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The energy management strategy is an important part of a hybrid electrical vehicle design. It is used to improve fuel economy
and to sustain a proper battery state of charge by controlling the power components while satisfying various constraints and
driving demands. However, achieving an optimal control performance is challenging due to the nonlinearities of the hybrid
powertrain, the time varying constraints, and the dilemma in which controller complexity and real-time capability are generally
conflicting objectives. In this paper, a real-time capable cascaded control strategy is proposed for a dual-mode hybrid electric
vehicle that considers nonlinearities of the system and complies with all time-varying constraints. The strategy consists of a
supervisory controller based on a non-linear model predictive control (MPC) with a long sampling time interval and a coordinating
controller based on linear model predictive control with a short sampling time interval to deal with different dynamics of the
system. Additionally, a novel data based methodology using adaptive Markov chains to predict future load demand is introduced.
The predictive future information is used to improve controller performance. The proposed strategy is implemented on a real
test-bed and experimental trials using unknown driving cycles are conducted. The results demonstrate the validity of the proposed
approach and show that fuel economy is significantly improved compared with other methods.
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1             Introduction

Hybrid electric vehicles (HEVs) represent a short-term ap-
proach to reducing pollutant emissions and improving the fuel
efficiency of automobiles [1]. Compared with conventional
vehicles, HEVs add additional energy sources and combine
the output power with the internal combustion engine. On the
market, there are currently different types of HEVs designed
for different purposes. Typically, a dual-mode power split
configuration is widely used in heavy duty vehicles, such as
in SUVs and trucks. This can provide more power and higher
efficiency over the entire vehicle velocity range [2,3].
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The achievable improvement in HEVs strongly depends on
the adopted energy management strategy (EMS) [4]. The pri-
mary objective of an EMS is to minimise fuel consumption
while satisfying all physical constraints and imposed driv-
ing demands [5]. Early energy management strategies are
mostly based on heuristic rules inspired by engineering in-
tuition. The heuristics based on analysis of power flow in a
hybrid powertrain and human experience is used to design de-
terministic rules to split the requested power between power
sources [6,7]. In ref. [8] there is a report of a rule-based strat-
egy to turn on/off the engine depending on the current SOC
level. These methods have the advantages of easy implemen-
tation and little computation but lack flexibility when faced
with various conditions. A fuzzy logic controller is an ex-
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tension of the conventional rule-based controller, which has
better robustness and adaptation [9,10]. Other researchers
[11] uses load power and SOC to develop a fuzzy logic con-
troller to distribute the requested power to two power sources.
However, the performance of this type of method is highly
dependent on engineering experience and the solution is not
optimal.
To achieve better performance, many optimisation-based

strategies have been developed by researchers using ad-
vanced intelligent algorithms [12,13], such as dynamic
programming (DP) [14,15], simulated annealing [16],
particle swarm optimisation [17], Pontryagin’s minimum
principle (PMP) [18], genetic algorithms [19], and neural
networks [20]. The DP algorithm is an effective method with
which to obtain globally optimal solutions. Other workers
[21] have proposed a DP-based strategy to balance the op-
timisation of fuel economy and drivability. However, this
technique requires full knowledge of the entire driving cycle
in advance, so it can only be used in off-line simulations.
Others [22] employ PMP techniques to minimise overall fuel
consumption and to ensure the final SOC matches the value
at the beginning of the cycle, however, in addition, the PMP
cannot be directly implemented on-line because the co-states
in the Hamiltonian function must be located by iterative
calculations.
A suitable method for real time optimisation is offered by

model predictive control (MPC) that includes methodologies
to predict the future load demand of the vehicle [23–25]. The
MPC-based controller can obtain an optimal solution in real
time and is capable of implementation with limited computa-
tion and memory resources. Others [26] have proposed an
MPC-based strategy to obtain real-time optimal fuel econ-
omy. However, no a priori knowledge of the future load
demand is considered. Elsewhere, an exponentially vary-
ing velocity predictor has been used to provide an intuitive
understanding of how velocity prediction affects fuel econ-
omy [27]. A neural network has been used to predict future
vehicle velocities [28]. Li et al. [29] classify driving be-
haviour to predict future behaviours. Ref. [30] develops an
EMS with drive cycle prediction which is suitable for vehi-
cles operating on the same route. However, these methods are
strongly dependent on the driving cycles and are not suitable
for real-world situations.
In this paper, an online cascaded MPC-based controller

