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This paper is concerned with the exponential H∞ filtering problem for a class of discrete-time switched neural networks with
random time-varying delays based on the sojourn-probability-dependent method. Using the average dwell time approach together
with the piecewise Lyapunov function technique, sufficient conditions are proposed to guarantee the exponential stability for the
switched neural networks with random time-varying delays which are characterized by introducing a Bernoulli stochastic variable.
Based on the derived H∞ performance analysis results, the H∞ filter design is formulated in terms of Linear Matrix Inequalities
(LMIs). Finally, two numerical examples are presented to demonstrate the effectiveness of the proposed design procedure.
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1 Introduction

The last few decades have witnessed the development of
neural networks in various areas ranging from associative
memory, static image treatment, image processing and pat-
tern recognition to medical diagnosis and data mining [1–7].
These applications purely depend on the dynamic behaviours
of the underlying neural networks. The majority of the exist-
ing research has been concerned with the discrete time neural
networks rather than their continuous-time counterparts in to-
day’s digital world.

Time-delay phenomena are commonly encountered in
neural networks due to the limited switching speed of data
processing to the inherent communication time of neurons
and the existence of a delay in a system may induce oscil-
lations or poor performances leading to instability [8–15].
In some neural networks these time delays often exist in a
stochastic manner and its probabilistic characteristics such as
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Binomial distribution or normal distribution, can be regularly
obtained by using the statistical methods [16]. It has been
known that a neural network could be stabilized or destabi-
lized by certain stochastic inputs. Hence the stability analysis
problem for discrete-time stochastic neural networks has be-
gun to attract the research interests [17–19].

In recent years, hybrid systems have attracted extensive
attention. As a special class of hybrid systems, switching
systems are composed of a family of continuous-time or
discrete-time subsystems described by differential or differ-
ence equation which are organized by a switching rule that
orchestrates switching. Switching systems have been found
in many applications such as chemical processing, commu-
nication networks, power systems, traffic control, automo-
tive engine control, aircraft control, etc. [20–22]. Switching
between the systems may be arbitrary or there is a class of
switched systems where the switching among different sub-
systems can be defined by the trajectory. The individual sub-
systems in the switched neural networks which are mathe-
matically modeled have found their applications in the field
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of artificial intelligence and high speed signal processing.
Based on this aspect, the model of a large class of switched
systems is used to formulate a general stability analysis and
the controller synthesis framework for switched systems.

Stability of the subsystems themselves is not sufficient
for the stability of the overall system. We utilize the aver-
age dwell time method to examine the attenuation proper-
ties of switched systems [23, 24]. This method controls the
dwell time of the switching system such that even if one
or more subsystems are unstable, the overall switched sys-
tem still remains stable. In [25], this method is also ap-
plied to study the model reduction problem for switched sys-
tems with time-varying delay. The fact of switching be-
tween unstable subsystems to make the switched system ex-
ponentially stable is remarkable [26–30]. By using the aver-
age dwell time approach and the novel Lyapunov-Krasovskii
Functional (LKF), exponential stability problem can be solv-
able, if a set of linear matrix inequalities are solvable.

On the other hand, neuron state estimation problem has
gained considerable amount of interest. It has wide applica-
tions in various fields such as secure communication, biolog-
ical neural networks, gene regulatory networks, digital com-
munication, etc. [31]. In [32], the state estimation problem
for a class of discrete-time stochastic neural networks with
random delays is characterized by a Bernoulli stochastic vari-
able. In many applications, it is impossible or very expensive
to acquire the state information of all neurons in neural net-
works because of their complicated structure. Therefore, one
often needs to estimate the neuron states through the available
measurements and then utilize the estimated neuron states to
achieve certain design objectives. Through the available out-
put measurements and by using the LMI technique, it can be
employed to carry out the specific tasks such as dynamical
performance analysis and synchronization issues for the con-
trolled system. Based on different performance indexes and
different physical implications, an exponential H∞ filtering is
designed for discrete-time switched neural networks [33–35].

Furthermore, a network exhibits a special characteristic
called network mode switching where the network switches
from one mode to the other mode with uncertain transition
probabilities. A switching process in which the switching
probabilities depend on a random sojourn time is a class of
semi-Markov processes and is encountered in target track-
ing, systems subject to failures. In such a system, knowl-
edge of the sojourn time is needed for the computation of
the conditional transition probabilities. We usually do not
know the transition probability between the subsystems so
a new approach for the stability analysis is developed for
switched linear discrete system based on the sojourn prob-
abilities [36, 37]. A sojourn probability of a system is the
probability of a switched system staying in a particular sub-
system which is assumed to be known in prior. It has also
been known that switching law of the sojourn-probability-
dependent does not change the rules of the original switched
systems but it does take some existing information that was

not concerned before. Problems in random delay, packet
loss and message missing of networked switched systems are
some of the applications of the switched system model using
sojourn-probability method. To the best of our knowledge,
the exponential H∞ filtering problem for a class of discrete-
time switched neural networks with known sojourn proba-
bilities and random time-varying delays has never been ad-
dressed in the literature yet, which also motivates the work of
this paper. By using the developed system model, the expo-
nential mean square stability of switched systems is obtained.

Summarizing the above discussions, this paper addresses
the design of an exponential H∞ state estimator for a class
of discrete-time switched neural networks with random time-
varying delays based on the sojourn probability approach.
The main contributions of this paper are as follows: (1) By
using sojourn probability information, a new kind of switch-
ing law is proposed for the switched systems and the pro-
posed sojourn probability for linear discrete switched systems
is measured in a statistical way; (2) A new type of switched
system model is constructed, which is the generalization of
many practical systems; (3) By using a stochastic variable in
time delay which satisfies the Bernoulli random binary distri-
bution, a guaranteed H∞ state estimator for a class of discrete-
time neural networks is designed; (4) Specifically, we use the
the piecewise Lyapunov function technique and the average
dwell time approach to obtain a new set of sufficient condi-
tions to ensure the mean-square exponential stability of the
resulting error system. The derived set of sufficient condi-
tions for ensuring exponential stability is formulated in terms
of the LMIs. Finally, numerical simulations verify the effec-
tiveness of the theoretical results.

Notations: Throughout this paper, the superscript T and
(−1) stand for matrix transposition and matrix inverse, re-
spectively. l2[0,∞) is the space of square integrable vectors.
�n denotes the n-dimensional Euclidean space. �n×m is the
set of all n × m real matrices. P > 0 means that P is posi-
tively definite. In and 0n stand for the n × n identity matrix
and zero matrix of appropriate dimensions, respectively and
diag{· · · } denotes a block-diagonal matrix. ‖x‖ denotes the
Euclid norm vector x. Prob(.) means the occurrence proba-
bility of the event “.”. E {x} stands for the expectation of x
and E {x/y} for the expected value of x condition on y. The
notation “�” always denotes the symmetric block in the sym-
metric matrix.

2 Problem description and preliminaries

Consider the following nonlinear discrete time switched neu-
ral network with time varying delays

x(k + 1) = Cs(k)x(k) + Bs(k) f (x(k)) + As(k) f (x(k − ds(k)(k)))

+ Ds(k)w(k),

x(k) = φ(k) ∀ k ∈ [k0 − dM , k0], (1)
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where x(k) ∈ Z+ → �n is the state vector of the neural net-
work; f (x(k)) = [ f1(x1(k), f2(x(k)), · · · , fn(x(k))]T is the neu-
ron activation function; w(k) ∈ �m is the exogenous distur-
bance signal belonging to l2[0,∞); s(k) : Z+ = 0, 1, 2, · · · →
1, 2, · · · ,N = Ω is the switching actions independent of the
state; Ci = diag {ci1, ci2, · · · cin} is positive diagonal matrices
that represent the self-feedback term with entries |ci j| < 1;
Ai, Bi ∈ �n×n,Di ∈ �n×q(i ∈ Ω) represents the connec-
tion weight, delayed connection weight and the disturbance
weight respectively for the ith subsystem; φ(k) is the initial
condition, which is continuous and defined on [k0 − dM , k0].
The probability of s(k) = i is assumed to be known, i.e.,

Prob {s(k) = i} = βi,

N∑

i=1

βi = 1, (2)

where βi ∈ (0, 1) is the sojourn probability of the switched
system staying in the ith subsystem. It is easier to obtain the
statistic information βi through the simple statistical way as

βi = lim
k→∞

ki

k
,

where ki is the times of s(k) = i in the interval [1, k], k ∈ Z+.
A set of random variables δi(k) : Z+ → {0, 1} is used,

δi(k) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, s(k) = i,

0, s(k) � i,
i ∈ Ω, k ∈ Z+, (3)

and for any k ∈ Z+

N∑

i=1

δi(k) = 1, E {δi(k)} = βi,

N∑

i=1

βi = 1. (4)

The first equation in (4) is to guarantee that there is only
one active subsystem at any time. Based on (1)–(4), the
switched system at s(k) = i means that the ith subsystem
is activated and the global model of the ith switched neural
network is given by

x(k + 1) =
N∑

i=1

δi(k){Cix(k) + Bi f (x(k))

+ Ai f (x(k − di(k))) + Diw(k)},
x(k) = φ(k), k = −dM,−dM + 1, · · · , 0. (5)

where dM = max{dM
i , i ∈ Ω}, φ(k) is the initial state of x(k).

Moreover, the activation functions satisfy the following as-
sumption [38].

Assumption 1. For j ∈ 1, 2, · · · , n, there exist constants
E−j and E+j such that

E−j �
f j(x) − f j(y)

x − y
� E+j , ∀ x, y ∈ R, x � y.

For convenience of presentation, in the following, we denote

E1 = diag
{
E−1 E+1 , · · · , E−n E+n

}
,

E2 = diag

{
E−1 + E+1

2
, · · · , E−n + E+n

2

}
.

In this paper, the time-varying delay is assumed to satisfy
the following assumption. The time-varying delay di(k) is
bounded and for the ith subsystem it satisfies the condition
dm

i � di(k) � dM
i for all k ∈ N, where dm

i and dM
i are con-

stant positive scalars representing the minimum and maxi-
mum delays, respectively. There exists a constant d0

i satisfy-
ing dm

i � d0
i � dM

i such that di(k) takes values in [dm
i , d

0
i ] or

(d0
i , d

M
i ]. Its probability distribution can be observed as Prob

{di(k) ∈ [dm
i , d

0
i ]} = ρ0 and Prob {di(k) ∈ (d0

i , d
M
i ]} = 1 − ρ0,

where 0 � ρ0 � 1 and this depends upon the values of
dm

i , d
0
i , d

M
i . The probability distribution of the time-varying

delay is described by defining two sets:

D1 =
{
k|di(k) ∈ [dm

i , d
0
i ]
}
, D2 =

{
k|di(k) ∈ (d0

i , d
M
i ]

}
. (6)

We define the mapping functions:

d1i(k) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
di(k) k ∈ D1,

dm
i else,

d2i(k) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
di(k) k ∈ D2,

d0
i else.

