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The numerical method for multi-dimensional integrals is of great importance, particularly in the uncertainty quantification of 
engineering structures. The key is to generate representative points as few as possible but of acceptable accuracy. A general-
ized L2(GL2)-discrepancy is studied by taking unequal weights for the point set. The extended Koksma-Hlawka inequality is 
discussed. Thereby, a worst-case error estimate is provided by such defined GL2-discrepancy, whose closed-form expression is 
available. The characteristic values of GL2-discrepancy are investigated. An optimal strategy for the selection of the repre-
sentative point sets with a prescribed cardinal number is proposed by minimizing the GL2-discrepancy. The three typical ex-
amples of the multi-dimensional integrals are investigated. The stochastic dynamic response analysis of a nonlinear structure is 
then studied by incorporating the proposed method into the probability density evolution method. It is shown that the proposed 
method is advantageous in achieving tradeoffs between the efficiency and accuracy of the exemplified problems. Problems to 
be further studied are discussed. 
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1  Introduction 

High-dimensional integrals are frequently encountered in 
science and engineering disciplines [1–3]. In many cases, 
the closed-form solutions of such high-dimensional inte-
grals are not readily available because the integrand may be 
in a very complex form or even could only be obtained by 
numerical methods. For instance, in uncertainty quantifica-
tion or stochastic dynamics of engineering structures, the 
dynamic response, as a function of the basic random param-
eters, usually could only be evaluated by solving the 
high-dimensional nonlinear equations of equilibrium or mo-
tion resulting from the finite element discretization, which 

further involves the solution of the complex constitutive 
laws in structural or geotechnical engineering [4–7]. There-
fore, numerical methods for such problems, usually referred 
to as quadrature when the dimension is not greater than 2 
and as cubature when the dimension is greater than 3, are of 
great concern and extensively studied for decades, resulting 
in a variety of approaches. 

Roughly speaking, these approaches could be classified 
into two classes: The ones based on some kind of best 
reachable accuracy defined by the highest degree, to which 
the cubature formula of polynomials could yield exact value, 
and the ones based on some kind of worst-case error esti-
mate, which is governed by the family of Koksma-Hlawka 
inequalities. The approaches belonging to the first class 
include, for example, different forms of Gaussian formulae 
and the sparse grids in high dimensions [2]. Such approach-
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es have been successfully applied in uncertainty quantifica-
tion for some problems [8,9]. However, many kinds of 
sparse grids, such as the Smolyak scheme [10] and the 
complete symmetric grids [11], possess negative weights. 
This might be satisfactory in many problems, but may not 
be preferred in uncertainty quantification where the concept 
of probability implies positive weights, and some spurious 
numerical results may occur due to negative weights [12]. 
In these cases, the schemes with positive weights are pre-
ferred and studied by some researchers [13,14]. 

The approaches belonging to the second class could usu-
ally be sub-divided into those generating point sets “ran-
domly” and those generating point sets in a deterministic 
manner. The former is well known as the Monte Carlo 
method and the latter is usually referred to as the num-
ber-theoretical method [15,16] or quasi-Monte Carlo (QMC) 
method [17,18]. The methods in the former sub-class may 
suffer from the low convergence rate and random conver-
gence in nature, which are improved or circumvented in the 
methods belonging to the latter sub-class. In this context, 
the concept of discrepancy plays an essential role, which in 
a sense guarantees a worst-case error in a deterministic 
sense [1]. Thus, to find low-discrepancy point sets is one of 
the central tasks. Along this line, fruitful results have been 
achieved in the past decades, a lot of low-discrepancy point 
sets (such as Sobol’ points, digital (t-α-m-s) nets) were 
found and widely applied [15,19].  

Most researches are focused on equal-weight cubature 
formulae and the corresponding discrepancy [18]. From the 
point of view of the practical applications in some fields, 
the uncertainty quantification of structural responses in civil, 
mechanical and offshore or marine engineering [20], the 
concept of unequal probabilities is natural due to the almost 
surely non-uniform/non-homogenous discretization. Actu-
ally, as mentioned by researchers [18,21–23], the unequal 
weights are feasible, but few investigations are available for 
applications. In addition, in engineering practical applica-
tions, the deterministic analysis is usually computationally 
expensive, at least taking 10 h or more for one single deter-
ministic analysis of a practical structure with about one mil-
lion degrees of freedom. It is therefore urgently desired that 
the cardinal number of the point sets, i.e., the number of the 
deterministic function evaluations, should be limited to the 
order of a magnitude of 300, or preferably less. This raises 
the problem of tackling cubature or large-scale uncertainty 
quantification issues with a small number of deterministic 
evaluations. The unequal-weight schemes may provide 
more feasibility and flexibility. 

