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This paper aims to explore the coupling mechanism between flow movement, sediment transport and riverbed evolution in 
currently widely used mathematical models for sediment transport. Based on characteristic theory, analytic forms of eigenval-
ues, eigenvectors and characteristic relationships of total-sediment transport model, bed-load transport model and sus-
pened-load transport model were derived, respectively. The singular perturbation technology was implemented to obtain the 
asymptotic solutions to different families of eigenvalues. The results indicate that, interactions between motion variables were 
explicitly coupled in the characteristics of total-sediment transport model and bed-load transport model. Further qualitative and 
quantitative analysis demonstrates that high sediment transport intensity and significant riverbed change will inevitably affect 
the property of flow movement. In the process of deposition, sediment-laden flow will move faster when sediment transport 
intensity becomes stronger. In contrast, the wave of flow will propagate at slower speed as erosion intensity becomes stronger. 
For most existing suspended-load transport models, however, the characteristics are decoupled as the interactions between mo-
tion variables cannot be integrally illustrated in eigenvalues, eigenvectors and characteristic relationship. 

coupling mechanism, mathematical models, sediment transport, characteristics, eigenvalues 

 

Citation:  Ding Y, Li Z S, Zhong D Y, et al. Coupling mechanism of mathematical models for sediment transport based on characteristic theory. Sci China 
Tech Sci, 2016, 59: 16961706, doi: 10.1007/s11431-016-0205-5 

 

 
 
1  Introduction 

Over the recent decades, physically based mathematical 
models have been widely used to the simulation of sediment 
transport and morphological evolution. A large number of 
models for sediment transport have been developed and can 
be found in the literature [19]. These models can overall 
be classified into total-sediment transport models, bed-load 
sediment models and suspended-load transport models, ac-
cording to the property of sediment movement. 

In addition, most of existing models for sediment 
transport can be classified into three different types, ac-
cording to the solution procedure employed: fully coupled 
models, semicoupled models, and decoupled models [10]. 
Decoupled models adopt the assumption that the morpho-
logical changes are negligible within a computational time 
step, and the terms of sediment transport and bed mobility 
in flow equations are ignored [11,12]. Decoupled models 
are commonly used as they have the available numerical 
facilities because of the low computing cost. Semicoupled 
models solve the governing equations for flow and sediment 
transport together by method of iteration. In a given time 
step, riverbed evolution is initially predicted by the flow 
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variables obtained previously and then flow variables are 
adjusted by the new bed level. These steps of iteration are 
repeated until the differences between successive estimates 
of variables arrive at a minor value [13,14]. Fully coupled 
models solve the flow equations together with the sediment 
continuity equation simultaneously in a given time step [4, 
15–19]. 

With the development of numerical simulation, many re-
searchers have realized drawbacks existing in sediment 
transport models [10,11,20–26]. The main drawbacks could 
be ascribed to the “fixed-bed” assumption that the rate of 
bed morphological evolution is of a lower order of magni-
tude compared to flow with adequately low sediment con-
centration [12,15]. Therefore, the bed mobility is commonly 
neglected in the simplified flow continuity equation, whilst 
spatial variations in suspended sediment concentration and 
momentum transfer due to sediment exchange between the 
flow and the erodible bed are commonly neglected in the 
flow momentum equations. In many practical cases in 
which riverbed evolution is weak and is with a lower order 
of magnitude than that of flow, the assumptions are reason-
able. However, in simulation of rapid and significant riv-
erbed evolution (e.g. dam-break flows, hyperconcentrated 
flooding and strong tidal currents), application of decoupled 
models may lead to unacceptable problems, mainly because 
the coupling between flow motion, sediment transport and 
bed evolution is too strong to be ignored. Lyn investigated 
the coupling mechanism between the flow movement and 
sediment transport with rapid changing upstream boundary. 
He concluded that decoupled models led to ill-posed prob-
lems as general boundary conditions cannot be satisfied. 
Holly and Rahuel further reported that there existed an up-
per limit on the time step in decoupled models. Cao et al. 
conducted the analysis on coupled and decoupled models by 
simplified continuity equations and asynchronous solution 
procedure. Valuable conclusions they obtained show that 
simplification of flow equations has negligible effects on 
degradation. However, errors due to the simplification could 
be significant during process of aggradation. 