It follows from (6) that D1 ∪ D2 = Z � 0, D1 ∩ D2 = Φ
where Φ is the empty set. From these mapping functions we
can see that if k ∈ D1 then the event di(k) ∈ [dm

i , d
0
i ] and if

k ∈ D2 implies that di(k) ∈ (d0
i , d

M
i ].

We also define the stochastic variable as

ρ(k) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, k ∈ D1,

0, k ∈ D2.

The variable ρ(k) is a Bernoulli distributed white sequence
with Prob {ρ(k) = 1} = Prob {di(k) ∈= (dm

i , d
0
i ]} = E[ρ(k)] =

ρ0 and Prob {ρ(k) = 0} = Prob {di(k) ∈ (d0
i , d

M
i ]} =

1 − E[ρ(k)] = 1 − ρ0. Furthermore, we can show that
E[ρ(k)−ρ0] = 0 and E[ρ(k) − ρ0]2 = ρ0ρ̄0 where ρ̄0 = 1−ρ0.

Based on the above assumptions the discrete-time
switched neural network (5) which depends upon the dis-
tributed sequence can be written as

x(k + 1) =
N∑

i=1

βi(k){Ci x(k) + Bi f (x(k))

+ ρ(k)Ai f (x(k − d1i(k)))

+ (1 − ρ(k))Ai f (x(k − d2i(k))) + Diw(k)}. (7)

By incorporating the randomly occurring time-varying de-
lays d1i(k) and d2i(k) to the system we get

x(k + 1) =
N∑

i=1

βi(k){Ci x(k) + Bi f (x(k)) + ρ0Ai f (x(k − d1i(k)))

+ (1 − ρ0)Ai f (x(k − d2i(k)))

+ (ρ(k) − ρ0)Ai[ f (x(k − d1i(k)))
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− f (x(k − d2i(k)))] + Diw(k)}. (8)

The neuron states are not fully obtainable in the network
outputs. As we need an efficient estimate, we assume the net-
work output y(k) and the signal z(k) to be estimated as

y(k) =
N∑

i=1

βi(k) {Fix(k) + Hi f (x(k)) +Giw(k)} ,

z(k) =
N∑

i=1

βi(k) {Mzix(k)} , (9)

where Fi,Hi,Gi, Mzi are known real constant matrices with
appropriate dimensions.

This paper designs an efficient filter to estimate the neu-
ron state from the available network output. The filtering
problem consists of obtaining the estimate ẑ(k) of the sig-
nal z(k) with the estimation error ẑ(k) − z(k), for all non-zero
w(k) ∈ l2[0,∞). For the estimation of z(k), we consider the
full order filter for the neural network (8) as

x̂(k + 1) = Cdix(k) + Bdiy(k),

ẑ(k) = Mdix(k),

x̂(k0) = 0, (10)

where x̂(k) ∈ Rn is the state vector and ẑ(k) ∈ Rp is the output
signal of the filter. Cdi, Bdi, Mdi are the filter parameters to be
designed.

We define the new state vector x̃(k + 1) = [xT(k) x̂T(k)]T

and the filtering error vector as z̃ = z(k)− ẑ(k), then from eqs.
(8)–(10), the augmented system can be obtained as follows:

x̃(k + 1) =
N∑

i=1

βi(k){Ci x̃(k) + Bi f (x̃(k))

+ ρ0Ai f (x̃(k − d1i(k)))

+ ρ̄0Ai f (x̃(k − d2i(k)))

+ (ρ(k) − ρ0)Ai[ f (x̃(k − d1i(k)))

− f (x̃(k − d2i(k)))] +Diw(k)}, (11)

z̃(k) =
N∑

i=1

βi(k)Mi x̃(k),

x̃(k0) = x̃0,

where x̃0 = [x(k0) 0]T,

Ci =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
Ci 0

BdiEi Cdi

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,Bi =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
Bi

BdiHi

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,Ai =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
Ai

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,

Di =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
Di

BdiGi

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,Mi = [Mzi − Mdi].

The objective of this paper is to focus on the sufficient con-
ditions for the filtering problem (11) such that the filtering

error is exponentially mean square stable and the H∞ perfor-
mance constraint is satisfied under known sojourn probabili-
ties.

To obtain the main results of the paper, we need to intro-
duce the following lemma and definition.

Definition 1 [30]. The switched neural network (11)
with w(k) = 0 is said to be exponentially mean-square sta-
ble under switching signal s(k), if there exist scalars K >
0 and 0 < χ < 1, such that the solution x̃(k) satisfies
E[||x̃(k)||2] < Kχ(k−k0)E||x̃(k0)||2L, k � k0, where ||x̃(k0)||L =
supk0−dM�θ�k0 ||x̃(θ)||, and χ is called the decay rate.

Definition 2. For any T2 > T1 � 0, let Ns(T1, T2) de-
note the number of switching numbers of s(k) over (T1, T2).
If Ns(T1, T2) � N0 + (T2 − T1)/Ta holds for Ta > 0, N � 0,
then Ta is called the average dwell time and N0 is the chatter
bound.

Definition 3. For given scalars γ and 0 < α < 1, the
switched neural network (11) is said to be exponentially
mean-square stable with guaranteed H∞ disturbance attenu-
ation level γ, if it is exponentially mean-square stable under
zero initial conditions and satisfies

∑∞
s=k0

(1 − α)sz̃T(s)z̃(s) �∑∞
s=k0

γ2vT(s)v(s) for every non-zero v(k) ∈ l2[0,∞).
Lemma 1 [39]. For any constant positive-definite matrix

S ∈ �n×n, S = S T, two scalars M � N > 0, such that the
sums concerned are well defined, then

(1)

⎡⎢⎢⎢⎢⎢⎣
N∑

i=1

x(i)

⎤⎥⎥⎥⎥⎥⎦
T

S

⎡⎢⎢⎢⎢⎢⎣
N∑

i=1

x(i)

⎤⎥⎥⎥⎥⎥⎦ � N

⎡⎢⎢⎢⎢⎢⎣
N∑

i=1

xT(i)S x(i)

⎤⎥⎥⎥⎥⎥⎦ .

(2)

⎡⎢⎢⎢⎢⎢⎢⎣
k−N−1∑

i=k−M

k−N−1∑

j=i

x( j)

⎤⎥⎥⎥⎥⎥⎥⎦
T

S

⎡⎢⎢⎢⎢⎢⎢⎣
k−N−1∑

i=k−M

k−N−1∑

j=i

x( j)

⎤⎥⎥⎥⎥⎥⎥⎦

�
(M − N)(M − N + 1)

2

k−N−1∑

i=k−M

k−N−1∑

j=i

xT( j)S x( j).

(3)

⎡⎢⎢⎢⎢⎢⎢⎣
−N−1∑

i=−M

k−1∑

j=k+i

x( j)

⎤⎥⎥⎥⎥⎥⎥⎦
T

S

⎡⎢⎢⎢⎢⎢⎢⎣
−N−1∑

i=−M

k−1∑

j=k+i

x( j)

⎤⎥⎥⎥⎥⎥⎥⎦

�
(M − N)(M + N + 1)

2

−N−1∑

i=−M

k−1∑

j=k+i

xT( j)S x( j).

Lemma 2 [40]. For any vectors δ1, δ2, if constant ma-
trices R, S and real scalars ς1 � 0, ς2 � 0 satisfying that
[ R S∗ R ] � 0 and ς1 + ς2 = 1, then the following inequality
holds:

− 1
ς1
δT

1 Rδ1 − 1
ς2
δT

2 Rδ2 � −
⎡⎢⎢⎢⎢⎢⎢⎢⎣
δ1

δ2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡⎢⎢⎢⎢⎢⎢⎢⎣
R S

∗ R

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣
δ1

δ2

⎤⎥⎥⎥⎥⎥⎥⎥⎦ .

Lemma 3 [41]. Suppose that Ω1,Ξ1,Ξ2 are the con-
stant matrices of appropriate dimensions, α ∈ [0, 1], then
Ω1+[αΞ1+(1−α)Ξ2] � 0 holds, if the inequalitiesΩ1+Ξ1 � 0
and Ω1 + Ξ2 � 0 hold simultaneously.

Lemma 4 [42]. For the symmetric matrices R > 0, Ξ and
matrix Γ, the following statements are equivalent:

(1) Ξ − ΓTRΓ < 0.
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(2) There exists an appropriate dimensional matrix Π such
that ⎡⎢⎢⎢⎢⎢⎢⎢⎣

Ξ + ΓTΠ + ΠTΓ ΠT

∗ −R

⎤⎥⎥⎥⎥⎥⎥⎥⎦ < 0.

Lemma 5 [43]. Given matrices A, P0 = PT
0 and P1 > 0,

then ATP1A−P0 < 0 holds if and only if there exists a matrix
Y such that

⎡⎢⎢⎢⎢⎢⎢⎢⎣
−P0 ATY

� P1 − Y − YT

⎤⎥⎥⎥⎥⎥⎥⎥⎦ < 0.

3 Main results

In this section, our aim is to deal with the exponential stability
results under known sojourn probabilities of the subsystems
with random time-varying delays.

