise at the same time. And surfaces constructed from  
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Figure 13  (Color online) Results on noisy data of the Carter model using 
Poisson surfaces [34]: (a) Poisson over oriented PCA normal; (b) poisson 
over our quadric surfaces. 

 

Figure 14  (Color online) Results on noisy data of the Chinese Lion mod-
el: (a) Poisson over oriented PCA normal; (b) poisson over our quadric 
surfaces. 

results of our method preserve surface details while 
smoothing out noise. 

7  Conclusion and future work  

In this paper, we present a region-based method of extracting  

 

Figure 15  (Color online) Results on noisy data of the happy Buddha 
model: (a) Poisson over oriented PCA normal; (b) poisson over our quadric 
surfaces. 

consistent surfaces from raw point clouds, which constructs 
seed regions by the NRS method and orientates directions 
of regions or surfaces by the TVA method. The NRS meth-
od is proposed to select points sampled from a single sur-
face, which treats points sampled from other surfaces as 
outliers. Compared with traditional RS method, the NRS 
method shows higher probability of success in determining 
good regions. The TVA method is proposed to get con-
sistent directions of regions or surfaces with the aided of 
transition vectors which are intermediate normal vectors 
constructed between paired boundary points of adjacent 
regions. The TVA method works well in the presence of 
sharp features or close-by opposite surfaces. 

The region-based method consists of two levels of seg-
mentation: planar segmentation and quadric segmentation. 
The segmentation starts from construction of seed regions 
and proceed by a region growing process. The seed regions 
are obtained by the NRS method. And planar regions ob-
tained from the planar segmentation can be taken as seed 
regions of the quadric segmentation, which could decrease 
the sensitivity to the choice of the initial seed regions of the 
quadric segmentation. The region growing process uses a 
fitting and conquering strategy and adds all qualified points 
in a narrow band of region fronts instead of one by one in 
each iteration. General quadric surfaces are fitted in the 
growing process of the quadric segmentation by the 3 L 
fitting algorithm which produces well approximations of 
general quadric surfaces and preserve linear cost of the 
computation simultaneously. 

The proposed region-based method only requires coor-
dinates of the input point cloud. It works well in presence of 
noise and outlier. It identifies outliers as well as different 
regions. And it produces multi-order consistent surfaces 
under a given tolerance. In experiments on several raw as 
well as synthetic point clouds, the proposed method pre-
serves surface details while smoothing noise and can relia-
bly extract surfaces from point clouds that contains up to 
50% outliers. 

For future work, we would like to speed up the proposed 
method on multi-core CPUs and explore a GPU-based ac-
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celeration. And we are intended to address developing spe-
cific procedures to discriminate sharp edges and smooth 
transitions. Finally, we also see potential in the applications 
such as shape analysis, surface reconstruction, and so on. 
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