In the present paper, the cubature formulae with unequal 
weights will be studied and illustrated in stochastic dynam-
ics of multi-degree-of-freedom (MDOF) nonlinear struc-
tures. The paper will be organized as follows. In Section 2, 
the concept of L2-discrepancy and its counterpart with une-
qual weights, the generalized L2-discrepancy (GL2-discre-                           
pancy for short) will first be introduced. Next, the extended 

Koksma-Hlawka inequality will be discussed in the case 
involving non-equal weights with the corresponding GL2- 
discrepancy by invoking the reproducing kernel Hilbert 
space theory. The closed-form expressions of GL2-discre-          
pancy in one and multiple dimensions will be given. In Sec-
tion 3, the characteristic values of GL2-discrepancy are dis-
cussed. In Section 4, the optimization problem of selecting 
the coordinates of representative point sets together with the 
corresponding unequal weights are described. The algo-
rithm will be illustrated in the integral of typical functions 
to demonstrate its properties in Section 5. Last, in this sec-
tion the proposed method will be applied in the stochastic 
dynamic analysis of an MDOF nonlinear structure by in-
corporating into the probability density evolution method. 
Problems to be further studied are discussed. 

2  L2- and generalized L2-discrepancy 

2.1  Partitioning of unit hypercube and unequal 
weights 

In many science and engineering disciplines, it is of great 
concern to evaluate the following high-dimensional integral 

 d  x x( ) ( ) ,
sC

I f f  (1) 

where  [0,1]s sC  is the s-dimensional unit hypercube, and 

 x 1( ) ( , , )sf f x x  is an s-dimensional function. If the 

function f is of variation bounded, then the celebrated 
Koksma-Hlawka inequality exists when the integral is ap-
proximated by a sample mean, i.e., [15,17] 

   *( ) ( ) ( ) ( ),n nI f S f D M V f  (2) 

where 

 
n

n k
k

S f f
n 

 
1

1
( ) ( )x  (3) 

is the widely adopted quadrature (cubature) formula, n is the 
cardinal number of the point set  x 1{ }s n

n k kM C , 
* ( )nD M  is the star discrepancy which is only dependent on 

the point set nM , and ( )V f  is the total variation of the 

function f in the sense of Hardy and Krause, which essen-
tially characterizes the degree of irregularity of the hy-
per-surface x( )f . Note that in eq. (3) equal weights of 1/n 

are adopted for each function value. 
The integral in eq. (1) could be treated in an alternative 

way by partitioning the unit hypercube into subdomains 
  1 2, , , ,n  which satisfy    1

n s
k n C  and 

  vol{ } 0k m  for   ,k m  where vol{}  denotes 

the Lebesgue measure (area or volume) of the domain. 
Therefore, it follows from eq. (1) that 
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According to the mean value theorem, for continuous 
function there must be some points in each sub-domain 
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f a f  hold exactly. Here ka  

d

 x1
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 is the Lebesgue measure of k . In this sense, 

these points could be referred to as representative points, 
and the sub-domains referred to as representative domains. 
In practice, because such ‘exact’ representative points are 
difficult to be located and will be different for different in-
tegrands, for some chosen points   x , 1,2, ,k k k n , 

there is an approximation  

 d
 

    
 

 x x x
1 1

( ) ( ) ( ) 1 ( ),
k
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n k k k
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I f Q f f a f  (5) 

where as before d


   x1 vol{ }.
k

k ka  Clearly, 0  ka 1 

for all k, and 


 1
1.

n

kk
a  

As mentioned,  x 1{ }s n
n k kM C  is the representative 

point set, and k ’s are the corresponding representative 

domains. Particularly, in uncertainty quantification or sto-
chastic dynamics, the integral in eq. (1) is actually the mean 
of a random function  X 1( ) ( , , )

s
f f X X  when 

 X 1( , , )sX X  is a random vector with independent 

identically distributed components uniformly distributed 
over [0,1]. In this case,  vol{ }k ka  could be understood 

as the probability  XPr{ }k ka , where Pr{}  is the 

probability of the bracketed event. Thereby, ak’s could also 
be called the assigned probabilities [20,24]. Evidently, if 
ak’s are forced to be 1/n, ( )nQ f  defined in eq. (5) reduces 

to ( )nS f  defined in eq. (3). 