Theorem 1. Under Assumption 1, for given scalars μ �
1, 0 � α � 1, the filtering error system (11) is said to be ex-
ponentially mean square stable with a H∞ performance level
γ > 0, if there exist symmetric positive definite matrices
Pi,Q1i,R1i, S 1i, T1i, Zui,Gui,Hui(u = 1, 2), positive diagonal
matrices Λ1i,Λ2i,Λ3i, matrices W, L1i,Π = [Π1 Π2] of ap-
propriate dimensions and for any switching signal s(k) with
average dwell time satisfying Ta � T ∗a =

lnμ
(ln(1−α)) , such that

the following LMI holds for all i,m ∈ Ω, i � m and for i ∈ Ω:

Ξ̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ξ11 0 Ψ̃iPi

� −γ2I DT
i Pi

� � Ξ33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (12)

where

Pi � μPm,Q1i � μQ1m,R1i � μR1m, S 1i � μS 1m, T1i � μT1m,

Zui � μZum,Gui � μGum,Hui � μHum, u = 1, 2, (13)

Ψ̃i = [
√
βiCT

i · · · 0 0 · · · √βiBT
i · · ·

√
βiρ0AT

i · · ·√
βiρ̄0AT

i · · · 0 0 0 · · · ]T, (14)

Ξ11 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ̃11 + Γ
T
i Π + ΠΓ

T
i Π1 Π2

� Φ̃22 L1i

� � Φ̃33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Ξ33 = diag {−P1, · · · ,−P1, · · · ,−PN , · · · ,−PN} ,

Φ̃11 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ1 0 Φ2 Φ3 0 0 0 0 Φ4 0 0 0 0 0
� Φ5 0 0 Φ6 0 0 0 0 0 0 0 0 0
� � Φ7 0 0 Φ8 Φ9 Φ10 0 0 0 0 Φ11 0
� � � Φ12 0 0 0 0 0 0 0 0 0 0
� � � � Φ13 Φ14 0 0 Φ15 0 0 0 0 0
� � � � � Φ16 0 0 Φ17 0 0 0 0 0
� � � � � � Φ18 0 Φ19 0 0 0 0 0
� � � � � � � Φ20 0 0 0 0 Φ21 0
� � � � � � � � Φ22 0 0 0 0 0
� � � � � � � � � Φ23 0 0 0 0
� � � � � � � � � � Φ24 0 0 0
� � � � � � � � � � � Φ25 0 0
� � � � � � � � � � � � Φ26 0
� � � � � � � � � � � � � Φ27

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with

Φ1 = diag{Φ11, · · · , Φ11, · · · , Φ1N , · · · , Φ1N },
Φ1i = −α1Pi + dμi Q1i + dγi R1i + dr

i Z1i

+ dM
i Z2i − αdM

i G2i − E1iΛ1i +MT
iMi,

Φ2 =
[
αdM

1 G21 · · · αdM
N G2N

]
,

Φ3 = [E21Λ11 · · · E2NΛ1N] ,

Φ4 =

N∑

j=1

√
β j

(
C j − I

)T
W,

Φ5 = diag{−Φ51, · · · ,−Φ51, · · · ,−Φ5N , · · · ,−Φ5N},
Φ5i = α

do
i Q1i + E2iΛ2i,

Φ6 = [E21Λ21 · · · E2NΛ2N] ,

Φ7 = diag{−Φ71, · · · ,−Φ71, · · · ,−Φ7N , · · · ,−Φ7N},
Φ7i = α

dM
i R1i + α

dr
i G2i + α

dM
i G2i + α

dM
i H2i + E1iΛ3i,

Φ8 = [E21Λ31 · · · E2NΛ3N] ,

Φ9 =
[
αdr

1 G11 · · · αdr
N G1N

]
,

Φ10 =
[
αdr

1 G21 · · · αdr
N G2N

]
,

Φ11 =

⎡⎢⎢⎢⎢⎣
αM

1

d2M
1

H21 · · ·
αM

N

d2M
N

H2N

⎤⎥⎥⎥⎥⎦ ,

Φ12 = diag{Φ121, · · · , Φ121, · · · , Φ12N , · · · , Φ12N},
Φ12i = dμi S 1i + dγi T1i − Λ1i,

Φ13 = diag{Φ131, · · · , Φ131, · · · , Φ13N , · · · , Φ13N},

Φ13i = −αd0
i S 1i +

N∑

j=1

β jρ0ρ̄0AT
j PiA j − Λ2i,

Φ14 =

⎡⎢⎢⎢⎢⎢⎢⎣
N∑

j=1

β jρ0ρ̄0AT
j P1A j · · ·

N∑

j=1

β jρ0ρ̄0AT
j PNA j

⎤⎥⎥⎥⎥⎥⎥⎦ ,

Φ15 =

N∑

j=1

√
β jBT

j W,

Φ16 = diag{Φ161, · · · , Φ161, · · · , Φ16N , · · · , Φ16N},

Φ16i = −αM
i T1i +

N∑

j=1

β jρ0ρ̄0AT
j PiA j − Λ3i,

Φ17 =

N∑

j=1

√
β jCT

j ,

Φ18 = diag{−Φ181, · · · ,−Φ181, · · · ,−Φ18N , · · · ,−Φ18N },
Φ18i = α

dr
i G1i + α

dr
i G2i,

Φ19 =

N∑

j=1

√
β jCT

j W,

Φ20 = diag{−Φ201, · · · ,−Φ201, · · · ,−Φ20N , · · · ,−Φ20N},
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Φ20i = α
dr
i G1i + α

M
i H2i,

Φ21 =

⎡⎢⎢⎢⎢⎣
αM

1

d2M
1

H21 · · ·
αM

N

d2M
N

H2N

⎤⎥⎥⎥⎥⎦ ,

Φ22 = diag{Φ221, · · · , Φ221, · · · , Φ22N , · · · , Φ22N},

Φ22i = dr
i G1i + dM

i G2i + d∗2i H1i +
dr

i (dr
i + 1)

4
H2i −W −WT,

Φ23 = diag{−Φ231, · · · ,−Φ231, · · · ,−Φ23N , · · · ,−Φ23N },
Φ23i = α

dr
i Z1i + α

dr
i Z2i + α

M
i H1i,

Φ24 = diag{−Φ241, · · · ,−Φ241, · · · ,−Φ24N , · · · ,−Φ24N },
Φ24i = α

dr
i Z1i + α

M
i H1i,

Φ25 = diag{−Φ251, · · · ,−Φ251, · · · ,−Φ25N , · · · ,−Φ25N },

Φ25i =
αM

i

(d2M
i )2

H2i,

Φ26 = diag{−Φ261, · · · ,−Φ261, · · · ,−Φ26N , · · · ,−Φ26N },

Φ26i =
αM

i

(d2m
i )2

H2i,

Φ27 = diag{−Φ271, · · · ,−Φ271, · · · ,−Φ27N , · · · ,−Φ27N },

Φ27i =
αM

i

dM
i

Z2i,

Φ̃22 = Φ̃33 = diag{−H11, · · · ,−H11, · · · ,−H1N , · · · ,−H1N},

Γ1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
In · · · 0n×11n · · · −In · · · 0n · · ·
0n · · · 0n×11n · · · 0n · · · 0n · · ·

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,

Γ2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0n · · · 0n×12n · · · 0n · · · 0n

In · · · 0n×12n · · · −In · · · 0n

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,

α1 = 1 − α, αm
i = (1 − α)dm

i , αM
i = (1 − α)dM

i ,

αd0
i = (1 − α)d0

i , αdm
i =

(1 − α)dm
i

dm
i

,

αdM
i =

(1 − α)dM
i

dM
i

, αdr
i =

(1 − α)dM
i

dr
i

,

d∗i =
(dr

i )(dM
i + dm

i + 1)

2
, dr

i = dM
i − dm

i ,

dμi = 1 + d0
i − dm

i , dγi = 1 + dM
i − d0

i ,

d2m
i = d2i(k) − dm

i , d2M
i = dM

i − d2i(k),

εi = dM
i − d1i(k), �i = d1i(k) − dm

i .

Moreover, an estimate of the state decay is given by

E
[
||x̃(k)||2

]
�

√
χ2

χ1
ψk−k0 E||x̃(k0)||2L,

where

χ1 = min
∀i∈N

λmin(Pi),

χ2 = max
∀i∈N

λmax(Pi) + dμi (max
∀i∈N

λmax(Q1i) + f̂ 2(max
∀i∈N

λmax(S 1i))

+ dγi (max
∀i∈N

λmax(R1i) + f̂ 2(max
∀i∈N

λmax(T1i))

+ 4dr
i max
∀i∈N

λmax(Z1i) + 4dM
i max
∀i∈N

λmax(Z2i)

+ 4dr
i max
∀i∈N

λmax(G1i) + 4dM
i max
∀i∈N

λmax(G2i)

+ d∗2i max
∀i∈N

λmax(H1i) +
dr

i (dr
i + 1)

4
max
∀i∈N

λmax(H2i),

f̂ = max
1�s�n

{|E−s |, |E+s |
}
.

Proof. The Lyapunov-Krasovskii functional candidate is
constructed in order to find the exponential mean square sta-
bility of filtering error system:

Vi(k) =
9∑

r=1

Vri(k), (15)

where

V1i(k) =
N∑

i=1

x̃T(k)Pi x̃(k),

V2i(k) =
N∑

i=1

⎡⎢⎢⎢⎢⎢⎢⎣
k−1∑

s=k−d1i(k)

(1 − α)(k−s−1) x̃T(s)Q1i x̃(s)

+

−dm
i∑

j=−d0
i +1

k−1∑

s=k+ j

(1 − α)(k−s−1) x̃T(s)Q1i x̃(s)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

V3i(k) =
N∑

i=1

⎡⎢⎢⎢⎢⎢⎢⎣
k−1∑

s=k−d2i(k)

(1 − α)(k−s−1) x̃T(s)R1i x̃(s)

+

−d0
i −1∑

j=−dM
i +1

k−1∑

s=k+ j

(1 − α)(k−s−1) x̃T(s)R1i x̃(s)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

V4i(k) =
N∑

i=1

⎡⎢⎢⎢⎢⎢⎢⎣
k−1∑

s=k−d1i(k)

(1 − α)(k−s−1) f T(x̃(s))S 1i f (x̃(s))

+

−dm
i −1∑

j=−d0
i +1

k−1∑

s=k+ j

(1 − α)(k−s−1) f T(x̃(s))S 1i f (x̃(s))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

V5i(k) =
N∑

i=1

⎡⎢⎢⎢⎢⎢⎢⎣
k−1∑

s=k−d2i(k)

(1 − α)(k−s−1) f T(x̃(s))T1i f (x̃(s))

+

−d0
i −1∑

j=−dM
i +1

k−1∑

s=k+ j

(1 − α)(k−s−1) f T(x̃(s))T1i f (x̃(s))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

V6i(k) =
N∑

i=1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−dm
i −1∑

j=−dM
i

k−1∑

s=k+ j

(1 − α)(k−s−1) x̃T(s)Z1i x̃(s)