with a novel methodology predicting future load demand is
proposed. Assuming that no environment detecting sensor
and no future driving information is available, the future load
is predicted based on Markov chains with only historical and
current information. The Markov-chain transition possibility
is computed from a comprehensive dataset and is updated in
real-time to adapt to changes in driving conditions. The pre-
diction is used to improve the performance of the controller.
The cascaded control concept distributes the control problem

to two separate controllers, the supervisory controller and the
coordinating controller. The supervisory controller is based
on non-linear model predictive control (NMPC) to optimise
the fuel economy and the SOC trajectory. The coordinating
controller is based on linear model predictive control (LMPC)
and applies the demands from the supervisory controller to
the powertrain: the effectiveness of the proposed EMS is
demonstrated on a real test-bed.

2             Energy management strategy

In this section, the design of the proposed EMS is described.
After an overview of the controller architecture, the control-
oriented models are developed and the constraints are sum-
marised. Subsequently, the supervisory and the coordinating
controller are described in detail.

2.1             Architecture of the control system

The EMS is proposed for a dual-mode HEV which consists
of an internal combustion engine and two electric motor gen-
erators (MGs). The configuration of the powertrain is shown
in Figure 1. The engine and the MGs are controlled by the
torque commands: Te_cmd, TMG1_cmd, and TMG2_cmd, respec-
tively.
The main objectives of the EMS are to minimise fuel con-

sumption and to sustain an ideal battery SOCwhile satisfying
all constraints and imposed driving demands. The complex
problem is addressed by employing a cascade control system
because the time constants of the powertrain differ signifi-
cantly between the slow dynamic of the battery’s SOC and the
fast dynamic of the rotational speeds and torques. The cas-
caded control system includes an NMPC-based supervisory
controller for the slow dynamic and an LMPC-based coordi-
nating controller for the fast dynamic. An overview of the
EMS is schematically depicted in Figure 2.
The supervisory controller is designed to improve fuel

economy and to hold the SOC at a desired value, while the
predictive torque demand Tdmd and velocity demand Vdmd
from  the  Markov-chain  predictor  are  considered   in   the

Figure 1         (Color online) The powertrain configuration.
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Figure 2         (Color online) Energy management strategy scheme.

optimisation. The sampling time interval of the supervi-
sory controller is set to be tm_s=1 s. Demand engine torque
Te_d, demand engine speed ωe_d, and demand output speed
ωo_d are the outputs from the supervisory controller and
also the inputs to the coordinating controller. Based on the
actual state variables engine torque Te, engine speed ωe,
and output speed ωo, the coordinating controller controls
the inputs through the manipulated variables engine torque
command Te_cmd, MG1 torque command TMG1_cmd, and MG2
torque command TMG2_cmd. A short sampling time interval
ts_s=100 ms of the coordinating controller is used so that
sufficient powertrain dynamics can be guaranteed for load
disturbances. The vehicle velocity V and battery SOC are
fed back to the controllers. Note that, during its operation,
only the driver’s pedal position α and the load disturbance
Tload are available, while the future load trajectory is, a priori,
unknown.

2.2             System models for controller design

As shown in Figure 3, the coupling device consists of three
planetary gear sets (PGs), a clutch, and a brake. The input
of the coupling device is connected to the engine through a
gearbox and the output power drives the vehicle though the
final gear. Two modes are provided by operating the clutch
and the brake for larger power and higher efficiency over the
entire vehicle velocity range [31]. In mode 1, the brake is
engaged and the clutch is released. Inmode 2, on the contrary,
the clutch is engaged and the brake is released. In a PG, due
to the mechanical connection afforded through the gear teeth,
the rotational speeds of the sun gear, the ring gear, and the
carrier gear satisfy the following relationship:

k k+ (1 + ) = 0,s r c (1)

where ωs, ωr, and ωc are the rotational speeds of the sun gear,
the ring gear, and the carrier gear; k is the PG’s inherent pa-
rameter, obtained by

k
Z
Z= ,r

s
(2)

Figure 3         Structure of the coupling device.