The major task of the present paper is to prove the coun-
terpart of inequality (2) when the unequal weights (assigned 
probabilities) are adopted and give the explicit expression 
for the discrepancy. 

For an extended F-discrepancy defined by 
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x x xEF
1

( ) sup ( ) vol[0, ] ,
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n

n k k
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D M a u  (6) 

where  x 1( , , ),sx x  


x
1

vol[0, ] ,
s

jj
x  and x x( )ku  


  ,1

( )
s

k j jj
u x x , in which ( )u z  is Heaviside’s func-

tion with the value being 1 if  0z  and zero otherwise, it 

is proven that Inequality (2) still holds when ( )nS f  and 
* ( )nD M  are replaced by ( )nQ f  and EF ( ),nD M  respec-

tively [14,25]. This is an extension of the classical version 
of Koksma-Hlawka inequality for unequal weights. In the 
present paper, the L2-discrepancy will be extended to in-
volve the effects of unequal weights, and the Koks-
ma-Hlawka inequality for the GL2-discrepancy will be jus-
tified. 

2.2  Extension of the Koksma-Hlawka inequality for 
L2-discrepancy in multiple dimensions 

2.2.1 Closed-form expression for GL2-discrepancy in multi-
ple dimensions 

According to the reproducing kernel space theory [19], if 
there are some functions ( , )K x y  satisfying 

  ( ) , ( , ) ,f y f K y  (7) 

where   denotes the inner product of two functions, then 

( , )K x y  is a reproducing kernel. If we let 

    ( , ) 1 min(1 ,1 ),K x y x y  (8) 

and define the inner product of two functions f and g as 

    
1

0
, (1) (1) ( ) ( )d ,f g f g f x g x x  (9) 

where    ( )f x f x  and    ( ) ,g x g x  it could be 

verified that eq. (7) holds and thus ( , )K x y  defined in eq. 

(8) could serve as a reproducing kernel [19]. 
Assume the integral of an s-dimensional function 

 x 1( ) ( , , )sf f x x  and the cubature formula are defined 

as in eqs. (1) and (5), respectively, i.e., 

 d


   x x x
1

( ) ( ) ,   ( ) ( ),
s

n

n k k
C k

I f f Q f a f  (10) 

where    x ,1 , , 1{ ( , , , , ) }s n
n k k k d k s kM x x x C  is the 

representative point set and ka ’s are the unequal weights 

(assigned probabilities).  
Define a multi-dimensional reproducing kernel function 
x y( , )K  satisfying 

  y y( ) , ( , ) ,f f K  (11) 

where   1 1  ( , , ), ( , , ).s sx x y yx y  

A tensor product of the one-dimensional kernels could be 
adopted to construct the multi-dimensional reproducing 
kernel [19] 
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and the inner product is defined analogous to, but is an ex-
tension of eq. (9) in multiple dimensions. 

Using eq. (11), we have 
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Let 

 d


   x y y x
1

( ; ) ( , ) ( , ).
s

n

n k k
C k

h M K a K  (14) 

From eq. (13) it follows by invoking the Cau-
chy-Schwarz inequality that 

   
2 2

( ) ( ) , .NI f Q f f h h f  (15) 

Define the GL2-discrepancy in multiple dimensions by 

  xuw
2 2

( ) ( ; ) , .n nL M h M h h  (16) 

We have the following theorem. 
Theorem 1.  If x( )f  is a bounded function with finite 

first mixture derivatives in sC  and a cubature formula 


  x

1
( ) ( )

n

n k kk
Q f p f  is adopted to approximate the in-

tegral d  x x( ) ( ) ,
sC

I f f  then the error is bounded by the 

following inequality 

   uw
2 2

( ) ( ) ( ) ,n nI f Q f L M f  (17) 

where the GL2-discrepancy uw
2 ( )nL M  is defined by eq. 