+

−1∑

j=−dM
i

k−1∑

s=k+ j

(1 − α)(k−s−1) x̃T(s)Z2i x̃(s)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,
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V7i(k) =
N∑

i=1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−dm
i −1∑

j=−dM
i

k−1∑

s=k+ j

(1 − α)(k−s−1)ηT(s)G1iη(s)

+

−1∑

j=−dM
i

k−1∑

s=k+ j

(1 − α)(k−s−1)ηT(s)G2iη(s)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

V8i(k) =
N∑

i=1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣d
∗
i

−dm
i −1∑

l=−dM
i

−1∑

j=l

k−1∑

s=k+ j

(1 − α)(k−s−1)ηT(s)H1iη(s)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

V9i(k) =
1
2

N∑

i=1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

k−dm
i −1∑

l=−dM
i

k−dm
i −1∑

j=l

k−1∑

s= j

(1 − α)(k−s−1)ηT(s)H2iη(s)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

where η(k) = x̃(k + 1) − x̃(k).
Calculating the difference ΔVi(k) = Vi(k + 1)−Vi(k) along

the solutions and taking the mathematical expectations, we
get

E{ΔV1i(k) + αV1i(k)}

=E

{ N∑

i=1

βi[x̃T(k+1)Pix̃(k+1)− x̃T(k)Pi x̃(k)+αx̃T(k)Pi x̃(k)]

}

=E

{ N∑

i=1

βi[Ci x̃(k) + Bi( f (x̃(k)) + ρ0Ai f (x̃(k − d1i(k)))

+ρ̄0Ai f (x̃(k − d2i(k)) + Diw(k)]TPi[Cix̃(k) + Bi( f (x̃(k))

+ρ0Ai f (x̃(k − d1i(k))) + ρ̄0Ai f (x̃(k − d2i(k)))) + Diw(k)]

+ρ0ρ̄0
[
f (x̃(k − d1i(k)) − f (x̃(k − d2i(k)))

]T AT
i PiAi

× f (x̃(k − d1i(k)) − f (x̃(k − d2i(k)))
] − α1 x̃(k)Pi x̃(k)

}
.

(16)

E {ΔV2i(k) + αV2i(k)} � E

⎧⎪⎪⎨⎪⎪⎩
N∑

i=1

[
(dμi )x̃T(k)Q1i x̃(k)

− αd0
i x̃T(k − d1i(k))Q1i x̃(k − d1i(k))]

}
. (17)

E {ΔV3i(k) + αV3i(k)} � E

{ N∑

i=1

[(dγi )x̃T(k)R1i x̃(k)

− αM
i x̃T(k − d2i(k))R1i x̃(k − d2i(k))]

}
. (18)

E {ΔV4i(k) + αV4i(k)} � E

{ N∑

i=1

[(dμi ) f T(x̃(k))S 1i f (x̃(k)))

− αd0
i f T(x̃(k − d1i(k)))S 1i f (x̃(k − d1i(k)))]

}
. (19)

E {ΔV5i(k) + αV5i(k)} � E

{ N∑

i=1

[(dγi ) f T(x̃(k))T1i f (x̃(k))

− αM
i f T(x̃(k − d2i(k)))T1i f (x̃(k − d2i(k)))]

}
. (20)

E {ΔV6i(k) + αV6i(k)}

= E

⎧⎪⎪⎪⎨⎪⎪⎪⎩

N∑

i=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−dm
i −1∑

j=−dM
i

⎡⎢⎢⎢⎢⎢⎢⎣
k∑

s=k+1+ j

(1 − α)k−s x̃T(s)Z1i x̃(s)

−
k−1∑

s=k+ j

(1 − α)k−s x̃T(s)Z1i x̃(s)

⎤⎥⎥⎥⎥⎥⎥⎦

+

−1∑

j=−dM
i

[ k∑

s=k+1+ j

(1 − α)k−s × x̃T(s)Z2i x̃(s)

−
k−1∑

s=k+ j

(1 − α)k−s x̃T(s)Z2i x̃(s)

⎤⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎫⎪⎪⎪⎬⎪⎪⎪⎭

E {ΔV6i(k) + αV6i(k)} ,

= E

⎧⎪⎪⎨⎪⎪⎩
N∑

i=1

{
x̃T(k)(dr

i Z1i + dM
i Z2i)x̃(k)

− αM
i

k−dm
i −1∑

k−dM
i

x̃T(s)Z1i x̃(s)

−αM
i

k−1∑

s=k−dM
i

x̃T(s)Z2i x̃(s)

}⎫⎪⎪⎪⎬⎪⎪⎪⎭
. (21)

By using Lemma 2, we have

−
k−dm

i −1∑

s=k−dM
i

x̃T(s)Z1i x̃(s)

= −
k−d1i(k)−1∑

s=k−dM
i

x̃T(s)Z1i x̃(s) −
k−dm

i −1∑

s=k−d1i(k)

x̃T(s)Z1i x̃(s)

� − 1
dr

i

⎧⎪⎪⎪⎨⎪⎪⎪⎩

k−d1i(k)−1∑

s=k−dM
i

x̃T(s)Z1i

k−d1i(k)−1∑

s=k−dM
i

x̃(s)

+

k−dm
i −1∑

s=k−d1i(k)

x̃T(s)Z1i

k−dm
i −1∑

s=k−d1i(k)

x̃(s)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, (22)

−
k−1∑

s=k−dM
i

x̃T(s)Z2i x̃(s)

= −
k−d1i(k)−1∑

s=k−dM
i

x̃T(s)Z2i x̃(s) −
k−1∑

s=k−d1i(k)

x̃T(s)Z2i x̃(s)

� − 1
dr

i

k−d1i(k)−1∑

s=k−dM
i

x̃T(s)Z2i

k−d1i(k)−1∑

s=k−dM
i

x̃(s)

− 1

dM
i

k−1∑

s=k−d1i(k)

x̃T(s)Z2i

k−1∑

s=k−d1i(k)

x̃(s). (23)

E {ΔV7i(k) + αV7i(k)}

= E

⎧⎪⎪⎪⎨⎪⎪⎪⎩

N∑

i=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−dm
i −1∑

j=−dM
i

⎡⎢⎢⎢⎢⎢⎢⎣
k∑

s=k+1+ j

(1−α)k−sηT(s)G1iη(s)
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−
k−1∑

s=k+ j

(1−α)k−sηT(s)G1iη(s)

⎤⎥⎥⎥⎥⎥⎥⎦

+

−1∑

j=−dM
i

⎡⎢⎢⎢⎢⎢⎢⎣
k∑

s=k+1+ j

(1 − α)k−sηT(s)G2iη(s)

−
k−1∑

s=k+ j

(1 − α)k−sηT(s)G2iη(s)

⎤⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, (24)

E {ΔV7i(k) + αV7i(k)}

= E

{ N∑

i=1

{
ηT(k)(dr

i G1i + dM
i G2i)η(k)

− αM
i

k−dm
i −1∑

s=k+1−dM
i

ηT(s)G1iη(s)−αM
i

k−1∑

s=k−dM
i

ηT(s)G2iη(s)

}}
,

−
k−dm

i −1∑

s=k+1−dM
i

ηT(s)G1iη(s)

= −
k−d2i(k)−1∑

s=k+1−dM
i

ηT(s)G1iη(s) −
k−dm

i −1∑

s=k−d2i(k)

ηT(s)G1iη(s). (25)

Also we have,

−
k−dm

i −1∑

s=k+1−dM
i

ηT(s)G1iη(s)

� − 1
dr

i

k−d2i(k)−1∑

s=k+1−dM
i

ηT(s)G1i

k−d2i(k)−1∑

s=k+1−dM
i

η(s)

− 1
dr

i

k−dm
i −1∑

s=k−d2i(k)

ηT(s)G1i

k−dm
i −1∑

s=k−d2i(k)

η(s)

� − 1
dr

i

{[
x̃(k − d2i(k)) − x̃(k − dM

i )
]T

G1i [x̃(k − d2i(k))

−x̃(k − dM
i )

]}
− 1

dr
i

{[
x̃(k − dm

i (k) − x̃(k − d2i(k))
]T

×G1i
[
x̃(k − dm

i ) − x̃(k − d2i(k))
]}
, (26)

−
k−1∑

s=k−dM
i

ηT(s)G2iη(s)

= −
k−d2i(k)−1∑

s=k−dM
i

ηT(s)G2iη(s) −
k−1∑

s=k−d2i(k)

ηT(s)G2iη(s)

� − 1
dr

i

k−d2i(k)−1∑

s=k−dM
i

ηT(s)G2i

k−d2i(k)−1∑

s=k−dM
i

η(s)

− 1

dM
i

k−1∑

s=k−d2i(k)

ηT(s)G2i

k−1∑

s=k−d2i(k)

η(s)

� − 1
dr

i

{[
x̃(k − d2i(k)) − x̃(k − dM

i )
]T

G2i [x̃(k − d2i(k))

−x̃(k − dM
i )

]}
− 1

dM
i

[x̃(k) − x̃(k − d2i(k))]T

×G2i [x̃(k) − x̃(k − d2i(k))] , (27)

E {ΔV8i(k) + αV8i(k)}

= E

⎧⎪⎪⎪⎨⎪⎪⎪⎩

N∑

i=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
d�2

i ηT(k)H1iη(k)−αM
i d�i

−dm
i −1∑

s=−dM
i

k−1∑

j=k+s

ηT( j)H1iη( j)

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

Also,

− d�i

−dm
i −1∑

s=−dM
i

k−1∑

j=k+s

ηT( j)H1iη( j)

� − 1
ς1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
−d1i(k)−1∑

s=−dM
i

k−1∑

j=k+s

η( j)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

H1i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
−d1i(k)−1∑

s=−dM
i

k−1∑

j=k+s

η( j)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

− 1
ς2

⎡⎢⎢⎢⎢⎢⎢⎢⎣
−dm

i −1∑

s=−d1i(k)

k−1∑

j=k+s

η( j)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

T

H1i

⎡⎢⎢⎢⎢⎢⎢⎢⎣
−dm

i −1∑

s=−d1i(k)

k−1∑

j=k+s

η( j)

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,

where

ς1 =
(dM

i − d1i(k))(dM
i + d1i(k) + 1)

(dr
i )(dM

i + dm
i + 1)

,

ς2 =
(d1i(k) − dm

i )(d1i(k) + dm
i + 1)

(dr
i )(dM

i + dm
i + 1)

,

ς1 + ς2 = 1.