where Zr and ZS are the number of teeth on the ring gear and
the sun gear.
Through the coupling device, power coupling can be ac-

complished such that the engine operating point becomes in-
dependent of the vehicle operation. For the design of the su-
pervisory controller, fast dynamics such as the inertial losses
of the engine and the MGs are ignored. Assuming that all
the connecting shafts in the powertrain are rigid, based on the
lever analogy [5], the relationships between the components’
speeds and torques can be described as follows, for mode 1
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whereωi_d,ωMG1_d, andωMG2_d are the speeds of the input, the
MG1 and MG2; k1, k2 and k3 are the inherent parameters of
the PG1, the PG2 and PG3; Ti_d, TMG1_d, TMG2_d and To_d are
the torques of the input, the MG1, the MG2, and the output.
There are also four kinematic equality constraints between
the speeds and the torques

i= ,e d q i d_ _ (7)
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T i T= ,dmd f o d_ (10)

where iq is the gear ratio of the front drive; if is the gear ratio
of the final drive, and rw is the radius of the wheels.
An empirical map of the engine, as shown in Figure 4, ob-

tained experimentally, is used to relate the fuel consumption
to the engine speed and torque as follows:

m f T= ( , ),f e e d e d_ _ (11)

wheremf is the fuel consumption and fe is a non-linear look-up
table.
The battery’s state of charge (SOC) is the main state vari-

able in this supervisory controller. It needs to be defined so
as to reflect battery energy status and can be calculated as fol-
lows:

I
CSOC = ,batt

batt

(12)

where Ibatt is the battery current and Cbatt is the battery ca-
pacity. Due to the requirement of online calculation to obtain
the SOC trajectory in the prediction horizon, the computa-
tional demand of dynamic models is significantly higher than
for more precise models. Therefore, a simplified internal re-
sistance battery model [32], as depicted in Figure 5, is used
which results in

P V t I I R t= (SOC, ) (SOC, ),batt oc batt batt batt
2

batt batt (13)

where Pbatt is the battery power, Voc(SOC, tbatt) is the battery
open circuit voltage, andRbatt(SOC, tbatt) is the battery internal
resistance, while the values of Voc(SOC, tbatt) and Rbatt(SOC,
tbatt) are derived from look-up tables that are extracted from
experimental data. One should note that a positive value of
Pbatt indicates that the battery is discharging and a negative
value indicates that the battery is charging. The battery power
flows through the inverter to supply power to the MGs, and
the relationship is governed by

P T T= + ,MG d MG d MG
k

MG d MG d MG
k

batt 1_ 1_ 1 2_ 2_ 2
MG MG1 2 (14)

where ηMG1 and ηMG2 are the efficiencies of theMGs andwhen
the battery is discharged, the exponents kMG1 and kMG2 are
equal to –1, and, when the battery is charged, the exponents
are both equal to 1.
Based on eqs. (1)–(14), choosing the input um, state xm,

output ym, and disturbance vm of the system by

x u v y
T V

T m= [SOC], = , = , = SOC ,m m
e d

e d
m

dmd

dmd
m

f

_

_
(15)

the discrete non-linear model for supervisory controller de-
sign can be represented by

x x u vk f k k k( + 1) = ( ( ), ( ), ( )),m m m m m (16)

Figure 4         (Color online) Contour map of the engine’s fuel consumption rate.

Voc(SOC ,tbatt )

Rba tt(SOC,tbatt )

Ibatt

Figure 5         The internal resistance battery model.

y x u vk g k k k( + 1) = ( ( ), ( ), ( )) .m m m m m (17)

Meanwhile a corresponding model of the fast system dy-
namics of the plant for the coordinating controller is required.
Based on the principle of first-order lag elements [33–35], the
fast dynamic of the engine torque can be modelled by

T T T+ = ,e e e e cmd_ (18)

where τe is the time constant of the engine torque. Note that
the MGs’ response speeds are much faster than those of the
engines, so the dynamics of the MGs’ torques are neglected.
Furthermore, based on the principle of angular momentum
[2], the fast dynamics of the rotational speeds can bemodelled
as follows (for mode 1):