(16), and 
2

f  is the 2-norm of the integrand. 

2.2.2  Closed-form expression for GL2-discrepancy in mul-
tiple dimensions 

The closed-form expression of the GL2-discrepancy in multiple 
dimensions could also be obtained without essential diffi-
culty. To this end, substituting eq. (14) in eq. (16) yields 
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For the reproducing kernel in eq. (12), we have 
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immediately leads to 
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This result could also be found as a special case in ref. 
[22]. Clearly, if the weights are forced to take equal values 
1/n, then eq. (19) reduces to 
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This is exactly the L2-discrepancy in multiple dimensions 
given in ref. [19]. 

3  Characteristic values of GL2-discrepancy 

For convenience, denote the square of GL2-discrepancy by 
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In the case all the points are ‘randomly’ scattered and all 
the unequal weights are also ‘randomly’ valued, then 2D  

is also a random variable. To be clear, all the coordinates 
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It is not at all a trivial task to obtain the PDF of 2D . In-

stead, the mean value of 2D  could be evaluated as follows: 
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Eq. (23) becomes 
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             
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1
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.
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s s n

k
k
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Because 
 

  2

1 1

1,
n n

k k
k k

a a  we have the first bound as 

follows: 

 
        
   

2

3 4
0 [ ] .

2 3

s s

E D  (26) 

In the case 1,s  there is  20 [ ] 1 6.E D  

3.1  Random point coordinates and deterministic 
weights 

Let us consider the situation when the weights are deter-
ministic but undetermined. In this case, eq. (25) becomes 

 
         
     

2 1

3 4
[ ] ( , , ),

2 3

s s

nE D a a  (27) 

where 


  2
1

1

( , , ) .
n

n k
k

a a a  According to the optimization 

principle, to find the minimum 


  2
1

1

( , , )
n

n k
k

a a a  under 

the constraint 


  
1

1,  and 0 1
n

k k
k

a a  is a problem of 

quadratic programming with constraints [26]. This problem 
is well-posed and the minimum value exists and is unique 
when    1 2 1 .na a a n  In this case, 








1

1( , , )
min ( , , ) 1 ,

n a
na a

a a n  and therefore 

 


         
     

1
2( , , )

1 3 4
min [ ] .

2 3n a

s s

a a
E D

n
 (28) 

This means that in the case the coordinates of points are 
randomly scattered, the equal weights will yield a minimum 
mean value of 2D . In addition, it is seen that 

1
2( , , )

min [ ]
n aa a

E D  decreases in the order of magnitude of 

 1( )n  as n increases, this means that the 

 


 1 1

uw
2 2( , , ) ( , , )

min [ ] min [ ]
n a n aa a a a

E L E D  will decrease in the 

order of the magnitude of 


1 2
( )n  as n increases, as will be 

verified by the numerical examples later. 

3.2  Random point coordinates and random weights 

Now come back to eq. (25), i.e., 

 
         
     

2 1

3 4
[ ] [ ( , , )],

2 3

s s

nE D E a a  (29) 
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where  

d d

d d
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
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n
a

n
a

n

n k a a n n
k

a a n n

n

E a a a p a a a a

n a p a a a a

nE a nE a

 

(30)

 

It is noted that 1, , na a  are not independent random 

variables, and thus although due to the symmetry there is 
 2 2

1[ ] [ ],nE a E a  it is no easy job to find the exact val-

ues of 2[ ].kE a  It could be argued that  1[ ] ,kE a n  and 

correspondingly 2 2[ ] ( ),kE a n  and there should exist 

   1
1[ ( , , )] ( ).nE a a n  This is verified by the numerical 

results in Figure 1.  
Here it is noted that  1[ ( , , )]nE a a  is greater than 








1

1( , , )
min ( , , ) 1 ,

n a
na a

a a n , which is actually expected, 

because if we let  
1

k ka
n

 then we have  
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where use has been made of 


 
 

 


1

0
n

k
k

E . Clearly, 


       
   