− d�i

−dm
i −1∑

s=−dM
i

k−1∑

j=k+s

ηT( j)H1iη( j)

� −
[ −d1i(k)−1∑

s=−dM
i

k−1∑

j=k+s

η( j)

]T

H1i

[ −d1i(k)−1∑

s=−dM
i

k−1∑

j=k+s

η( j)

]

−
[ −dm

i −1∑

s=−d1i(k)

k−1∑

j=k+s

η( j)

]T

L1i

[ −d1i(k)−1∑

s=−dM
i

k−1∑

j=k+s

η( j)

]

−
[ −dm

i −1∑

s=−d1i(k)

k−1∑

j=k+s

η( j)

]T

H1i

[ −dm
i −1∑

s=−d1i(k)

k−1∑

j=k+s

η( j)

]
.

� −
[
dM

i (k)x̃(k) −
k−d1i(k)−1∑

s=k−dM
i

x̃(s)

]T

H1i

[
dM

i (k)x̃(k)

−
k−d1i(k)−1∑

s=k−dM
i

x̃(s)

]
−
[
dm

i (k)x̃(k) −
k−dm

i −1∑

s=k−d1i(k)

x̃(s)

]T

× 2L1i

[
dM

i (k)x̃(k) −
k−d1i(k)−1∑

s=k−dM
i

x̃(s)

]
−
[
dm

i (k)x̃(k)

−
k−dm

i −1∑

s=k−d1i(k)

x̃(s)

]T

H1i

[
dm

i (k)x̃(k) −
k−dm

i −1∑

s=k−d1i(k)

x̃(s)

]
. (28)
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Also, we have

E {ΔV9i(k) + αV9i(k)} = E

⎧⎪⎪⎨⎪⎪⎩
N∑

i=1

{
dr

i (dr
i + 1)

4
ηT(k)H2iη(k)

−α
M
i

2

k−dm
i −1∑

s=k−dM
i

k−dm
i −1∑

j=s

ηT( j)H1iη( j)

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

Again from Lemma 2, we get

− 1
2

k−dm
i −1∑

s=k−dM
i

k−dm
i −1∑

j=s

ηT( j)H2iη( j)

= −1
2

k−d2i(k)−1∑

s=k−dM
i

k−d2i(k)−1∑

j=s

ηT( j)H2iη( j)

− 1
2

k−d2i(k)−1∑

s=k−dM
i

k−dm
i −1∑

j=k−d2i(k)

ηT( j)H2iη( j)

− 1
2

k−dm
i −1∑

s=k−d2i(k)

k−dm
i −1∑

j=s

ηT( j)H2iη( j)

� − 1

(dM
i − d2i(k))(dM

i − d2i(k) + 1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
k−d2i(k)−1∑

s=k−dM
i

k−d2i(k)−1∑

j=s

η( j)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

× H2i

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
k−d2i(k)−1∑

s=k−dM
i

k−d2i(k)−1∑

j=s

η( j)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

− 1
(d2i(k) − dm

i )(d2i(k) − dm
i + 1)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
k−dm

i −1∑

s=k−d2i(k)

k−dm
i −1∑

j=s

η( j)

⎞⎟⎟⎟⎟⎟⎟⎟⎠

T

× H2i

⎛⎜⎜⎜⎜⎜⎜⎜⎝
k−dm

i −1∑

s=k−d2i(k)

k−dm
i −1∑

j=s

η( j)

⎞⎟⎟⎟⎟⎟⎟⎟⎠

� − [x̃(k − dm
i ) − ξ1(k)

]T H2i
[
x̃(k − dm

i ) − ξ1(k)
]

− [
x̃(k − d2i(k)) − ξ2(k)

]T H2i
[
x̃(k − d2i(k) − ξ2(k)

]
, (29)

where

ξ1(k) =
1

d2m
i

⎡⎢⎢⎢⎢⎢⎢⎢⎣
k−dm

i −1∑

s=k−d2i(k)

x(s)

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , ξ2(k) =
1

d2M
i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
k−d2i(k)−1∑

s=k−dM
i

x(s)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

We find the exponential stability of the filtering error system
by taking w(k) = 0. Adding all the above inequalities in (16)–
(29) we get

E [ΔVi(k) + αVi(k)] � E[ζT(k)Θiζ(k)], (30)

Θi =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
Θ̃11 Ψ̃i

� −Pi

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , Θ̃11 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Θ̂11 + Γ
T
i Π + ΠΓ

T
i Π1 Π2

� Φ̃22 L1i

� � Φ̃33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Θ̂11 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Θ1 0 Φ2 0 0 0 0 0 Φ4 0 0 0 0 0
� Θ2 0 0 0 0 0 0 0 0 0 0 0 0
� � Θ3 0 0 0 Φ9 Φ10 0 0 0 0 Φ11 0
� � � Θ4 0 0 0 0 0 0 0 0 0 0
� � � � Θ5 Φ14 0 0 Φ15 0 0 0 0 0
� � � � � Θ6 0 0 Φ17 0 0 0 0 0
� � � � � � Φ18 0 Φ19 0 0 0 0 0
� � � � � � � Φ20 0 0 0 0 Φ21 0
� � � � � � � � Φ22 0 0 0 0 0
� � � � � � � � � Φ23 0 0 0 0
� � � � � � � � � � Φ24 0 0 0
� � � � � � � � � � � Φ25 0 0
� � � � � � � � � � � � Φ26 0
� � � � � � � � � � � � � Φ27

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Θ1 = diag{Θ11, · · · ,Θ11, · · · ,Θ1N , · · · ,Θ1N},
Θ1i = −α1Pi + dμi Q1i + dγi R1i + dr

i Z1i

+ dM
i Z2i − αdM

i G2i, Θ2 = {αdo
1 Q11 · · · αdo

N Q1N },
Θ3 = diag{Θ31, · · · ,Θ41, · · · , Θ3N , · · · ,Θ3N },
Θ3i = α

dM
i R1i + α

dr
i G2i + α

dM
i G2i + α

dM
i H2i,

Θ4 = diag{Θ41, · · · ,Θ41, · · · ,Θ4N , · · · ,Θ4N},
Θ4i = dμi S 1i + dγi T1i,

Θ5 = diag{Θ51, · · · ,Θ51, · · · ,Θ5N , · · · ,Θ5N},

Θ5i = −αd0
i S 1i +

N∑

j=1

β jρ0ρ̄0AT
j PiA j,

Θ6 = diag{Θ61, · · · ,Θ61, · · · ,Θ6N , · · · ,Θ6N},

Θ6i = −αM
i T1i +

N∑

j=1

β jρ0ρ̄0AT
j PiA j,

ζ(k) =

[
x̃T(k) x̃T(k − d1i(k)) x̃T(k − d2i(k)) f T(x̃(k))

f T(x̃(k − d1i(k))) f T(x̃(k − d2i(k)))

x̃T(k − dM
i ) x̃T(k − dm

i ) ηT(k)

k−d1i(k)−1∑

s=k−dM
i

x̃T(s)
k−dm

i −1∑

s=k−d1i(k)

x̃T(s)
k−d2i(k)−1∑

s=k−dM
i

x̃T(s)

k−dm
i −1∑

s=k−d2i(k)

x̃T(s)
k−1∑

s=k−d1i(k)

x̃T(s)

⎤⎥⎥⎥⎥⎥⎥⎥⎦ .

From Assumption 1 on the neuron activation func-
tions, it is easy to see that that the following inequali-
ties hold for any Λ1i = diag {υ1i, υ2i, · · · , υni} > 0,Λ2i =

diag {ῡ1i, ῡ2i, · · · , ῡni} > 0,Λ3i = diag {υ̃1i, υ̃2i, · · · , υ̃ni} > 0,
⎡⎢⎢⎢⎢⎢⎢⎢⎣

x(k)

f (x(k))

⎤⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡⎢⎢⎢⎢⎢⎢⎢⎣
−E1iΛ1i E2iΛ1i

� −Λ1i

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣
x(k)

f (x(k))

⎤⎥⎥⎥⎥⎥⎥⎥⎦ � 0,

⎡⎢⎢⎢⎢⎢⎢⎢⎣
x(k − d1i(k))

f (x(k − d1i(k)))

⎤⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡⎢⎢⎢⎢⎢⎢⎢⎣
−E1iΛ2i E2iΛ2i

� −Λ2i

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣
x(k − d1i(k))

f (x(k − d1i(k)))

⎤⎥⎥⎥⎥⎥⎥⎥⎦ � 0,

⎡⎢⎢⎢⎢⎢⎢⎢⎣
x(k − d2i(k))

f (x(k − d2i(k)))

⎤⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡⎢⎢⎢⎢⎢⎢⎢⎣
−E1iΛ3i E2iΛ3i

� −Λ3i

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣
x(k − d2i(k))

f (x(k − d2i(k)))

⎤⎥⎥⎥⎥⎥⎥⎥⎦ � 0.

Since η(k) = x̃(k + 1) − x̃(k), we obtain the zero equation
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by introducing the relaxation matrix W with appropriate di-
mension,

N∑

i=1

2ηT(k)WT[Ci x̃(k) + Bi f (x̃(k)) + ρ0Ai f (x̃(k − d1i(k)))

+ ρ̄0Ai f (x̃(k − d2i(k))) + (ρ(k) − ρ0)Ai

× [ f (x̃(k − d1i(k))) − f (x̃(k − d2i(k)))]

+Diw(k) − x̃(k) − η(k)] = 0. (31)

Combining the results and applying the Schur comple-
ment, we get

E[ΔVi(k) + αVi(k)]

� E

⎡⎢⎢⎢⎢⎢⎢⎢⎣ζ
T(k)[Σ − Γ(k)

⎡⎢⎢⎢⎢⎢⎢⎢⎣
H1i L1i

� H1i

⎤⎥⎥⎥⎥⎥⎥⎥⎦Γ
T(k)]ζ(k)

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , (32)

where Σ is given by (33) and

ΓT(k) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
εi In · · · 0n×11n · · · −�i In · · · 0 · · ·
�i In · · · 0n×12n · · · −εiIn · · · 0 · · ·

⎤⎥⎥⎥⎥⎥⎥⎥⎦ .

The LMI results in (12) mean that the inequalities Σ+ΓT
i Π+

ΠΓT
i � 0.