T
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and for mode 2
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(22)

where Je and Jp are the engine’s inertia and the powertrain’s
total inertia. Based on eqs. (18) to (22), choosing the input
us, state xs, output ys, and disturbance vs of the system from
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the discrete linear state space coordinating controller model
may be given by

x A y Bu E vk k k k( + 1) = ( ) + ( ) + ( ),s s s s s s s (24)

y C xk k( ) = ( ),s s s (25)
is obtained, where for mode 1
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and for mode 2
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2.3             Supervisory controller
The supervisory controller is designed to solve the energy
management problem which can be viewed as a constrained
non-linear dynamic optimisation problem. An NMPC tech-
nique is used here to address the problem online to minimise
fuel consumption and maintain an ideal battery SOC. Also,
rapid fluctuations of the control variables, engine torque, and
engine speed, should be avoided which may cause the highly
coupled system instability, thus, the objective function Jm to
be optimised is defined by

J w k i w m k i

w T k i w k i
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whereNp is the prediction horizon, SOCr is the reference SOC
value, and Δωe_d are the incremental inputs of the demand
engine torque and the demand engine speed, wm, ws, wt, ww
and wh are the penalty function weights, and wh(SOC(k+Np))
is used here to penalise the deviation of SOC at the end of the
prediction horizon from a reference value. The optimisation
problem is subject to a set of inequality constraints arising
from components’ characteristics
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where *max and *min denote the maximum and minimum
bounds which may be time-variant.
Therefore, based on eqs. (15)–(17), (28) and (29), the final

constrained optimal control problem follows (formally):
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(30)

where um_min, um_max, ym_min, and ym_max are boundaries ac-
cording to the constraints of eq. (29).
The non-linear receding horizon optimisation problem is

solved with the sampling time interval tm_s using forward dy-
namic programming. More specifically, in the supervisory
controller, the following actions are performed at each sam-
pling time (k) and are repeated by receding the prediction
horizon on each step forward.
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2.4             Coordinating controller

As shown in Figure 2, the coordinating controller is designed
to apply the reference rs, the demand engine torque Te_d, the
demand engine speedωe_d, and the demand output speedωo_d,
to the plant using the manipulated variables Te_cmd, TMG1_cmd,
and TMG2_cmd. Since the prediction model eqs. (23)–(27) is
linear, a standard LMPC method, with a quadratic cost func-
tion, is used. The optimisation problem can be formulated, in
discrete time, as

Q y r

R u

x A x B u E v
u u u
y y y

J k i k k i k
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(31)

where Ns is the prediction horizon of the coordinating con-
troller, Δus are the incremental inputs, Qs and Rs are the
weighting factors, ε is the slack variable used to avoid infea-
sibility, and us_min, us_max, ys_min and ys_max are boundaries
according to
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(32)

In the coordinating controller, a quadratic programming
technique is used to solve the optimisation problem eq.
(31) online with sampling time interval ts_s. At each sampling
time (k), the following actions are performed and repeated at
subsequent sampling times.

3             Markov-chain stochastic prediction

In the supervisory controller of the EMS, the optimisation
task is solved online with the predictive velocity demand and
torque demand provided in each receding horizon. Although,
in the NMPC algorithm, only the first element of the control
sequence is applied, a good prediction of the future load de-
mand can improve controller performance. Here, assuming
that no radar, global positioning system, or similar devices are
available and future driving profiles are completely unknown,
a novel methodology based on adaptiveMarkov chains is pro-
posed to predict the future load demand in the short-term.
Markov chains are series of transition probabilities from

one of the limited states at instant k to another state of all pos-
sible states at instant k+1. In this paper, based on the different
values of the driver’s pedal position, α≤20%, 20%<α≤40%,
40%<α≤60%, 60%<α≤80% and 80%<α≤100%, five corre-
sponding one-stage Markov-chain models are developed.
The states of each Markov chain are defined on a dis-
crete-valued domain given by vehicle velocityV (0–30 m/s)
and vehicle acceleration a (–1.5–1.5 m/s2). Suppose the
vehicle velocity and the vehicle acceleration are discretised
into p and q intervals and indexed by i and j, respectively,
then each Markov-chain process is defined by a transition
probability matrix T with