2
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 is nothing but 

the variance of .ka  This is clearly understandable because 








1

1( , , )
min ( , , ) 1

n a
na a

a a n  is the minimum value of 

 1( , , )na a  for all possible 1( , , )n aa a , no matter 

deterministic or random. The mean value  1[ ( , , )]nE a a   

 
Figure 1  (Color online) The tendency of  v.s. n. 

of course shall be greater than the minimum value. 
However, it should be stressed that only the mean of 

2
D  

is discussed, whereby the tendency could be observed. This 
in no sense implies that for “randomly” scattered points and 
“randomly” assigned weights 

2
D  will reach its minimum 

when all the weights are equal. Actually, the unequal 
weights will take advantage over the equal weights for prac-
tical use. 

4  Optimal determination of point sets by mini-
mizing GL2-discrepancy 

In many science and engineering disciplines, the determin-
istic function evaluation as involved in the cubature formula 
eq. (10) is much time consuming. For instance, as men-
tioned in the introduction, in structural dynamics of civil, 
mechanical, aerospace and ocean engineering, huge degrees 
of freedom in the order of the magnitude of thousands and 
even millions are usually involved. Besides, nonlinearity 
will be exhibited in the mechanical behaviors of structures 
when they are subjected to disastrous excitations such as 
earthquake, strong wind and huge waves [27]. In such sce-
narios, it may take at least tens of or more hours to perform 
one single deterministic analysis. Therefore, for practical 
applications it is urgent to reduce the number of determinis-
tic function evaluations to the order of 300 or less, but the 
accuracy should be as high as possible. 

To this end, the foregoing theorems provide a theoretical 
basis. As a matter of fact, Theorem 1 implies that the 
worst-case errors of the quadrature and cubature formulas 
are bounded by the GL2-discrepancy. Therefore, if the car-
dinal number of the representative point set is prescribed as, 
say n = 200, then the GL2-discrepancy could be taken as an 
objective function to be minimized, and the coordinates of 
the point sets and the unequal weights are those to be de-
termined. In other words, for a specified n, we are led to the 
following optimization problem: 
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p p x x
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 (31) 

In this problem, the number of optimization variables to 
be determined is n(s+1). If we consider a problem involving 
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10 random variables and prescribe the number of points 
n=200, then there are 2200 variables to be determined. Of 
course this is a large-scale problem. Some methods have 
been developed for such optimization problems [25]. Heu-
ristic optimization approaches, such as the Genetic Algo-
rithm, could also be applied. Alternatively, a two-step opti-
mization adopting the quadrature optimization could be 
employed [28]. 

Fortunately, the closed-form objective function in eq. (31) 
is well defined and could be computed very quickly. Thus, 
as a straightforward approach, the random searching ap-
proach could be implemented very easily. Using this meth-
od, the pseudo-random numbers are generated for the varia-
bles   , ,  ( 1,2, , ;  1, 2, , )k d kx p k n d s  and the GL2- 

discrepancy uw
2 ( )nL M  is then evaluated. After thousands 

or more rounds of such evaluations are performed, the data 

with minimal uw
2 ( )nL M  will be recorded and adopted as 

the desired data. Of course, generally this could only lead to 
sub-optimal rather than optimal results, but it is indeed very 
simple and effective. 

5  Numerical examples 

5.1  Simple cubature 

In this sub-section, the integrals of the following three func-
tions  
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 (32) 

are taken to study the performance of the proposed ap-
proach. The closed-form solutions of the integrals yield the 
following values [16,29] 

 

   
 
 

1

2

3

( ) [ (1) (0)] 0.03977,

( ) 0.8951,

( ) 1.

I f

I f

I f

 (33) 

In the present paper, 1da  for  1,2, ,d s  are taken 

in 3f . To be clear, the relative error of a cubature is de-

fined as 



( ) ( )

( ; ) .
( )

n
n

I f Q f
e f M

I f
 

In Figure 2, pictures are the pairs uw
2( ( ), ( , ))n nL M e f M  

for different point sets with different cardinal numbers (i.e., 
the number of deterministic function evaluations). 100000 
rounds of different point sets are generated randomly for 
each cardinal number of 200, 400, 800 and 1600, and 10000 
rounds of different point sets are generated randomly for the 
cardinal number of 3200. Therefore there are 100000 data 
pairs for n = 200 and 10000 data pairs for n = 3200 in the 
figures. The most remarkable property that is observed in 
Figure 2(a)–(c) is that all the points are under a line, i.e., an  