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
Σ11 Ψ̃i

� −Pi

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , (33)

Σ11 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Σ̃11 + Γ
T
i Π + ΠΓ

T
i Π1 Π2

� Φ̃22 L1i

� � Φ̃33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Σ̃11 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Σ1 0 Φ2 Φ3 0 0 0 0 Φ4 0 0 0 0 0
� Φ5 0 0 Φ6 0 0 0 0 0 0 0 0 0
� � Φ7 0 0 Φ8 Φ9 Φ10 0 0 0 0 Φ11 0
� � � Φ12 0 0 0 0 0 0 0 0 0 0
� � � � Φ13 Φ14 0 0 Φ15 0 0 0 0 0
� � � � � Φ16 0 0 Φ17 0 0 0 0 0
� � � � � � Φ18 0 Φ19 0 0 0 0 0
� � � � � � � Φ20 0 0 0 0 Φ21 0
� � � � � � � � Φ22 0 0 0 0 0
� � � � � � � � � Φ23 0 0 0 0
� � � � � � � � � � Φ24 0 0 0
� � � � � � � � � � � Φ25 0 0
� � � � � � � � � � � � Φ26 0
� � � � � � � � � � � � � Φ27

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Σ1 = diag {Σ11, · · · ,Σ11, · · · ,Σ1N , · · · ,Σ1N } ,
Σ1i = −α1Pi + dμi Q1i + dγi R1i + dr

i Z1i + dM
i Z2i

− αdM
i G2i − E1iΛ1i.

By using Lemma 2, we can guarantee that the inequality
Σ − ΓT(k)Π + ΠΓT(k) < 0. Thus, it is easy to get that
ΔVi(k) − Vi(k) � −αVi(k) for all k.

This implies that

Vs(k)(k) � (1 − α)k−kt Vs(kt)(kt),

and it is easy to obtain that

Vs(k)(k) � (1 − α)k−kt Vs(kt)(kt)

� (1 − α)k−ktμVs(kt−1)(kt)

� μ(1 − α)k−kt (1 − α)kt−kt−1 Vs(kt−1)(kt−1)

= μ(1 − α)k−kt−1Vs(kt−1)(kt−1)

� · · · � μNs(k0,k)(1 − α)k−k0 Vs(k0)(k0). (34)

We know that Ns(k)(k) � (k − k0)/Ta, then (34) becomes

Vs(k)(k) � ((1 − α)μ
1

Ta )k−k0Vs(k0)(k0). (35)

Also there exist two scalars χ1 and χ2 such that

Vs(k0)(k0) � χ2||x(k0)||2L
and

Vs(k0)(k0) � χ1||x(k0)||2L,
where χ1 and χ2 are given in the statement of Theorem 1.

Using the above inequalities in (35) and taking the mathe-
matical expectations of these we obtain

χ1E[||x(k)||2] � ((1 − α)μ
1

Ta )k−k0χ2E||x(k0)||2L,
E[||x(k)||2] �

χ2

χ1
χ2(k−k0)E||x(k0)||2L, (36)

where χ2 = (1 − α)μ
1

Ta . Then, by using Ta we can easily
obtain χ < 1. Hence from Definition 1, the augmented sys-
tem (11) is exponentially mean square stable. This completes
the proof that the filtering error system (10) is exponentially
mean square stable when w(k) = 0.

Also, for all nonzero w(k), by using (33) we get

ΔVi(k) + αVi(k) + z̃T(k)z̃(k) − γ2wT(k)w(k)

� ζT(k)Σζ(k) + x̃T(k)MT
iMi x̃(k) − γ2wT(k)w(k)

� ζ1(k)TΞ̃ζ1(k),

where

ζ1(k) = [ζT(k) wT(k)],

and Ξ̃ is given in the LMI (12). Therefore, it follows from the
LMI (12) that

ΔVi(k) + αVi(k) + z̃T(k)z̃(k) − γ2wT(k)w(k) < 0.

It can be easily deduced that

ΔVi(k1) � (1 − α)Vi(k0) + z̃T(k0)z̃(k0) − γ2wT(k0)w(k0).

On iteration, we obtain the inequality as

ΔVi(k) � (1 − α)k−k0 Vi(k0) −
k−1∑

s=k0

(1 − α)k−s−1(z̃T(s)z̃(s)

− γ2wT(s)w(s)). (37)
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In order to establish the exponential H∞ performance for
the system, we consider the performance index given by

J =
∞∑

s=k0

(1 − α)sz̃T(s)z̃(s) − γ2wT(s)w(s).

From (12) to (37) we get

ΔVs(k)(k1) �(1 − α)k−kt Vs(k)(kt)

−
k−1∑

s=kt

(1 − α)k−s−1
(
z̃T(s)z̃(s) − γ2wT(s)w(s)

)
.

It is also easy to obtain from [44]

k−1∑

s=k0

(1 − α)s(1 − α)k−s−1z̃T(s)z̃(s)

�
k−1∑

s=k0

(1 − α)k−s−1γ2wT(s)w(s)).

which implies that

∞∑

s=k0

(1 − α)sz̃T(s)z̃(s) �
∞∑

s=k0

γ2wT(s)w(s)).

Therefore, from Definition 2, we conclude that the switched
system (10) with given attenuation level γ > 0 is exponen-
tially mean square stable under sojourn probability.

Now we are in a position to make use of LMI based suffi-
cient conditions established in Theorem 1 and design the pa-
rameters of the filter in (10) by using Lemma 5 to construct
the main results.

Theorem 2. Suppose Assumption 1 holds. For given
scalars μ � 1, 0 � α � 1, the filtering error system (11) is
said to be exponentially mean square stable with a H∞ norm
bound γ > 0, if there exist symmetric positive definite ma-
trices Pi =

[
P1i P2i
� P3i

]
,Q1i,R1i, S 1i, T1i, Zui,Gui,Hui (u = 1, 2),

positive diagonal matrices Λ1i,Λ2i,Λ3i, matrices W, L1i,Π =
[Π1 Π2] of appropriate dimensions and for any switching
signal s(k) with average dwell time satisfying Ta � T ∗a =

lnμ
(ln(1−α)) , such that the following LMIs hold for all i,m ∈
Ω, i � m and for i ∈ Ω:

Ξ̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ξ̃11 0 Υ1i Υ2i Υ3i

� � � � −γ2I

� � Υ4i Υ5i 0

� � � Υ6i 0

� � � � −I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (38)

Pi � μPm,Q1i � μQ1m,R1i � μR1m, S 1i � μS 1m, T1i �
μT1m, Zui � μZum,Gui � μGum,Hui � μHum, u = (1, 2).

Ξ̃11 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ω̂11 + Γ
T
i Π + ΠΓ

T
i Π1 Π2

� Φ̃22 L1i

� � Φ̃33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Ω̂11 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ1 φ2 0 φ3 φ4 0 0 0 0 φ5 0 0 0 0 0
� φ6 0 0 0 φ7 0 0 0 0 0 0 0 0 0
� � φ8 0 0 0 φ9 0 0 0 0 0 0 0 0
� � � φ10 0 0 0 φ11 φ12 0 0 0 0 φ13 0
� � � � φ14 0 0 0 0 0 0 0 0 0 0
� � � � � φ15 φ16 0 0 φ17 0 0 0 0 0
� � � � � � φ18 0 0 φ19 0 0 0 0 0
� � � � � � � φ20 0 φ21 0 0 0 0 0
� � � � � � � � φ22 0 0 0 0 φ23 0
� � � � � � � � � φ24 0 0 0 0 0
� � � � � � � � � � φ25 0 0 0 0
� � � � � � � � � � � φ26 0 0 0
� � � � � � � � � � � � φ27 0 0
� � � � � � � � � � � � � φ28 0
� � � � � � � � � � � � � � φ29

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

φ1 = diag{φ11, · · · , φ11, · · · , φ1N , · · · , φ1N},
φ1i = −α1P1i + dμi Q1i + dγi R1i + dr

i Z1i

+ dM
i Z2i − αdM

i G2i − E1iΛ1i +MT
iMi,

φ2 = [−α1P21 · · · − α1P21 · · · − α1P2N · · · − α1P2N],

φ3 =
[
αdM

1 G21 · · · αdM
1 G21 · · ·αdM

N G2N · · · αdM
N G2N

]
,

φ4 = [E11Λ11 · · · E1NΛ1N],

φ5 =

N∑

j=1

√
β j{(C j − I)TW},

φ6 = [−α1P31 · · · − α1P31 · · · − α1P3N · · · − α1P3N],

φ7 = [E21Λ21 · · · E2NΛ2N] ,

φ8 = diag{−φ81, · · · ,−φ81, · · · ,−φ8N , · · · ,−φ8N},
φ8i = α

do
i Q1i + E2iΛ2i,

φ9 = [E31Λ31 · · · E3NΛ3N] ,

φ10 = diag{−φ101, · · · ,−φ101, · · · ,−φ10N , · · · ,−φ10N},
φ10i = α

dM
i R1i + α

dr
i G2i + α

dM
i G2i + α

dM
i H2i + E1iΛ3i,

φ11 = [αdr
1 G11 · · · αdr

N G1N],

φ12 = [αdr
1 G21 · · · αdr

N G2N],

φ13 =

[ αM
1

d2M
1

H21 · · ·
αM

i

d2M
i

H2i

]
,

φ14 = diag{φ141, · · · , φ141, · · · , φ14N , · · · , φ14N},
φ14i = dμi S 1i + dγi T1i − Λ1i,

φ15 = diag{φ151, · · · , φ151, · · · , φ15N , · · · , φ15N},

φ15i = −αd0
i S 1i +

N∑

j=1

β jρ0ρ̄0AT
j PiA j − Λ2i,

φ16 =

⎡⎢⎢⎢⎢⎢⎢⎣
N∑

j=1

β jρ0ρ̄0AT
j P1A j · · ·

N∑

j=1

β jρ0ρ̄0AT
j PNA j

⎤⎥⎥⎥⎥⎥⎥⎦ ,

φ17 =

N∑

j=1

√
β jBT

j W,

φ18 = diag{φ181, · · · , φ181, · · · , φ18N , · · · , φ18N},

φ18i = −αM
i T1i +

N∑

j=1

β jρ0ρ̄0AT
j PiA j − Λ3i,
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φ19 =