To suppress numerical errors or instabilities associated 
with the decoupled models, some researchers adopted the 
semicoupled models and fully coupled models and the sim-
ulation results were reasonably satisfying. Some semicou-
pled models both gives the possibility to have results similar 
to those obtained using fully-coupled models/analytical so-
lutions/experiments and needs reduced computational times, 
comparable to those needed by a decoupled model [22,23]. 
Such an efficiency is reached by constantly updating hy-
drodynamic and morphodynamic terms without solving a 
complex equation system. However, the updating is usually 
implemented in specified situations and its applicability 
needs to be further calibrated. In addtion, an unavoidable 
difficulty in the application of fully coupled models is the 
computational cost is confoundedly high, as the governing 
equations need to be solved simultaneously and the repeated 

iteration reduces the efficiency. 
Aforementioned discussion briefly focuses on the capa-

bility of different types of sediment transport models. It can 
be well recognized that fully coupled models is inevitable in 
situations that coupling interaction between flow and sedi-
ment is strong. A series of attractive questions come to the 
authors’ mind: what is the coupling mechanism? Can the 
coupling mechanism be explicitly expressed? What roles 
the coupling mechanism plays in sediment transport   
models? This paper tries to answer these questions by use of 
characteristics theory. In reality, the set of governing equa-
tions in different sediment transport models constructs a 
nonlinear hyperbolic system [20,27]. The most fundamental 
mathematical theory of hyperbolic system is characteristics, 
which can be illustrated as eigenvalue, eigenvector and 
characteristic relationship. The characteristics account for 
the interrelations between variables in the hyperbolic sys-
tem [28]. 

The present work aims to explore the coupling mecha-
nism between flow movement, sediment transport and riv-
erbed evolution in mathematical models for sediment 
transport based on the characteristics theory. Firstly, cur-
rently widely used mathematical models for sediment 
transport were integrally summarized. Secondly, eigenval-
ues, eigenvectors and characteristic relationships of all these 
models were deducted by the method of singular perturba-
tion technology. Finally, qualitative and quantitative analy-
sis of coupling mechanism was conducted. 

2  Models for sediment transport  

2.1  Governing equations 

Consider one-dimensional motion in an open channel flow 
with rectangular cross sections of unit width and erodible 
riverbed composed of uniform sediment. The motion of 
flow, sediment transport and riverbed adjustment can be 
modeled by the shallow water equations (eqs. (1)–(4)), the 
non-equilibrium sediment transport equation (eq. (5)) and 
the bed evolution equation (eqs. (6) and (7)), respectively. 
These governing equations are shown in Table 1. 

Eqs. (2) and (4) are the modified Saint-Venant’s continu-
ity and momentum equations (eqs. (1) and (3)), respectively, 
taking into account the effect of the suspended load 
transport and bed morphology [4,15]. The last term on the 
left-hand side (LHS) of eq. (2) represents the effect of bed 
mobility. The last two terms on LHS of eq. (4) represent 
spatial variations in suspended sediment concentration, and 
momentum transfer due to sediment exchange between the 
flow and the erodible bed, respectively. These three terms 
are generally neglected in the widely utilized shallow water 
continuity and momentum equations, based on the assump-
tion that the rate of bed morphological evolution is of a 
lower order of magnitude than flow changes with adequately  
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Table 1  Governing equations 

Name Equations 

Flow continuity 
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low sediment concentration. However, the impact of these 
terms remains to be determined for fluvial processes featur-
ing active suspended sediment transport and rapid bed de-
formation [29]. 

For the bed evolution equation, eq. (6) considers the 
transport of suspended load, and eq. (7) considers the 
transport of total sediment load (suspended load and 
bed-load). 

Where h=flow depth; t=time; u =velocity of flow; x = 
streamwise coordinate; bz =bed elevation; 0i =bed slope; 

g =gravitational acceleration; fi = friction slope; s = 

density of sediment; w =density of water; p =bed sedi-

ment porosity; m = density of water-sediment mixture, 

 / 1 /m s v s w v ss s       ; vs =volumetric sediment 

concentration; b =density of saturated bed, b   

(1 ) s wp p   ; *vs = volumetric capacity of suspended 

load; c = adaption coefficient of suspended load;  = 

sediment settling velocity; bg =volumetric capacity of 

bed-load transport.  