 

Figure 2  (Color online) Relative error of cubature v.s. GL2-discrepanc. (a) 
Relative error of Qn(f1) v.s. GL2-discrepancy; (b) relative error of Qn(f2) v.s. 
GL2-discrepancy; (c) relative error of Qn(f3) v.s. GL2-discrepancy. 
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inequality  uw
2( , ) ( )n ne f M L M  holds for each figure. It 

is seen that in different figures the coefficient  is different, 
implying that it is dependent on the integrand. This is noth-
ing but a numerical embodiment of the extended Koks-
ma-Hlawka inequality in Theorem 1. Another remarkable 
property of the figures is the scale similarity. It is seen from 
the figures that the areas scattered by the data pairs with 
different cardinal numbers for the same function resemble 
in shape but are different in size. This property is in a de-
gree the manifestation that the change tendency of the ac-
curacy and that of GL2-discrepancy against the cardinal 
numbers almost coincide, which will also be discussed soon 
later. But the shapes of the scattered areas of the data pairs 
for different integrand functions are different: those for 1f  

and 2f  (see Figure 2(a) and (b)) are more acute at the 

left-low corner but those for 3f  are blunter (see Figure 

2(c)). It will be seen later that this just implies that the ac-
curacy of cubature for 1f  and 2f  is higher than that for 

3f  when the same representative point set is adopted, 

which is due to the effect of 2-norm of the integrands as 
shown in Theorem 1, which characterizes the degree of ir-
regularity of the integrand in a sense. 

Shown in Figure 3 are the relative errors and 
GL2-discrepancies against the cardinal numbers. For com-
parison the curves of  1 2y n  and  1(log )sy n n  (for s 

= 3) are also plotted. It is observed that the mean of the rel-
ative errors of the cubature for different integrands against 
cardinal number is in the order of 


1 2

( )n  (with almost the 

same slope in the logarithmic coordinates). The mean of 
GL2-discrepancies for different cardinal numbers also 
changes in the same tendency, and happens to coincide al-
most exactly with the curve  1 2

y n . But from the figure it 

is also seen that there is a large gap between the maximum 
and the minimum of GL2-discrepancies for the same cardi-
nal numbers. Note that as pointed out in the preceding sec-
tion, what is really of interest is the minimal GL2-discre-                                           
pancies, which is obviously smaller than the mean by sever-
al times as observed in Figure 3. Besides, an almost ex-
tremely linear relationship could be observed in the mean 
relative errors versus mean GL2-discrepancy (see Figure 4). 
Combining Figures 3 and 4 the scaling property for differ-
ent cardinal numbers shown in Figure 2 could be interpreted 
in the sense of average. Of course, the description and in-
terpretation of the scaling property in a more rigorous sense 
may be given by an elaborated theoretical analysis but is 
still left to be done. 

From the above figures the tendency of the error against 
the cardinal numbers and the error versus the GL2-discre-                               
pancy could be observed. But as pointed out in the preced-
ing section, what is done for a practical application is to first 
determine a point set with the prescribed cardinal number 
by minimizing the GL2-discrepancy, thus the error corre-                         

 

Figure 3  (Color online)  Relative error or GL2-discrepancy against the 
cardinal numbers. 

 

Figure 4  (Color online) The mean relative error v.s. the mean 
GL2-discrepancy. 

sponding to the minimal GL2-discrepancy is of real concern. 
First, the smallest 100 GL2-discrepancies are specified and 
the means of these 100 values are denoted as 100-min mean 
GL2-discrepancy for a prescribed cardinal number. Accord-
ingly 100 data pairs could be singled out from Figure 2, and 
the mean of the 100 corresponding errors is labeled as 
“100-min mean error”. By doing so, Figure 5 is plotted. It is 
seen that the 100-min mean error is much smaller than the 
mean error by nearly one order of magnitude. In Figure 6 
shown are the relative errors corresponding to the point sets 
with the minimal (of course only nominal minimal) 
GL2-discrepancy for the prescribed cardinal numbers. Alt-
hough not a rigorous straight line, the curves in Figure 6(a) 
and (b) show a clear tendency of decreasing of the relative 
errors against decreasing of the minimal GL2-discrepancies. 
Again from the figures, it is observed that the relative errors 
for 3f  are relatively large, as also pointed out in the pre-

ceding paragraph and in ref. [29]. The relative errors shown 
in Figure 6 are also plotted in Figure 7 by showing its 
change against the cardinal number. For comparison, the 
curves of  1 2y n  and  1(log )sy n n  are also plotted. 

