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Based on construtal theory, a nonuniform heat generation problem in a rectangular body is investigated in this paper. Entransy 
dissipation rate (EDR) is taken as the optimization objective. The optimal body shapes with constant and variable widths of the 
high conductivity channel (HCC) are derived. For the rectangular first order assembly (RFOA) with constant cross-section 
HCC, the shape of the RFOA and width ratio of the HCCs are optimized, and the double minimum EDR is obtained. The heat 
transfer performance of the RFOA becomes worse when the nonuniform coefficient increases. For the RFOA with variable 
cross-section HCC, the EDR of the RFOA can be minimized for four times. Compared the optimal construct based on mini-
mum EDR of the RFOA with that based on minimum maximum temperature difference, the shape of the former optimal con-
struct is tubbier, and the average temperature difference is lower. In the practical design of electronic devices, when the ther-
mal safety is ensured, the constructal design scheme of the former optimal construct can be adopted to improve the global heat 
transfer performance of an electronic device. 
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1  Introduction 

Inserting high conductivity channel (HCC) into the heat 
conduction area is one of the effective ways to dissipate the 
internal heats of the electronic devices. Bejan [1] first ap-
plied constructal theory [2−8] into the HCC design of a rec-
tangular electronic device, and assembled the HCCs into a 
tree-shaped pathway. The optimal distribution of the HCCs 
in the rectangular body was obtained, and the peak temper-
ature of the electronic device was reduced. The work men-
tioned above provided a basic performance optimization 

method for the heat conduction problem in engineering. 
Inspired by this work, many scholars implemented con-
structal optimizations of the heat conduction electronic de-
vices in rectangular [9−18], square [19−23], triangular 
[24,25] and disc [26−30] areas, respectively. Besides heat 
conduction electronic devices, constructal theory has been 
also applied to the optimal designs of heat exchangers 
[31−33], cavities [34,35], heat sources [36−38], tubes 
[39,40], micro-channels [41,42], and iron and steel produc-
tion process [43−52], etc. 

To describe heat transfer ability of an object, a new 
physical quantity, named as “entransy”, was proposed by 
Guo and Li et al. [53,54] 
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1 1
2 2vh vh h vhE Q U Q T= = , (1) 

where vhQ , hU  and T  are the heat capacity at constant 

volume, thermal potential and temperature, respectively. 
From eq. (1), the entransy dissipation rate (EDR) vhE φ

  of 

an object can be written by 

 2d | | d | ( ) | d ,vh h

v v v

E E v q T v k T vφ φ= = ⋅∇ = ∇      (2) 

where v , q  and T∇  are the volume, thermal current 

density vector and temperature gradient, respectively. The 
objective of maximum temperature difference (MTD) can 
lead to the reduction of peak temperature, but it can only 
reflect the local heat transfer performance when the heat 
transfer system is multi-dimensional one. The objective of 
EDR can lead to the reduction of average temperature dif-
ference, and it reflects the global heat transfer performance 
of a multi-dimensional heat transfer system. Therefore, 
when the researched object is multi-dimensional heat trans-
fer system, the objective of EDR is more suitable to be tak-
en as optimization objective. Henceforth, many scholars 
introduced entransy theory [55−60] into the optimizations 
of various heat transfer problems [61−77], which greatly 
promoted the development of entransy theory.  

In the constructal designs of heat conduction bodies, 
Chen et al. [68] firstly applied entransy theory into the con-
structal optimization of the heat conduction problem. They 
found that new optimal construct and lower average tem-
perature difference of the high order assembly could be de-
rived by EDR minimization. Wei et al. [69], Xiao et al. 
[70,71], Chen et al. [72] and Feng et al. [73] further opti-
mized the heat conduction bodies with triangular [69], ta-
pered [70], sectorial [71,72] and cylindrical [73] elements 
based on entransy theory, respectively, and provided some 
new guidelines different from those obtained based on MTD 
minimization. Wei et al. [74] and Wu et al. [75] optimized 
the rectangular heat conduction body based on global opti-
mization method, and effectively reduced the average tem-
perature difference compared with the typical local design 
method. Moreover, Feng et al. [73,76,77] further optimized 
the heat conduction bodies with rectangular [73,76] and 
triangular [73,77] elements at micro and nanoscales, respec-
tively, and obtained optimal constructs of the bodies differ-
ent from those at convectional scale.  