T a a V V= Pr = = ,ij k n j k n i+ + 1 + (33)

where i p{1, … , }, j q{1, … , }, n N{1, … , }p are
time-based indices in the receding horizon of the supervisory
controller and Tij is the probability of vehicle acceleration
transitioning to aj in the next time step, given Vk+n=Vi in the
current time step.
At first, the transition probabilities of the Markov chains

given by eq. (33) are computed from a comprehensive dataset
considering both highway and urban driving scenarios which
are extracted from standard driving cycles (HWFET, UDDS,
FTP-72, US06, NEDC). Supposing that p=30 and q=20, an
illustration of the transition probabilities in the Markov chain
models, for driver pedal positions α≤20%, is provided in
Figure 6.
Since the driving conditions change over time, the Markov

chains need to be updated online to adapt to each new situa-
tion; at any step k, when ak=aj and Vk–1=Vi, the Markov-chain
transition probability is updated by
T k T k( ) = ( 1) + ,ij ij (34)
where λ is a predefined constant. The whole column of the
matrix in which the transition is observed is also updated. The
procedure for the use of this adaptiveMarkov chain algorithm
is summarised in Algorithm 1.
Algorithm 1 Adaptive Markov chain algorithm
(1) At any step k;
(2) get measurements Vk–1 and Vk;
(3) calculates ak;
(4) if ak=aj and Vk–1 and Vi
(5) set T(k)ij=T(k–1)ij+λ;
(6) for all s q{1, … , } and s≠j do;
(7) set T(k)is=T(k–1)is–λ/q;
(8) end for.
In Figure 7, the effect of the adaptive algorithm is shown:

the original Markov-chain transition probabilities, shown in
Figure 6, are updated online and after running twomore urban
driving cycles (UDDS), the matrix is developed as shown in
Figure 7.
Note that the assumption that the vehicle velocity and ac-

celeration satisfy the Markov property is validated by com-
puting the residuals between the  values  acquired  from  the
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Figure 6         (Color online) Markov-chain transition probabilities for driver
pedal positions α≤20%.

Figure 7         (Color online) Markov-chain transition probabilities for driver
pedal positions α≤20% after adaption.

model and the driving cycles. The autocorrelation of the
residuals exceeds the 95% confidence interval which statis-
tically confirms the assumption [36].
So, with the adaptive Markov chains, the future load de-

mand over the predictive horizon of the supervisory controller
can be obtained, as shown in Figure 8. In detail, with the sam-
pling time interval tm_s, the following actions are performed
at each sampling time (k)
(1) Based on the driver’s current pedal position, a different

Markov-chain model is selected, and the model is assumed to
stay the same over the predictive horizon.
(2) The velocity demand is obtained by the Markov-chain

model eq. (33) and the torque demand is calculated by the
driver model which can be described by

mV
T
r C A V µmg mg= 1

2
cos( ) sin( ),d f

2dmd

w
(35)

Figure 8         Flowchart of the Markov-chain stochastic prediction.

where m is the vehicle mass; rw is the radius of wheels; Af
is the frontal area of the vehicle; ρ is the density of air; μ
is the friction coefficient; Cd is the drag coefficient; g is the
acceleration due to gravity, and θ is the gradient of the road.
(3) The load demands over the whole predictive horizon are

obtained and used in the controller.
(4) The actual vehicle velocity ismeasured and theMarkov-

chain transition probability matrices are updated online with
Algorithm 1.

4             Results and discussion

In this section, the effectiveness of the proposed EMS for a
dual-mode HEV is validated by simulations and test-bed ex-
periments. MATLAB™/Simulink software and Sim power
systems modules are used to model the mechanical and elec-
trical elements of the HEV for closed-loop simulations: a
test-bed is established (Figure 9), with which to validate the
proposed EMS in real-world implementation.
The hybrid powertrain, comprising a 160 kW diesel engine

(limited to 120 kW) and two 60 kW MGs, is established at
the test-bed and modelled in a 2500 kg SUV for simulation.
The battery is a lithium-iron-phosphate chemistry based bat-
tery with 76 Ah capacity and 360 V nominal voltage (100
series with two parallel connected cells). The test-bed dy-
namometer is connected over a torque-sensing shaft to ap-
ply the load. The proposed EMS is implemented on a Rapi-
dECU (an on-board prototype electrical control unit) plat-
form, which is also used for test-bed measurements. A CAN
interface is used to exchange relevant information from the
low-level test-bed control system. Other key parameters of
the vehicle are listed in Table 1.
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Figure 9         (Color online) Experimental test-bed.