Again, not rigorously but a tendency of decreasing of the  
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Figure 5  (Color online) 100-min GL2-discrepancy and the corresponding 
mean error. 

 

Figure 6  (Color online) Minimal GL2-discrepancy and the corresponding 
relative error. (a) In an ordinary coordinate system; (b) in a logrithmic 
coordinate system. 

errors against the cardinal numbers is observed. To compare 
with the Monte Carlo simulation, the errors shown in Figure 
8 are plotted together with 10 rounds of Monte Carlo simu-
lation. Clearly, it is seen that the error by the proposed ap-
proach is smaller than most of the errors by Monte Carlo 
simulation. It is noted that the effect of the proposed ap-
proach for 3f  (see Figure 8(c)) is a little bit worse, which 

is due to the property of 3f  as discussed in ref. [29]. 

 

Figure 7  (Color online) The relative errors against cardinal numbers. 

It is also noted from Figures 5 through 8 that the effect of 
the proposed approach for small cardinal numbers (say, n = 
200) is even more satisfactory than the greater cardinal 
numbers. This is of great interest because, as mentioned 
previously, in many engineering practice it is required that 
the number of the deterministic function evaluation is at 
most in the order of the magnitude of 200 through 300. 

5.2  Stochastic dynamics of nonlinear structures 

For illustration, the proposed approach is now applied to the 
stochastic dynamic response analysis of a 10-DOF nonline-
ar structure subjected to seismic excitations. Some parame-
ters of the structure are random variables. The mean values 
of the 10 lumped masses 1 2 10, , ,m m m  and the 10 initial 

inter-story stiffness values 1 2 10, , ,K K K  are listed in Ta-

ble 1. Two uniformly distributed independent random vari-
ables  1 2 and  are adopted to characterize the random-

ness in the lumped masses, i.e., 1[1 2 3 (
ii m mm      

0.5)]  for  1 6i  and  [1
ii mm   22 3 ( 0.5)]m  

for  7 10i . Likewise, for the inter-story stiffness, an-
other two uniformly distributed independent random   
variables  3 4 and  are involved such that [1

ii KK   

32 3 ( 0.5)]K    for  1 6i  and [1 2 3
ii K KK     

4( 0.5)]   for  7 10.i  Here 
im  and 

iK  are the 

mean values of the lumped masses and inter-story stiffness 
listed in Table 1, m  and K  are the coefficients of varia-

tion of mass and stiffness, respectively,    1 2 3 4, , ,  and  

are four independent random variables uniformly distributed 
over [0,1] . The Bouc-Wen model [30,31] is adopted to 

model the hysteretic restoring force where 13 parameters, 
denoted by   , , , , , , ,vA n d d   , , , , ,q p d  and  (the 

meanings of the parameters could be found in ref. [20]), 
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Figure 8  (Color online) Errors of 10 MCS and the error by the proposed 
approach. (a) Error for Qn(f1); (b) error for Qn(f2); (c) error for Qn(f3). 

are involved. In the present paper, the following parameters 
take deterministic values:   0.01 , 1A , 1n ,  0q , 

 600p ,   0.2 ,   0d ,   0.5  and   0.95 . The 

rest 4 parameters are regarded as uniformly distributed in-
dependent random variables with the mean values 

  [ , , , ] [60,10,200,200]vE d d . The ground acceleration 

input is taken as   
1 1 2 2( ) ( ) ( )gX t a t a t , where 1( )a t  

and 2 ( )a t  are two deterministic time histories taking the El 

Centro accelerograms in the North-South and East-West 

directions, rescaled with the peak being 3.5 m/s2, respec-
tively, and  1 2 and  are two uniformly distributed inde-

pendent random variables with the mean values of 1. Total-
ly ten random variables are involved. The coefficients of 
variation of all the random variables are set to be 0.3. This 
means a large variation in the parameters. It is well known 
that stochastic dynamics of such MDOF nonlinear systems 
with a large degree of variation in the parameters is still a 
great challenge [32,20]. In the past decade, a family of 
probability density evolution method (PDEM) was devel-
oped and by the point evolution scheme a representative 
point set with the assigned probabilities is in need [33]. 
Therefore, the proposed approach could be incorporated 
into the PDEM. The PDEM will not be elaborated here due 
to the length and topic of the present paper. For details, re-
fer to [20,33]. 