N∑

j=1

√
β jCT

j [W1 · · · WN] ,

φ20 = diag{−φ201, · · · ,−φ201, · · · ,−φ20N , · · · ,−φ20N},
φ20i = α

dr
i G1i + α

dr
i G2i,

φ21 =

N∑

j=1

√
β jCT

j W,

φ22 = diag{−φ221, · · · ,−φ221, · · · ,−φ22N , · · · ,−φ22N},
φ22i = α

dr
i G1i + α

M
i H2i,

φ23 =

[ αM
1

d2M
1

H21 · · ·
αM

i

d2M
i

H2i

]
,

φ24 = diag{φ241, · · · , φ241, · · · , φ24N , · · · , φ24N},
φ24i = dr

i G1i + dM
i G2i + d∗2i H1i

+
dr

i (dr
i + 1)

4
H2i −W −WT,

φ25 = diag{−φ251, · · · ,−φ251, · · · ,−φ25N , · · · ,−φ25N},
φ25i = α

dr
i Z1i + α

dr
i Z2i + αMH1i,

φ26 = diag{−φ261, · · · ,−φ261, · · · ,−φ26N , · · · ,−φ26N},
φ26i = α

dr
i Z1i + α

M
i H1i,

φ27 = diag{−φ271, · · · ,−φ271, · · · ,−φ27N , · · · ,−φ27N},

φ27i =
αM

i

(d2M
i )2

H2i,

φ28 = diag{−φ281, · · · ,−φ281, · · · ,−φ28N , · · · ,−φ28N},

φ28i =
αM

i

(d2m
i )2

H2i,

φ29 = diag{−φ291, · · · ,−φ291, · · · ,−φ29N , · · · ,−φ29N},

φ29i =
αM

i

dM
i

Z2i,

Φ̃22 = Φ̃33 = diag{−H11, · · · ,−H11, · · · ,−H1N , · · · ,−H1N},
Υ1i =

[ √
βi{YT

1iCi + BDiFi}
√
βiCDi · · · 0 0

· · · √βi{YT
1iBi + BDiHi} · · ·

√
βiρ0YT

1iAi · · ·
√
βiρ̄0Y1iAi · · · 0 0 · · · √βi

{
YT

1iDi + BDiGi

}]T
,

Υ2i =
[ √

βi

{
YT

2iCi + BDiFi

} √
βiCDi · · · 0 0 · · ·

√
βi

{
YT

2iBi + BDiHi

}
· · · √βiρ0YT

2iAi · · ·
√
βiρ̄0Y2iAi · · · 0 0 · · · √βi

{
YT

2iDi + BDiGi

}]T
,

Υ3i = [Mi MDi 0 · · · 0 · · · 0]T , Υ4i = P1i − Y1i − YT
1i,

Υ5i = P2i − Y2i − YT
2i, Υ6i = P3i − Y3i − YT

3i,

with an estimate of the state decay given in Theorem 1. More-
over the filter parameters are given by Cdi = Y−T

3i CDi, Bdi =

Y−T
3i BDi, Mdi = MDi.

Proof. Define matrices Yi and introduce Pi as follows:

Yi =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
Y1i Y2i

� Y3i

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , Pi =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
P1i P2i

� P3i

⎤⎥⎥⎥⎥⎥⎥⎥⎦ .

Applying Lemma 2, we get

Ξ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ξ11 0 Ψ̃iPi

� −γ2I DT
i Pi

� � Pi − Yi − YT
i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0. (39)

By letting CDi = YT
3iCdi, BDi = YT

3iBdi, Mdi = MDi and us-
ing the Schur complement, it is easy to see that the inequality
(39) is equivalent to the LMI (38). Thus the proof is com-
pleted.

Remark 1. If there is no sojourn probability with
d1i(k) = d1(k), d2i(k) = d2(k), dM

i = dM , dm
i = dm, d0

i = d0,
then the filtering error system is reduced to

x̃(k + 1) = Ci x̃(k) + Bi f (x̃(k)) + ρ0Ai f (x̃(k − d1(k)))

+ ρ̄0Ai f (x̃(k − d2(k))) + (ρ(k) − ρ0)

×Ai[ f (x̃(k − d1(k))) − f (x̃(k − d2(k)))]

+Diw(k), (40)

where Ci,Bi,Ai,Di are given in (11). Then as an immediate
consequence of Theorem 2, the exponential filter for (40) will
be designed by the following corollary by choosing the LKF
(15).

Corollary 1. Suppose Assumption 1 holds, for given
scalars μ � 1, 0 � α � 1, the filtering error system (40) is
said to be exponentially mean square stable with a H∞ norm
bound γ > 0, if there exist symmetric positive definite ma-
trices Pi =

[
P1i P2i
� P3i

]
,Q1i,R1i, S 1i, T1i, Zui,Gui,Hui (u = 1, 2),

positive diagonal matrices Λ1i,Λ2i,Λ3i, matrices W, L1i,Π =

[Π1 Π2] of appropriate dimensions and for any switching
signal s(k) with average dwell time satisfying Ta � T ∗a =

lnμ
(ln(1−α)) , such that the following LMIs hold for all i,m ∈
Ω, i � m and for i ∈ Ω :

Δ̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Δ̃11 0 Π̃1i Π̃2i Π̃3i

� � � � −γ2I

� � Π̃4i Π̃5i 0

� � � Π̃6i 0

� � � � −I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0. (41)

Pi � μPm,Q1i � μQ1m,R1i � μR1m, S 1i � μS 1m, T1i �
μT1m, Zui � μZum,Gui � μGum,Hui � μHum, u = (1, 2),

Δ̃11 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ψ̂11 + Γ
T
i Π + ΠΓ

T
i Π1 Π2

� Ψ̂22 L1i

� � Ψ̂33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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Ψ̂11 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ1 ψ2 0 ψ3 ψ4 0 0 0 0 ψ5 0 0 0 0 0
� ψ6 0 0 0 ψ7 0 0 0 0 0 0 0 0 0
� � ψ8 0 0 0 ψ9 0 0 0 0 0 0 0 0
� � � ψ10 0 0 0 ψ11 ψ12 0 0 0 0 ψ13 0
� � � � ψ14 0 0 0 0 0 0 0 0 0 0
� � � � � ψ15 ψ16 0 0 ψ17 0 0 0 0 0
� � � � � � ψ18 0 0 ψ19 0 0 0 0 0
� � � � � � � ψ20 0 ψ21 0 0 0 0 0
� � � � � � � � ψ22 0 0 0 0 ψ23 0
� � � � � � � � � ψ24 0 0 0 0 0
� � � � � � � � � � ψ25 0 0 0 0
� � � � � � � � � � � ψ26 0 0 0
� � � � � � � � � � � � ψ27 0 0
� � � � � � � � � � � � � ψ28 0
� � � � � � � � � � � � � � ψ29

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

ψ1 = −α1P1i + d̂μQ1i + d̂γR1i + d̂rZ1i + dMZ2i

− (1 − α)dM

dM
G2i − E1iΛ1i +MT

iMi,

ψ2 = −α1P2i, ψ3 =
(1 − α)dM

dM
G2i, ψ4 = E1iΛ1i,

ψ5 = (Ci − I)TWi, ψ6 = −α1P3i, ψ7 = E2iΛ2i,

ψ8 = −(1 − α)d0
Q1i − E2iΛ2i, ψ9 = E3iΛ3i,

ψ10 =
(1 − α)dM

dM
R1i +

(1 − α)dM

d̂r
G2i

+
(1 − α)dM

dM
G1i

(1 − α)dM

dM
H1i + E1iΛ3i,

ψ11 =
(1 − α)dM

d̂r
G1i, ψ12 =

(1 − α)dM

d̂r
G2i,

ψ13 =
(1 − α)dM

d2M
H1i, ψ14 = d̂μS 1i + d̂γT1i − Λ1i,

ψ15 = −(1 − α)d0
S 1i + ρ0ρ̄0AT

i PiAi − Λ2i,

ψ16 = ρ0ρ̄0AT
i P1iAi, ψ17 = BT

i W,

ψ18 = −(1 − α)dM
T1i + ρ0ρ̄0AT

i PiAi − Λ3i, ψ19 = CT
i W,

ψ20 = − (1 − α)dM

d̂r
G2i, ψ21 = CT

i W,

ψ22 = − (1 − α)dM

d̂r
G1i − (1 − α)dM

H2i, ψ23 =
(1 − α)dM

d2M
H2i,

ψ24 = d̂rG1i + dMG2i + d̂∗2H1i +
d̂r(d̂r + 1)

4
H2i −W −WT,

ψ25 = − (1 − α)dM

d̂r
Z1i − (1 − α)dM

dM
Z2i − (1 − α)MH1i,

ψ26 = − (1 − α)dM

d̂r
Z1i − (1 − α)dM

H1i, ψ27 = − (1 − α)M

(d2M)2
H2i,

ψ28 = − (1 − α)M

(d2m)2
H2i,

ψ29 = − (1 − α)M

dM
Z2i, Ψ̂22 = Ψ̂33 = −H1i,

Π1i =
[
YT

1iCi + BDiFi CDi 0n,2n YT
1iBi + BDiHi

ρ0YT
1iAi ρ̄0Y1iAi 0n,8n YT

1iDi + BDiGi

]T
,

Π2i =
[
YT

2iCi + BDiFi CDi 0n,2n YT
2iBi + BDiHi

ρ0YT
2iAi ρ̄0Y2iAi 0n,8n YT

2iDi + BDiGi

]T
,

Π3i =
[
Mi MDi 0n,14n

]T ,Π4i = P1i − Y1i − YT
1i,

Π5i = P2i − Y2i − YT
2i,Π6i = P3i − Y3i − YT

3i,

and ensures an estimate of the state decay given in Theorem 1

with d̂∗ = (d̂r)(dM+dm+1)
2 , d̂r = dM−dm, d̂μ = 1+d0−dm, d̂γ =

1 + dM − d0, d2m = d2(k) − dm, d2M = dM − d2(k).
Remark 2. The H∞ estimator design problem is solved

in Theorem 1 for the addressed random delay neural network
under sojourn probabilities. We derive an LMI-based suffi-
cient condition for the existence of the full-order estimators
that ensure the mean square exponential stability of the result-
ing estimation error system and reduce the effect of the dis-
turbance input on the estimated signal to a prescribed level.
The feasibility of the estimator design problem can be readily
checked by the solvability of an LMI, which is dependent on
the lower bound and upper bound of the time-varying delays.

Remark 3. The stability problems for the switched sys-
tems can be analyzed by two types of Lyapunov-Krasovskii
functional methods, namely the common Lyapunov function
method and the piecewise Lyapunov function method. In
practical implementation, piecewise method is chosen to deal
with the switching phenomenon, as it is difficult for the sub-
systems to share a common LKF. Based on this, Theorem
2 provides the delay-distribution-dependent for the exponen-
tial H∞ filter design for the discrete-time switched neural net-
works with random delays.