Table 2 summarises the user-defined controller parameters:
since the main purposes of the EMS are to minimise fuel con-
sumption and maintain an ideal battery SOC, the penalties ws
and wm are significantly higher than the others in eq. (30).
Also since the MGs’ dynamic response is much faster than
that of the engine, to achieve good coordinating control per-
formance, the output penalty Qs is chosen so as to be higher
than the control penalty Rs.

4.1             Simulation results

Simulations are conducted to evaluate the performance of the
proposed EMS and compare it with other methods. As shown
in Figure 10,  the proposed  EMS is tested in a typical  real-

Table 1        Key parameters of the vehicle

Parameter Value Description
rw 0.388 m radius of wheels
Af 3.24 m2 frontal area of the vehicle
μ 0.015 friction coefficient
Cd 0.5 drag coefficient
if 4.24 gear ratio of final drive
iq 0.56 gear ratio of front drive
Je 0.25 kg m2 engine rotational inertia
Jp 16.7 kg m2 powertrain’s total inertia
k1 2.13 PG1’s inherent parameter
k2 2.13 PG2’s inherent parameter
k3 2.33 PG3’s inherent parameter

Table 2        Used user-defined controller parameters

Parameter Nominal value Description
SOC0 0.65 initial SOC
SOCr 0.65 SOC reference
Np 5 supervisory prediction horizon
ws 20000 SOC penalty
wm 0.01 fuel consumption penalty
wt 10–4 engine torque rate penalty
ww 10–6 engine speed rate penalty
wh 100 Final SOC penalty
Ns 10 coordinating prediction horizon
Qs diag([5 10 10]) output penalty
Rs diag([2 1 1]) control penalty

Figure 10         (Color online) Simulation results of vehicle velocity, load dis-
turbance, mode, SOC, and output speed with the proposed EMS.

world driving cycle. The mode switch process is assumed
to be instantaneous and the mode switch strategy is based on
vehicle velocity and driver pedal position. It can be seen that
battery SOC is maintained close to its reference value over
the cycle while the driving requirements are also satisfied.
As shown in Figure 11, to make the engine work in a more

efficient way, the speed and torque of the engine are regulated
by the MGs to a certain extent. With the help of the MGs,
the fluctuations in engine speed are small; however, the en-
gine torque still varies significantly according to the driving
condition. This is because the requested driving power is too
large for the MGs to compensate for the engine state.
To demonstrate the proposed Markov-chain-MPC-based

EMS (MMPC) performance quantitatively, simulations over
different cycles with different strategies were undertaken:
the proposed EMS was compared with a frozen MPC-based
strategy (FMPC) where the load demand is assumed constant
over the supervisory prediction horizon, a rule-based strategy
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Figure 11         (Color online) Simulation results of speeds and torques of the
engine, MG1, and MG2 with the proposed EMS.

which is taken as the benchmark, and a DP-based strategy
which is adopted to verify the approximate global optimal
performance of the proposed EMS. The results are given be-
low.
In Figure 12, the SOC trajectories with different strategies

are shown: the MMPC and FMPC strategies yield locally op-
timal solutions for each control horizon which are similar to
the global optimisation of DP and differ noticeably from the
poor rule-based strategy. In Figure 13, the engine operating
points with different strategies are shown: it can be seen that,

with MMPC and FMPC, the engine always works efficiently
near its optimum fuel economy curve, which is similar to the
results from the DP-based strategy and improved upon those
achieved with the rule-based strategy.
The results of fuel economy when using MMPC, FMPC,

DP, and Rule over different driving cycles are shown in
Table 3, in terms of norm of SOC difference between the
end and the beginning of the driving cycle (ΔSOC), fuel
consumption, equivalent fuel consumption, and equivalent
fuel consumption improvement with respect to the rule-based
strategy. The equivalent fuel consumption is used for fair
comparison, where the ΔSOC needs to be converted into fuel
and added to the fuel consumption, as calculated by

E F= SOC ,c s c s c s, , , (36)

Figure 12         (Color online) Simulation results of SOC with different strate-
gies.