The heat conduction problems mentioned above all be-
long to uniform heat generation ones. Actually, the heat 
generation in the heat conduction body is always non-  
uniform one. Ruiz et al. [78] and Cetkin [79] considered 
different heat generation rates at different areas of a rectan-
gular body. Cetkin and Oliani [80] and Assad [81] further 
built non-uniform heat generation (NUHG) models in the 
cube and rectangular bodies, and considered the linear and 
exponential functions of the NUHGs in the bodies, respec-

tively. Moreover, the NUHG models with heat generations 
changing in planar two-dimensional directions, cylindrical 
and sphere three-dimensional directions were built by 
Vessakosol [82], Gaikwad and Ghadle [83] and Pawar et al. 
[84], respectively. The investigations of NUHG problems 
have been implemented by many scholars, but the combina-
tion of NUHG problem and entransy theory is rare. In this 
paper, a heat conduction model with linear function of the 
NUHG will be considered, and constructal theory and en-
transy theory will be introduced in the optimization of the 
model. The optimal constructs of a rectangular body with 
different cross-section HCCs will be obtained after con-
structal optimization. Performance comparisons of the bod-
ies obtained based on MTD and EDR minimizations will be 
implemented.  

2  Constructal optimization of rectangular ele-
ment with nonuniform heat generation 

A rectangular element (RE) with nonuniform heat genera-
tion is shown in Figure 1. The RE’s area is 0 0 0( )A H L= × , 

and the internal heat generation rate ( )q y′′′  varies along 

the y  axis. The thermal conductivity in the heat genera-

tion area is 0k . A HCC (width 0D , thermal conductivity 

pk ) is inserted in the 0k  material, which is used to dissi-

pate the internal heat more effectively. The RE is adiabatic 
from the surroundings except for the segment 0M , and the 

temperature of this segment keeps constant at the value of 

minT . The HCC fraction in the RE can be calculated as: 

0 0 0/D Hφ = . For the fixed 0φ , the shape of RE will vary 

when the ratio 0 0/H L  changes.  

When the parameters along the third-dimension of the 
model are assumed to be kept at constants, the two-dimen- 
sional heat conduction equations in the 0k  and pk  mate-

rials can be, respectively, given as 
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Figure 1  Rectangular element with nonuniform heat generation. 
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The boundary conditions of the symmetrical model are 
given as follows:  

 minT T= , 00,0 / 2,x y D= < <  (5) 
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According to eq. (2), the EDR 0vhE φ
  of the RE can be 

given as  
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The corresponding dimensionless entransy dissipation 
rate (DEDR) is defined as  

 0
0 2

0 0

.
( ) /

vh
vh

E
E

q A k
φ

φ ′′′
=

  (9) 

From eqs. (3)–(9), the DEDR is function of the ratio 

0 0/H L . One can implement constructal optimization of the 

RE by taking the DEDR as optimization objective and 

0 0/H L  as optimization variable, respectively. For the fixed 

internal heat generation rate q′′′ , area 0A  and thermal 

conductivity 0k , the smaller the DEDR, the lower the av-

erage temperature difference and the better the global heat 
transfer performance of the RE.  

To simplify the NUHG problem, the internal heat gener-
ation rate ( )q y′′′  in eq. (3) is assumed to be a linear func-

tion along the y  axis, that is: 0( ) ( 1q y q p′′′ ′ ⋅′′= + −  

02 / ),py H , where 0q′′′  and p  are the constant and 

nonuniform coefficient of the NUHG model, respectively. 
Eqs. (3)–(7) will be solved based on COMSOL Multiphys-
ics. The unit size of standard grid is adopted in the calcula-

tions, and the structure with 2,=p  200,=k  0 0.1φ =  

and 0 0/ 0.5H L =  is chosen to validate the independence 

of the grid. The DEDRs of the RE are 0 0.180769vhE φ =  

and 0 0.180771vhE φ = , respectively, for the standard and 

refined grids. The percentage error of the DEDRs between 
the two grid modes is 0.0011%, which illustrates that the 

unit size of standard grid satisfies the requirement of grid 
independence.  