Remark 4. Some new methods, such as the delay-
partitioning approach [45] and free weighting matrix method
[46] reduce the conservatism, but by doing so, many weight-
ing matrices are added and the analysis and stability of the
system become more complex in nature. Therefore, in this
paper the use of triple Lyapunov functional terms and the re-
ciprocal convex approach has reduced the conservatism more
greatly and has given more tight upper bounds to estimate
their time differences in the estimation.

Remark 5. It should be noted that the delay-distribution-
dependent conditions proposed in this paper are dependent
on μ and α. If μ = 1, then Pi � Pm,Q1i � Q1m,R1i �
R1m, S 1i � S 1m, T1i � T1m, Zui � Zum,Gui � Gum,Hui �
Hum, u = (1, 2),∀i,m ∈ N which implies Pi = Pm = P,Q1i =

Q1m = Q,R1i = R1m = R, S 1i = S 1m = S , T1i = T1m =

T, Z1i = Z1m = Z1, Z2i = Z2m = Z2,G1i = G1m = G1,G2i =

G2m = G2,H1i = H1m = H1,H2i = H2m = H2,∀i,m ∈ N
which means that all the system share a common LKF. But
by Remark 3, in order to use the piecewise LKF, the value of
μ should always be greater than 1 needed.

Remark 6. When the sojourn probabilities are not com-
pletely known, that is, not all the sojourn probabilities βi(i =
1, · · · ,N) can be measured, without loss of generality, it is
assumed that sojourn probabilities β1, · · · , βl(l < N) are com-
pletely known and βl+1, · · · , βN are completely unknown. In
this case the system (8)–(9) can be written as

x(k + 1) =
N∑

i=1

βi(k)λ1i(k)ζ(k),
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y(k) =
N∑

i=1

βi(k)λ2i(k)ζ(k),

z(k) =
N∑

i=1

βi(k)λ3i(k)ζ(k),

where

λ1i = [Ci(k) · · · 0 0 · · · Bi(k) · · ·
ρ0Ai(k) · · · ρ̄0Ai(k) · · · 0 0 0 · · · ] ,

λ2i = [Fi(k) 0 0 Hi(k) 0 · · · 0 Gi(k)] ,

λ3i =
[
Mzi(k) 0 · · · 0 0 0 · · · 0 0

]
.

On the other hand, if it is partially known i.e, βi(i =
1, · · · , l) are completely known and βi(i = l + 1, · · · ,N) are
completely unknown then the system can be rewritten as

x(k + 1) =
l∑

i=1

βi(k)λ1i(k)ζ(k) + δ(k)

⎧⎪⎪⎨⎪⎪⎩
N∑

i=l+1

λ1i(k)ζ(k)

⎫⎪⎪⎬⎪⎪⎭ ,

y(k) =
l∑

i=1

βi(k)λ2i(k)ζ(k) + δ(k)

⎧⎪⎪⎨⎪⎪⎩
N∑

i=l+1

λ2i(k)ζ(k)

⎫⎪⎪⎬⎪⎪⎭ ,

z(k) =
l∑

i=1

βi(k)λ3i(k)ζ(k) + δ(k)

⎧⎪⎪⎨⎪⎪⎩
N∑

i=l+1

λ3i(k)ζ(k)

⎫⎪⎪⎬⎪⎪⎭ ,

where δ(k) is the abbreviation of δs(k)∈l+1,··· ,N .

E{βi(k)} = βi, E{δ(k)} = δ,
l∑

i=1

βi(k) + δ(k) = 1, δ = 1 −
l∑

i=1

βi.

4 Numerical simulation

In this section, two numerical examples are provided to
demonstrate the effectiveness of the developed method on the
design of the H∞ filter for the discrete-time switched neural
networks with random delays.

Example 1. Consider the discrete-time switched neural
network (11) with two subsystems and two neurons which
have the following parameters:

C1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
−1.31 −0.27

−0.9 −1.0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , C2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
−1.48 −0.91

−0.9 −0.8

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,

B1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
−1.2 0.6

−0.8 −1.0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , B2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
−0.6 0.7

−0.7 −0.67

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,

A1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
−0.28 −0.09

0.09 −0.8

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , A2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
−0.26 −0.06

−0.65 0.6

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,

D1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
−0.26 −0.05

−0.09 −0.8

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , D2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
−0.29 −0.12

−0.08 −0.9

⎤⎥⎥⎥⎥⎥⎥⎥⎦ .

Let us choose the neuron activation functions as f (x(k)) =
[tanh(0.44x1(k)) tanh(0.2x2(k))]T.

Then from Assumption 1, it is easy to see that E1 =

diag {0, 0} and E2 = diag {0.22, 0.1}.
Also choose the parameters of measurements as G1 =

−0.67,G2 = 0.67, F1 = [0.42 − 0.53], F2 = [0.79 −
0.82],H1 = [−0.45 0.86],H2 = [0.89 0.32]. Further-
more, the weight matrices of the output signal are taken as
Mz1 = [0.63 0.61], Mz2 = [0.57 0.18].

Solving the LMIs in Theorem 2 using Matlab LMI tool-
box, it is found that LMI (38) is feasible for the given val-
ues ρ0 = 0.8, μ = 1.25 and β1 = β2 = 0.5. The mini-
mum H∞ performance level γ for different values of α are
presented in Table 1 with time delay bounds dm

1 = dm
2 = 1,

d0
1 = d0

2 = 3, dM
1 = dM

2 = 7 along with the time-varying delay
d1i(k), d2i(k) considered as d11(k) = d12(k) = 2 + sin((πk)/2)
and d21(k) = d22(k) = 4 + sin((πk)/2) respectively. The op-
timized H∞ performance level is attained at γmin = 0.1768
corresponding to the value of α = 0.01. Setting μ = 1.25 the
average dwell time Ta > T ∗a = 22.0891. If we take Ta = 23,
then we obtain the decay rate as χ = 0.9998 < 1 and solving
the estimate of the state decay we get

E[||x(k)||2] � 0.0714e−0.0002(k−k0)E||x̃(k)||2L, ∀k � k0.

The trajectory of the estimation error x(k) is depicted in
Figure 1(a). The calculated values of γmin for different values
of α are given in Table 1. It is confirmed from the simula-
tion results and the convergence dynamics that the design of
H∞ filter is performed better over the random delays using
sojourn probabilities in Theorem 2, than the one in the Corol-
lary 1 [47]. This example demonstrates that less conservative
results can be obtained for larger upper bounds and it can be
concluded that the filtering error system (11) is exponentially
mean square stable with a H∞ performance attenuation level.

Example 2. Considering the discrete-time switched neu-
ral network (11) with two subsystems and B1 = B2 = 0, then
we have

x̃(k + 1) =
N∑

i=1

βi(k) {Ci x̃(k) + +ρ0Ai f (x̃(k − d1i(k)))

+ ρ̄0Ai f (x̃(k − d2i(k))) + (ρ(k) − ρ0)

× Ai[ f (x̃(k − d1i(k))) − f (x̃(k − d2i(k)))]

+Diw(k)} . (42)

The following parameters for the above system are given as

C1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
−1.52 −0.13

−0.96 −1.0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , C2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
−1.28 −0.51

−0.9 −0.8

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,

A1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
−0.28 −0.49

0.09 −0.36

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , A2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
−0.36 −0.36

−0.5 −0.7

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,

D1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
−0.26 −0.05

−0.29 −0.8

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , D2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
−0.59 −0.12

−0.58 −0.9

⎤⎥⎥⎥⎥⎥⎥⎥⎦ .
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Figure 1 (a) The State trajectories of system (11); (b) the State trajectories of system (42).

Table 1 Optimized γmin for various values of α

α 0.001 0.005 0.01 0.05 0.1

Value of Ta Theorem 2 224 45 23 5 3

γmin 0.0071 0.0283 0.1768 0.3466 0.7072

Value of Ta Corollary 1 [47] 196 38 17 4 2

γmin 0.0371 0.1936 0.3872 0.5346 0.9263

Let us choose the neuron activation functions as f (x(k)) =
[tanh(0.66x1(k)) tanh(0.44x2(k))]T. Then from Assump-
tion 1, it is easy to see that E1 = diag {0, 0} and E2 =

diag {0.22, 0.1}. Also choose the parameters of measure-
ments as G1 = −0.86,G2 = 0.87, F1 = [0.42 − 0.43], F2 =

[0.87 − 0.84],H1 = [−0.46 0.78],H2 = [0.82 0.23]. Fur-
thermore, the weight matrices of the output signal are taken
as Mz1 = [0.83 0.52], Mz2 = [0.98 0.78]. For the given val-
ues ρ0 = 0.9, μ = 1.15, β1 = 0.4, β2 = 0.6, α = 0.01, and time
delay bounds dm

1 = dm
2 = 2, d0

1 = d0
2 = 4, dM

1 = dM
2 = 8, feasi-

bility for the given problem is attained by taking time-varying
delay d1i(k) and d2i(k) considered as d11(k) = d12(k) =
3 + sin((πk)/2), d21(k) = d22(k) = 5 + sin((πk)/2).

The optimized H∞ performance level is attained at γmin =

0.0283 corresponding to the value of α = 0.01. Setting
μ = 1.15 the average dwell time Ta > T ∗a = 13.8416. If we
take Ta = 14, then we obtain the decay rate as χ = 0.9999 < 1
and the estimate of the state decay is given by

E[||x(k)||2] � 0.1128e−0.0001(k−k0)E||x̃(k)||2L, ∀k � k0.

The state trajectory of x(k) and its estimation are presented
in Figure 1(b). It is confirmed from the simulation results that
the error system (42) is exponentially mean square stable .

5 Conclusion

The problem of exponential H∞ filter design for a class of
discrete-time switched neural networks with sojourn prob-
abilities has been investigated. The neural network under
study involves the random time-varying delays characterized

by introducing a Bernoulli stochastic variable. The probabil-
ities of a system staying in each subsystem are assumed to
be known in prior. By using these probability information, a
new model of the switched system is proposed and sufficient
conditions for the existence of the full order filter are estab-
lished by using a piecewise LKF together with average dwell
time method to ensure the exponential mean-square stability
criteria with an H∞ performance index γ. Finally, two nu-
merical examples with simulations are employed to illustrate
the effectiveness of this method.
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