A typical curve of the restoring force v.s. inter-story drift 
is shown in Figure 9, which implies that the strong nonline-
arity is involved in the mechanical behavior of the structure. 
The time histories of the mean and standard deviation of the 
top displacement by the proposed method (legend “PDEM”) 
and the Monte Carlo simulation (“MCS”) are pictured in 
Figure 10. 300 representative points are generated by the 
proposed approach in the preceding section and 104 times of 
Monte Carlo simulations are performed for comparison. 
Good agreement is observed, but the proposed method is 
more efficient by tens of times than the MCS. Actually the 
relative errors of the 2-norm of the mean and standard devi-
ation process are 0.029 and 0.027, respectively. Shown in 
Figure 11 are the PDFs at three typical instants of time, the 
PDF evolution surface at a certain time interval and the 
corresponding contours. It is seen clearly that due to the  

Table 1  Mean of the lumped mass and stiffness 

Story No. 1 2 3 4 5 6 7 8 9 10 
Mass 

(105 kg) 
1.4 1.4 1.4 1.3 1.2 1.2 1.1 1.0 1.0 0.7 

Stiffness 
(N/m) 

3.35 3.35 3.35 3.35 3.35 3.2 3.2 3.2 3.0 3.3 

 

 

Figure 9  (Color online) A typical curve of restoring force v.s. inter-story 
drift. 
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Figure 10  (Color online) The mean and standard deviation of top dis-
placement. 

 
Figure 11  (Color online) PDF surface and the contour in a specified 
interval. (a) PDF at three typical instants of time; (b) PDF surface; (c) 
contour. 

nonlinearity between the response and the random variables, 
even the random variables follow uniform distributions, the 
PDF of the response is in no sense close to uniform distri-
bution, neither close to normal distribution. These results 
show that the proposed approach could be applied success-
fully in stochastic dynamics of large MDOF nonlinear 
structures. 

It is noted that in engineering practice, the constitutive 
laws of materials, such as the damage constitutive law of 
concrete [5] and the plastic constitutive law of rockfill ma-
terials involving the effects of density and pressure [6,7], 
are usually quite complex. Thereby the advanced modern 
nonlinear finite element method or other discretization ap-
proaches should be incorporated. Fortunately, because the 
embedded physical/mechanical mechanism of the system is 
explicitly involved in the probability density evolution 
method by embedding deterministic analyses, as was also 
pointed out in ref. [32], the extension from the present ex-
ample to such practical applications is feasible. A most re-
cent example of extension to concrete structures with the 
damage constitutive law could be found in ref. [34]. 

6  Concluding remarks 

A generalized L2-discrepancy for the point sets involving 
unequal weights is introduced. The extended Koks-
ma-Hlawka inequality is proved and the closed-form ex-
pressions of the generalized L2-discrepancy are given. An 
algorithm for the optimal point selection by minimizing the 
generalized L2-discrepancy is proposed. Numerical exam-
ples are studied to expose the property of the point sets and 
the error estimate of the cubature formulas. The proposed 
method is incorporated into the probability density evolu-
tion method to implement the stochastic dynamic response 
analysis of an MDOF nonlinear structure. It is also noted 
that once the point sets are generated, they could be stored 
or tabulated and then be applied to other problems because 
of their non-problem-specific property. 

Problems to be further studied include: (1) Applications 
of the advanced optimization methods for search of the op-
timal values of coordinates and unequal weights; (2) the 
extension of the proposed idea to scenario involving multi-
ple non-uniform distributed random variables; and (3) the 
extension of the proposed idea to the practical applications 
involving such materials as concrete or rockfill materials 
with complex constitutive laws. 
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