Figure 2 shows the effect of the nonuniform coefficient 

p  on the characteristic of the DEDR 0vhE φ
  versus the 

ratio 0 0/H L  with 200k =  and 0 0.1φ = . From Figure 2, 

for the fixed p , with the increase in 0 0/H L , 0vhE φ
  in-

creases first and then decreases; 0vhE φ
  and 0 0/H L  have 

their minimum value 0,( )φ

vh mE  and optimal value 

0 0(( / ) )optH L , respectively. When 0p = , the optimal 

shape of the RE and minimum DEDR are 0 0( / ) =optH L  

0.4614  and 0, 0.0564vh mE φ = , respectively. According to 

ref. [51], the optimal results of the RE based on analytical 

solution are ( ) 1/2
0 0 0/ 2 / ( ) 0.4472

opt
H L kφ= =  and 

0, 1 /φ =
vh mE 1/2

0[3( ) ] 0.0745φ =k , respectively. Therefore, the 

difference of the optimal shapes based on the two methods 
is small, but that of the minimum DEDR is slightly big. 
When the shape of the RE is slender enough, the heat trans-
fer along x  axis in the 0k  material can be ignored. The 

two-dimensional heat transfer model is simplified into 
one-dimensional one in this case, and the differences of the 
optimal results obtained by the two methods become small.  

3  Constructal optimization of first order as-
sembly with nonuniform heat generation 

A rectangular first order assembly (RFOA) with nonuni-
form heat generation is shown in Figure 3. The area of 
RFOA is 1 1 1( )A H L= × , and it is composed of a number (n) 

of the REs. The internal heat generation rate   ( )q y′′′  varies 

along the y  axis, and the heat is collected by the first or- 
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vhE  versus H0/L0 characteristic with different p. 
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Figure 3  RFOA with nonuniform heat generation. 

der HCC with a width of 1D . The RFOA is adiabatic from 

the surroundings except for the segment 1M , where the 

temperature ( minT ) is kept at constant.  

The area pA  of the HCC in the RFOA is: 

0 1 1 1 1 0( ) / 2 [( 1) / / 2]p nD H D n nL DA D− + − += . Therefore, 

the HCC fraction of the RFOA can be calculated as  

 1
1

0 1 1 1 0

1

( ) / 2 [( 1) / / 2]
.

nD H D D n nL D

A
φ + − +

=
−

 (10) 

For the fixed 1φ , the shape of the RFOA will vary when 

the ratio 1 1/H L  changes.  

The EDR of the RFOA can be given as  
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where 1Ω  and 2Ω  are the areas of 0k  and pk  materi-

als, respectively.  
The DEDR of the RFOA can be defined as  

 1
1 2

1 0

.
( ''' ) /

vh
vh

E
E

q A k
φ

φ =
  (12) 

For the specified thermal conductivity ratio k , HCC 

fraction 1φ  and RE’s number n , the DEDR 1vhE φ
  of the 

RFOA can be minimized by optimizing 1 1/H L  and 

1 0/D D , respectively.  

Figure 4 shows the effect of 1 0/D D  on the characteris-

tic of the DEDR 1vhE φ
  versus the ratio 1 1/H L . From Fig-

ure 4, for the fixed 1 0/D D , 1vhE φ
  decreases first and then 

increases; 1vhE φ
  and 1 1/H L  have their minimum value 

( 1,vh mE φ
 ) and optimal value ( 1 1( / )optH L ), respectively. 

When the width ratio 1 0/D D  increases, 1,vh mE φ
  decreases 

first and then increases; 1,vh mE φ
  and 1 0/D D  have their 

minimum value ( 1,vh mmE φ
 ) and optimal value ( 1 0( / )optD D ), 

respectively.  
Figure 5 shows the effect of the nonuniform coefficient 

p  on the optimal results ( 1 1( / )optH L , 1 0( / )optD D  and 

1,vh mmE φ
 ) of the RFOA with 6n = . From Figure 5, when 

the nonuniform coefficient p  increases, 1 1( / )optH L , 

1 0( / )optD D  and 1,vh mmE φ
  all increase. The shape of the 

RFOA becomes tubbier in this case. Because the heat gen-
eration becomes more nonuniform, the nonuniformity of the 
RFOA’s temperature gradient field also increases. This will 
lead to the increases in EDR and average temperature dif-
ference, and the corresponding global heat transfer perfor-
mance becomes worse.  

As shown in Figure 6, a RFOA with variable 
cross-section HCC and NUHG is further considered in this 
paper. In this RFOA, the widths of the first order HCC are 
different, and are signed 11D , 12D  and 13D , respectively. 