2.2  Models summary 

According to the governing equations, the various types of 
models for sediment transport are summarized in Table 2. A 
total-sediment transport model that employs eqs. (2), (4), (5) 
and (7) is denoted TM. A bed-load transport model that 
employs eqs. (2), (4), and (7)* is denoted BM. A so-defined 
coupled suspended-load transport model that employs the 
complete shallow water equations (eqs. (2) and (4)), eqs.  
(5) and (6) is denoted SCM, compared to a decoupled sus-
pended-load transport model that employs the simplified 
shallow water equations (eqs. (1) and (3)), eqs. (5) and (6). 
The decoupled suspended-load transport model is denoted 
SDM. It is obvious that difference between the SCM and  

Table 2  Model summary 

Models Denotation Governing equations 

Total-sediment Transport TM (2), (4), (5), (7)

Bed-load Transport BM (2), (4), (7)* 

Suspended-load Transport SDM (1), (3), (5), (6) 

Suspended-load Transport SCM (2), (4), (5), (6) 

  Note: in governing equations for bed-load transport, RHS of eq. (7) 
equals to zero, as denoted eq. (7)*.  

 
 
SDM is the simplification in the shallow water equations. 
Strictly speaking, a coupled model should employ the com-
plete equations with synchronous procedure. However, the 
present work mainly focuses on the hyperbolic nature of 
models and the procedure of numerical solution is not con-
sidered. 

It is necessary to emphasize that the models discussed in 
the present work are capacity models. Noncapacity models 
(e.g., refs. [29–32]) which incorporate the sediment en-
trainment and deposition fluxes instead of sediment 
transport capacity are also used to simulate flow and sedi-
ment transport in alluvial rivers. Consider that the applica-
bility of non-capacity model has so far remained to be de-
termined, the capacity models are considered in this re-
search as they are generally used in most existing models 
for sediment transport (e.g., refs. [1,2,3335]). 

2.3  Empirical relationships 

To close these models, several coefficients need to be em-
pirically determined. The friction slope is evaluated by ap-
plying Manning’s formula, namely  

 
2 2

4/3
,f

n u
i

h
  (8) 

where n =Manning’s roughness coefficient. 



 Ding Y, et al.   Sci China Tech Sci   November (2016) Vol.59 No.11 1699 

A formula proposed by Zhang is used to compute the 
sediment transport capacity, which is given as 

 
3

* ,
sm

v s

u
s k

gh
 

  
 

 (9) 

where sk  and sm  are two empirical parameters, sk = 

0.452 kg/m3 and sm =0.762. 

The adaption coefficient of suspended load c  is 

defined as the ratio between the reference concentration 
near the riverbed and the depth averaged concentration in 
the flow. Several empirical approaches have been proposed 
in the literature for determining the value of c  [36–38]. It 

has been found that c  ranges from 0.001 in the case of 

deposition to 1.0 for erosion. This paper treats c as 1.0. 

For capacity of bed-load transport, we follow Cunge et al. 
and adopt the form 

 ,b bm n
b bg k u h  (10) 

where bk  depends upon the local flow conditions and 

characteristics of sediment; bm  and bn  are constants. It 

has demonstrated that 1 , 2b bm n  for slowly varying 

alluvial flows [39,40]. Most of the existing sediment 
transport functions are reasonably well approximated by 
taking bk  as constant in eq. (10). For simplicity this ap-

proximation is adopted in the present research. Furthermore, 
it is readily observed that qualitative nature of the results 
obtained in the present work are unchangeable with various 
forms of bg , provided that it remains as a positive, mono-

tone increasing function of u and h. 

3  Characteristics of sediment transport models 

The set of governing equations in aforementioned sediment 
transport models constructs a nonlinear hyperbolic system. 
One of the most fundamental theories of hyperbolic system 
is the characteristics, which can be illustrated as eigenvalues, 
eigenvectors and characteristic relationships [28]. The 
characteristics mathematically and explicitly describe the 
interaction between each variable in the nonlinear system 
and the property of disturbance propagation, avoiding the 
great difficulty in obtaining the analytic solutions to the 
nonlinear system. Therefore, analysis on the hyperbolic 
nature (i.e., eigenvalues, eigenvectors and characteristic 
relationships) of sediment transport models is an attractive 
alternative approach to investigate the complex interactions 
between flow movement, sediment transport and riverbed 
evolution in alluvial rivers.  