Figure 13         (Color online) Simulation results of engine operating points with different strategies. (a) MMPC; (b) FMPC; (c) DP; (d) Rule.
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Table 3        A comparison of fuel economies

Strategy ΔSOC Fuel consumption (L) Equivalent fuel consumption (L) Improvement (%)

MMPC –0.01 5.15 5.20 10.63

FMPC –0.02 5.21 5.32 8.59

DP 0.04 5.12 4.90 15.81
Real-world
driving cycle

Rule –0.07 5.44 5.82 –

MMPC 0.03 3.04 2.88 15.31

FMPC 0.03 3.17 3.01 11.53

DP 0.01 2.81 2.76 18.97
HWFET

Rule –0.04 3.18 3.40 –

MMPC 0.02 3.75 3.48 16.82

FMPC 0.05 3.94 3.67 12.25

DP 0.02 3.36 3.25 22.14
UDDS

Rule 0.03 4.34 4.18 –

where Ec,s, Fc,s and ΔSOCc,s are the equivalent fuel consump-
tion, the fuel consumption, and the SOC difference for cycle
cwith strategy s, respectively. In eq. (36), φ is the coefficient
that converts battery charge into fuel via their prices. Here,
the current price of diesel is 5.54 Yuan/L while the price of
electrical energy is 0.9 Yuan/kW h. The results show that
MMPC improves fuel economy by nearly 3% with respect to
FMPC by taking advantage of future load predictions. The
MMPC achieves a 10.63% improvement in fuel economy,
compared with the rule-based strategy in real-world driving
conditions, and about 15.31% and 16.82% improvement in
HWFET and UDDS, respectively. It also can be observed
that the results of MMPC are close to the optimal results of
DP.

4.2             Experimental results
To validate the real-world implementation of the proposed
EMS, test-bed experiments are conducted along unknown
real driving cycles. Some of the results with FMPC and
MMPC strategies are presented below.
In the first sub-plot of Figure 14, the pedal position trajec-

tory (unknown, a priori) is depicted: the current load, shown
in the second sub-plot, is measured by the sensor and trans-
ferred to the EMS as a disturbance. Then the engine torque
and the engine speed are depicted. It can be seen in the
marked region, due to the prediction, the engine speed with
MMPC decreased before that with FMPC. Also, the engine
torque with MMPC is less dynamic than that with FMPC.
This shows that the prediction also has a smoothing influ-
ence on the powertrain. In sub-plot five, the output speed
is depicted, which shows that the output with MMPC bet-
ter reflects driver expectations than that with FMPC. The last
sub-plot shows the SOC trajectories which are both main-
tained near their reference values.
In Figure 15, the comparison of the engine operating points

with MMPC and FMPC is shown.  It  can  be  seen  that  the

Figure 14         (Color online) Experimental results of pedal position, load dis-
turbance, engine torque, engine speed, output speed, and SOC with FMPC
and MMPC.

distribution of the engine operating points withMMPC is bet-
ter than that with FMPC.
In Table 4, the comparison of fuel economy with MMPC

and FMPC is presented. The results demonstrate the capa-
bility of MMPC to adapt to different real-world driving cy-
cles by online adaptation. The equivalent fuel consumption
yielded by MMPC is notably improved with respect to that
with FMPC.
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Figure 15         (Color online) Experimental results of engine operating points with FMPC (a) and MMPC (b).

Table 4        A fuel economy comparison

Strategy ΔSOC Fuel consumption (L) Equivalent fuel consumption (L) Improvement (%)
MMPC 0.03 2.14 1.98 4.11Real world driving

cycle 1 FMPC 0.03 2.22 2.06 –
MMPC 0.02 2.80 2.69 5.37Real world driving

cycle 2 FMPC 0.03 3.00 2.84 –

5             Conclusions

In this paper, a model-predictive-control-based energy man-
agement strategy with adaptive Markov-chain prediction is
proposed for a dual-mode hybrid electric vehicle. In this ap-
proach, future load demand is predicted online on the basis
of Markov chains without a priori driving cycle knowledge.
The Markov chains are built offline from standard driving
cycles and updated online to adapt to new situations. Then
twomodel predictive controllers with different sampling time
intervals are designed. The NMPC-based supervisory con-
troller is designed to improve fuel economy and maintain an
ideal battery SOC with the predicted future load: the LMPC-
based coordinating controller is designed to deal with the fast
dynamics thereof. The effectiveness, and real-time capabil-
ity, of the proposed EMS are validated by simulations and
test-bed experiments. A maximum of 16% fuel economy im-
provement is achieved by use of the proposed EMS compared
to that with the use of a rule-based strategy.

This work was supported by the National Natural Science Foundation of
China (Grant Nos. 51005017, 51575043 & U1564210).
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