When k , 1φ  and n  are specified, the DEDR of the 

RFOA can be minimized for four times ( 1,vh mmmmE φ
 ) by op-

timizing 1 1/H L , 11 12/D D , 12 13/D D  and 13 0/D D , re-

spectively.  
Figure 7 shows the optimal constructs of the RFOA with  
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Figure 5  Effect of p on the optimal construct of the RFOA. 
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Figure 6  RFOA with variable cross-section HCC and nonuniform heat 
generation.  

variable cross-section HCC based on the minimizations of 
MTD and EDR, respectively. From Figure 7(a), the optimal 
construct of the RFOA with variable cross-section HCC 
b a s e d  o n  m i n i m u m  E D R  i s  1 1( / ) 3.0522,=optH L  

11 12( / ) 1.6903optD D = , 12 13( / ) 1.9582optD D =  and 13( /D  

0 ) =optD 2.7770, , respectively. The corresponding MTD 

and EDR are 1, 0.0757ETΔ =  and 1, 0.0998,φ =
vh mmmmE  

respectively. From Figure 7(b), the optimal construct of the 
RFOA with variable cross-section HCC based on minimum 
M T D  i s  1 1( / ) 2.7544optH L = ,  11 12( / ) 1.2958optD D = , 

12 13( / ) 1.5329optD D =  and  13 0( / )optD D =  2.9242 ,  re -

spectively. The corresponding dimensionless MTD and 

EDR are 1, 0.0739mmmmTΔ =  and 1, 0.1024vh TE φ = , respec- 

     
(a)                   (b) 

Figure 7  (Color online) Comparisons of the optimal constructs of the 
rectangular first order assemblies with discrete variable cross-section high 
conductivity channels: (a) minimum entransy dissipation rate (b) minimum 
maximum temperature difference  

tively. Compared the optimal construct based on minimum 
EDR of the RFOA with that based on minimum MTD, the 
shape of the former optimal construct is tubbier, the EDR is 
decreased by 2.54%, but the MTD is increased by 2.44%. 
Therefore, in the practical design of electronic device, when 
the thermal safety is ensured, the constructal design scheme 
of the former optimal construct can be adopted to improve 
the global heat transfer performance of an electronic device.  

4  Conclusions 

A NUHG problem in a rectangular area is investigated in 
this paper. EDR is taken as the optimization objective, and 
HCCs with constant and variable widths are considered. 
The optimal results with minimum EDR are derived. The 
results show that:  

(1) For the RE, the difference of the analytical and nu-
merical solutions depends on the shape of the RE. For the 
RFOA with constant cross-section HCC, the shape of the 
RFOA and width ratio of the HCCs are optimized, and the 

double minimum EDR ( 1,vh mmE φ
 ) is obtained. 1,vh mmE φ

  in-

creases when the nonuniform coefficient p  increases. In 

this case, the global heat transfer performance of the RFOA 
becomes worse.  

(2) For the RFOA with variable cross-section HCC, the 
DEDR of the RFOA can be minimized for four times 

( 1,vh mmmmE φ
 ) by optimizing 1 1/H L , 11 12/D D , 12 13/D D  

and 13 0/D D , respectively. Compared the optimal construct 

based on minimum EDR of the RFOA with that based on 
minimum MTD, the shape of the former optimal construct 
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is tubbier, the EDR is decreased by 2.54%, but the MTD is 
increased by 2.44%. The latter optimal construct improves 
the local heat transfer performance of the two-dimensional 
heat conduction body, and the thermal safety of the RFOA 
is ensured. The former optimal construct makes the temper-
ature gradient field of the two-dimensional heat conduction 
body more uniform and the average temperature difference 
lower, and the corresponding global heat transfer perfor-
mance of the RFOA is improved. Therefore, in the practical 
design of electronic device, when the thermal safety is en-
sured, the constructal design scheme of the former optimal 
construct can be adopted to improve the global heat transfer 
performance of an electronic device.  

The RE and RFOA with NUHG and constant tempera-
ture heat sink are considered in this paper. Actually, the 
internal structure of the rectangular body can be more com-
plex, and the other boundary conditions and thermal stress 
problem obviously exist in the NUHG body. Moreover, 
EDR is taken as the optimization objective in this paper, 
and some other optimization objectives, such as entropy 
generation rate and multi-objective, can be further consid-
ered. Therefore, one can built higher order assembly of the 
rectangular body with more boundary conditions, and con-
sider thermal stress performance to further carry out mul-
ti-objective constructal designs [55−87] of the electronic 
devices.  
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to thank the reviewers for their careful, unbiased and constructive sugges-
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