In this paper, we select the model of total-sediment 
transport as the typical example and deduct eigenvalues, 

eigenvectors and characteristic relationships in detailed 
process. The analysis of other models will remain to follow 
the similar procedure. 

3.1  Total-sediment transport 

With a constant flow depth 0h , flow velocity 0u  , and 

sediment concentration 0vs , the most simple solution of eqs. 

(2), (4), (5) and (7) is that representing a uniform flow with 
equilibrium sediment transport down an incline of slope 0i , 

where /bz t  =0. After substitution into eqs. (2), (4), (5) 

and (7), we obtain the following expressions: 

 
2 2 3
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 (11) 

Typical scales for fluid depth, velocity and sediment 
concentration are 0h , 0u  and *0vs , respectively. Also, 

with a time scale 0t , a typical horizontal length scale in the 

flow is given by 0 0 0l u t ( 0 0l h ). We use these scales to 

introduce the following dimensionless variables, 0h h h , 

0 ,u u u  0 ,bz h    0 ,x l x  0 ,t t t  0 ,u   vs   

*0v vs s , 0b b vg g g  . After dropping primes for convenience, 

eqs. (2), (4), (5) and (7) become in dimensionless form 
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where 2
0 0 0/ ( )F u gh  is the Froude number of the uni-

form flow. 0 0 0/ ( )b bg h u   measures the ratio of overall 

sediment to fluid discharge in the uniform flow. b  in it-

self could be denoted as the influence of sediment transport 
on flow routing.  

In terms of the dimensionless variables, the uniform flow 
with equilibrium sediment transport becomes 

 1h  , 1u  , 0  , 1.vs   (16) 

The governing eqs. (12)–(15) can be cast in the following 
vector form: 
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where  T, , ,vh u s Y is an admissible classical solution, 
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 1 /b mu h    ;  2
2 0( ) / 2s w mh F     .  

3.1.1  Eigenvalues 

Based on the theory of Linear Algebra, eigenvalues of the 
hyperbolic system that the partial differential eq. (17) con-
structs can be determined by the equality  

  1det 0,  A B I  (18) 

where I  is the unit matrix,   denotes the eigenvalue.  
It is readily observed that expansion of LHS of eq. (18) 

arrives at a four-order polynomial function of independent 
variable  , and the explicit form of   is difficult to be 
obtained. Consider that b  actually can be recognized as a 

small disturbance of bed-load sediment transport imposed 
upon uniform flow movement, its magnitude is of a lower 
order (i.e., 1b  ) compared to that of flow [40,41]. In this 

study, the singular perturbation method is implemented to 
obtain the asymptotic solutions of eq. (18) [42]. 

Four eigenvalues of nonlinear hyperbolic system eq. (17) 
are i  ( i =1, 2, 3, 4), as shown in eqs. (19)(22). It is 

obvious that i  ( i =1, 2, 3, 4) depend only upon variables 

u, h and b . We note that in the limit b  0, eqs. 

(19)(22) formally reduce to those of fixed bed hydraulics. 
Especially, 1  and 4  have “revised forms” of two ei-

genvalues of the conventional Saint-Venant’s equations (for 

which 1 0/u h F    and 4 0/u h F   . The “revised 

forms” of 1  and 4  involve parameters (i.e., vs , bm , 

and bn ) which describe the total sediment transport. 

Therefore, it exclusively implies that the property of flow 
moment is influenced by the total sediment transport. 
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( )O  is a function of “  ” such that   0lim ( ) /O =a 

non-zero constant.  

3.1.2  Eigenvectors 

To obtain the eigenvector of the hyperbolic system that the 
partial differential eq. (17) constructs, we denote the left 
eigenmatrix of 1A B  in eq. (18) as 

  T1 2 3 4, , , ,L e e e e  (23) 

where  
T

1 2 3 4, , ,i i i i il l l le  is the left eigenvector of matrix 
1A B  in eq. (18) (associate with the eigenvalues i ); ikl  
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( k =1, 2, 3, 4) is the column vector of matrix 1A B . 
Based on the theory of Linear Algebra, there exists the 

relationship 

 1 LA B L,  (24) 

where   is the diagonal matrix, which is 
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After expanding eq. (24), the left eigenvector ie  of ma-

trix 1A B  (associate with the eigenvalues i  for i =1, 2, 

3, 4) is readily obtained as eq. (26). We note that in the limit 

b  0, eq. (26) formally reduces to the eigenvector of 

fixed bed hydraulics.  
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3.1.3  Characteristic relationships 

With the eigenvalues i  ( i =1, 2, 3, 4) distinct, the left 

eigenvectors  ie  ( i =1, 2, 3, 4) are linearly independent. 

After multiplying eq. (17) by the non-singular diagonal ma-
trix  , we obtain the equivalent system in canonical form 
as 
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for i =1, 2, 3, 4. There exist four families of characteristic 
curves upon which each of eq. (27) reduces to an ordinary 
differential equation. We define the curves in the jth char-
acteristic family ( j =1, 2, 3, 4) as x = ( )jx t  where 

  d

d
( , ) .j

j j

x
x t

t
 Y  (28) 

Then the thj  equation of eq. (27) could be further ex-

pressed in eq. (29). 
Eq. (29) is the characteristic relationship of nonlinear 

hyperbolic system eq. (17) upon the thj characteristic fam-

ily. By integrating eqs. (28) and (29) along each of the four 
families of characteristic curves, an analytical solution to eq. 
(27) can be obtained. More importantly, the characteristic 
relationship in eq. (29) demonstrates that flow movement, 
sediment transport and river bed evolution interact with 
each other. It is attractive to physically explain the “coupled 
mechanism” between sediment-laden flows and river bed 
evolution in alluvial rivers with total sediment transport. 
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3.2  Bed-load transport 

Following the above-illustrated procedure, the eigenvalues, 
eigenvectors and characteristic relationship of model for 
bed-load transport can be determined, as shown in eqs. 
(30)–(31), eq. (32) and eq. (33), respectively. Observation 
from eqs. (30)–(33) indicates that in the limit b  0, eqs. 

(30)–(33) formally reduce to those of fixed bed hydraulics. 
Differently from the model for total-sediment transport, 
three families of characteristics existed for bed-load 
transport model, since the suspended-load transport is not 
included. More importantly, coupled interactions between 
flow movement and bed-load transport are also illustrated in 
the characteristics. In more detail, the property of flow mo-
ment is influenced by the bed-load sediment transport, 
whilst the bed form development is determined by the local 
flow conditions (i.e., flow depth, flow velocity and flow 
regime).  

Zanre and Needham deducted the hyperbolic nature of 
model for bed-load transport and they obtained similar, but 
simplified forms of characteristics, compared to eqs. 
(30)(33). It is necessary to note that they neglected the 
effect of river bed mobility on flow movement and adopted 
a simpler form of capacity of bed-load transport (i.e., 

bm
b bg k u ). Compared to Zanre and Needham’s considera-

tion, results in the present work have more representative 
significance as the effect of bed mobility is coupled in the 

(26)

(27)

(29)
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continuity equations and spatial variations in suspended 
sediment concentration and momentum transfer due to 
sediment exchange between the flow and the erodible bed 
are included in the momentum equations. 

3.3  Suspended-load transport  

The eigenvalues, eigenvectors and characteristic relation-
ship of hyperbolic systems that SCM and SDM construct 
are shown in Tables 35, respectively. In Table 3, 1,4 , 2  

and 3  represent the eigenvalues of flow motion, bed de-

formation and suspended-load transport, respectively. It’s 
obvious that i  ( i =1, 2, 3, 4) of both SCM and SDM are 

the same as the fixed bed hydraulics. In other words, the 
interactions between flow movement, sediment transport, 
and bed deformation cannot be illustrated in the result of 
eigenvalues, even for the widely recognized “coupled mod-
el” as SCM which employs the complete governing equa-
tions.  

Observation from Tables 4 and 5 indicates that, the ei-
genvectors and characteristic relationship for SDM are the 
same as those of the fixed bed hydraulics. Furthermore, for 
SCM, the effect of sediment transport and bed evolution on 
flow motion is illustrated in the eigenvectors and character-
istic relationship for the family of flow to certain extent. 
However, influence of flow movement on suspended-load 
transport and riverbed adjustment cannot be physically de-
scribed in the eigenvectors and characteristic relationship 
for the families of sediment transport and riverbed evolution. 
For instance, the characteristic relationship along character-
istic curve 2  of SCM in Table 5 demonstrates that  

Table 3  Eigenvalues of models for suspended-load transport 

Models Eigenvalues 

SDM 1,4 u gh    2 0   3 u  

SCM 1,4 u gh    2 0   3 u   

Table 4  Eigenvectors of models for suspended-load transport 

Models Eigenvectors 
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  Note: R is the matrix of the right eigenvectors.  

riverbed evolution is only decided by the local sediment 
concentration and capacity of suspended sediment, not in-
corporating the key factors of flow conditions (i.e., flow 
regime, longitudinal variations of flow depth and velocity). 

Generally speaking, it is reasonable to consider that ei-
ther SDM or SCM is decoupled by the analysis of charac-
teristics. The interactions between flow movement, sus-
pended-load transport and riverbed evolution cannot be in-
tegrally illustrated in eigenvalues, eigenvectors and charac-
teristic relationship. As previously mentioned, the feedback 
of riverbed mobility on the flow motion cannot be ignored 
for fluvial processes featuring active suspended sediment 
transport and rapid bed deformation [29]. Under these situa-
tions, the availability of adopting SCM still needs to be fur-
ther examined. 
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Table 5  Characteristic relationship of models for suspended-load transport 

Models Characteristic relationship 
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4  Analysis of coupling mechanism 

Previously obtained characteristics of sediment transport 
models indicate that interactions between flow movement, 
sediment transport and bed evolution are coupled in to-
tal-sediment transport model and bed-load transport model. 
It’s well attractive to deduce that variations of magnitude of 
sediment transport and bedform development will play a 
non-neglectful role on the property of flow motion. The 

present work chooses the total-sediment transport model as 
the representative to further explore the coupling mecha-
nism. 

4.1  Qualitative analysis  

Observation from eqs. (19)–(22) obviously tells that eigen-
values of four families of characteristics of total-sediment 
transport model are not only related to the flow conditions, 
but also depend on the sediment transport and riverbed de-
formation. A qualitative sketch of i  ( i =1, 2, 3, 4) against 

u  for fixed h  is given in Figure 1. And a sketch of i  

( i =1, 2, 3, 4) against 0F  is shown in Figure 2. It further 

indicates that there are three waves which propagate down-
stream for all parameter values. Two of these waves ( 3 , 4 ) 

propagate faster than the uniform flow speed, whilst 2 is 

slower. The remaining wave 1  always propagates up-

stream. 
For 1  and 2  there exists a transition region in the 

first quadrant of the ( ,u h ) plane, when 0/u h F  

O( )b . This means that propagation speeds of the flow 

moving upstream and riverbed development will present 
essential changes when the local flow regime varies from 
subcritical flow to supercritical flow. For subcritical flows 

(i.e., in regions where 0/u h F ), 2  represents the 

main bedform development propagating locally downstream, 
whilst for supercritical flow (i.e., in regions where 

0/u h F ) , the bedform develops locally upstream 

through 1 . For the critical flows (i.e., in regions where  
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Figure 1  (Color online) The eigenvalues i (i=1, 2, 3, 4) in the (,u) 
plane. 

 

Figure 2  (Color online) The eigenvalues i (i=1, 2, 3, 4) as functions of 
F0 with b of O(1). 

0~ / ( )bu h F O ), the bedform develops upstream and 

downstream more rapidly, through both of the 1  and 2  

characteristic family. 
By eqs. (19)(33) it is further informed that the bed de-

formation evolution is mainly determined by the magnitude 
(1)O . 3  and 4  have a weak effect on the evolution of 

river bed deformation as they are of the order (1)O . 

4.2  Quantitative analysis  

To quantify the effect on flow movement by sediment 
transport in total-sediment transport model, variations of 
eigenvalues with different sediment transport intensity and 
different suspended-load concentration are studied. Consid-
er a subcritical uniform flow with erodible bed composed of 
noncohesive uniform sediment particles of diameter D = 
0.003 mm, fluid depth scale h0 is 3 m, flow depth velocity 
scale u0 is 1.5 m/s and sediment capacity scale *0vs  can be 

calculated from eq. (11) as 2.90 (for simplicity, b bm n  

=2). The effects on flow motion by different magnitude of 
sediment transport intensity in both situations of deposition 
and erosion are shown in Figure 3. As aforementioned, b  

could be denoted as the disturbance on flow movement due  

 

Figure 3  (Color online) (a) Variation of speed of flow propagating up-
stream 1 against u with different ; (b) variation of speed of flow propa-
gating downstream 4 against u with different . 

to total-sediment transport, thus it can be reasonably deduct 
that the larger b  is, the higher interference level is. With 

u  increases, flow motion waves with speeds 1  and 4  

propagate faster with depositing strength increases. Howev-
er, in situation of erosion, both of 1  and 4  will de-

crease when the scouring strength increases. These conclu-
sions could be used to well explain the unusual phenome-
non of hyper-concentrated flood propagation in alluvial 
rivers (e.g. peak discharge increasing during flood routing 
in lower reaches of Yellow River). In the process of hy-
per-concentrated flood propagating, the riverbed usually 
experiences erosion in the former-phase of the flooding due 
to strong flow strength. Riverbed evolution, however, will 
present deposition in the post-phase of the flooding as the 
gradually accumulated sediment concentration in the flow 
exceeds the sediment carrying capacity [43]. Based on the 
results obtained in the present work, the post-phase of the 
flooding moves faster and chases up the former-phase flood 
propagating at lower speed, and the phenomenon of peak 
discharge increasing could be reasonably explained. 

In addition, as shown in Figure 4, the suspended sedi-
ment concentration sv will also play a significant role on 
flow routing. The higher suspended sediment concentration 
is, the faster that the flow propagates both upstream and 
downstream. This result is consistent with the conclusions 
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in situations of sediment transport intensity. It is necessary 
to note that, varying values of suspended sediment concen-
tration sv in Figure 4 are actually set as different referenced 
equilibrium concentrations.  

Generally, in total-sediment transport model, both of 
sediment transport intensity and suspended-load concentra-
tion will play a significant role on the property of flow 
movement. Therefore, the coupling mechanism between 
flow motion, sediment transport and riverbed evolution 
needs to be emphasized and quantitatively determined in 
mathematical modeling and practical engineering.  

Variation of speed of flow propagating downstream 

4 against u with various concentration of suspended load 

vs .  

5  Conclusion 

In this paper, the coupling mechanism between flow 
movement, sediment transport and riverbed evolution in 
mathematical models for sediment transport is studied based 
on the characteristics theory. Analytic forms of eigenvalues, 
eigenvectors and characteristic relationships of to-
tal-sediment transport model, bed-load transport model and 
suspened-load transport model are derived, respectively. 
Effects on flow movement by various sediment transport  

 

Figure 4  (Color online) (a) Variation of speed of flow propagating up-
stream 1 against uwith various concentration of suspended load sv; (b). 

density are quantitatively analyzed. 
Four families of characteristics exist in total-sediment 

transport model. The eigenvalues 1  and 4  of flow mo-

tion involve sediment parameters as vs , bm , bn , and etc. 

It exclusively implies that the property of flow moment is 
influenced by the total sediment transport. The characteris-
tic relationship in eq. (29) demonstrates that variables in-
teract with each other. It physically explains the coupling 
mechanism between sediment-laden flows and river bed 
evolution. High total-sediment transport intensity and sig-
nificant riverbed change will inevitably affect the property 
of flow movement. In the process of deposition, sedi-
ment-laden flow will move faster when sediment transport 
intensity becomes stronger. In contrast, the wave of flow 
will propagate at slower speed as erosion intensity becomes 
stronger. 

Differently from total-sediment transport model, there 
exist three families of characteristics in model for bed-load 
transport. Coupling interactions between flow movement 
and bed-load transport are illustrated in the characteristics. 

For suspended-load transport models, either SDM or 
SCM is decoupled by the analysis of characteristics. The 
interactions between flow movement, suspended-load 
transport and riverbed evolution cannot be integrally illus-
trated in eigenvalues, eigenvectors and characteristic rela-
tionship. Therefore, the availability of adopting suspend-
ed-load transport models in simulation of active sediment 
transport and rapid bed deformation needs to be further 
examined. 
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