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Distributed consensus problems for multiple Euler-Lagrange systems are addressed on the basis of event-triggered information 
in this study. Distributed consensus protocols are first designed in terms of two event-triggered scenarios: a decentralized 
strategy and a distributed strategy. Sufficient conditions that guarantee the event-triggered consensus for multiple Eu-
ler-Lagrange systems are then presented, with the associated advantages of reducing controller update times. It is shown that 
the Zeno behavior of triggering time sequences is excluded for both strategies. Finally, multiple Euler-Lagrange systems that 
consist of six two-link manipulators are considered to illustrate the effectiveness of the proposed theoretical algorithms. 
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1  Introduction 

Distributed cooperative control in multi-agent systems is an 
interesting field of research that has attracted considerable 
attention from a wide range of scientific communities. The 
motivation of multi-agent cooperative control is to guaran-
tee that a group of autonomous agents will coordinate with 
each other via local communications to complete some 
challenging tasks, with associated advantages such as higher 
robustness, reduced communication costs, and greater effi-
ciency [1–9]. One of the most important and fundamental 
research issues in the area of cooperative control for mul-
ti-agent systems is the consensus problem, which involves 
guaranteeing that a group of agents to achieve agreement on 
a common value based only on the information of their in-
teractions. 

As an important branch of cooperative control, distribut-

ed cooperative attitude control for multiple Euler-Lagrange 
systems has been studied and has yielded useful results, to 
name a few. In [10], a behavioral approach was used for 
attitude synchronization, and a passivity-based approach 
was then applied to derive a control law without the need 
for angular velocity measurement. A decentralized scheme 
for the spacecraft formation problem was then proposed that 
used a virtual structure approach and behavior-based control 
in [11,12]. Subsequently, distributed control laws based on 
graph theory approaches were established for the attitude 
synchronization problems that were described in terms of 
Euler parameters fashion in [13]. Distributed consensus 
tracking problems or attitude coordination problems for 
multiple Euler-Lagrange systems were also studied in the 
presence of model uncertainties, external disturbances, time 
delays, parameter uncertainties, and unknown nonlinear 
dynamics [14–19]. In addition, nonlinear contraction analy-
sis was used to analyze the global exponential stability of 
cooperative tracking control laws for both translational and 
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rotational dynamics in the Lagrange form in [20]. Recently, 
distributed leaderless and model-independent consensus 
algorithms were proposed and analyzed in [21]. In [22], 
local attitude synchronization problems of multiple Eu-
ler-Lagrange systems were addressed without restricting 
their final motion, and the communication topology was 
relaxed to enable it to be directed, variable, and uniformly 
connected. More recently, distributed attitude containment 
control and finite-time tracking problems for multiple Eu-
ler-Lagrange systems were addressed in [19,23–25]. Note 
that the designed coordinated protocols in the above litera-
ture [10–25] were all continuously updated; however, this is 
unnecessary and wasteful from the perspectives of both the 
communication load and the service life of the controller. 
This has inspired us to explore some more practical coordi-
nated protocols that only update at some specific moments 
while maintaining satisfactory performance for the whole 
system. 

Allowances for continuous measurements and updates 
are ideal assumptions, and it is more realistic for agents to 
interact intermittently at specific sampling instants. There-
fore, two common sampling methods are often used in prac-
tical applications. One is the time-triggered method, which 
involves the traditional approach of sampling at 
pre-specified time intervals. While this method has been 
applied extensively because of its ease and simplicity, it 
may lead to higher system costs, because sampling occurs at 
a fixed rate, regardless of whether or not it is really neces-
sary. The other is the event-triggered approach, which up-
dates the control action only when certain specific events 
occur. These events are triggered at time points when the 
ratio of the norm of a specific measurement error to the 
norm of a state-dependent function exceeds an event 
threshold over time. Event-triggered control offers certain 
advantages over time-triggered control in terms of reduced 
communications and sensor energy savings. Distributed 
control based on the event-triggered approach has thus re-
cently received considerable research attention. In [26,27], 
based on the deterministic event-triggered strategy that was 
introduced in [28], distributed consensus algorithms for 
first-order multi-agent systems were proposed and a lower 
bound was provided for the minimum inter-event interval to 
exclude Zeno behavior. Also, event-triggered control was 
addressed in both networked control systems and wireless 
sensor/actuator networks [29,30]. In [31], event-triggered 
communication was studied for the cooperative control 
problem of heterogeneous multi-agent systems on the basis 
of passivity analysis. Along with the same design frame-
work given in [27], important works on event-triggered co-
operative consensus for multi-agent systems include [32– 
34], to name a few. Recently, a novel control strategy for 
multi-agent coordination with event-based broadcasting was 
presented, networks of single-integrator agents with and 
without communication delays and networks of dou-
ble-integrator agents were analyzed in [35]. Also, the dis-

tributed rendezvous problem for first-order multi-agent sys-
tems with event-triggered controllers was investigated using 
a combinational approach in [36]. More recently, the aver-
age consensus problem was developed based on distributed 
event-based algorithms with sampled-data event detection; 
the highlight of this scenario is that the lower bound of the 
minimum inter-event interval is naturally provided by the 
synchronous sampling period [37]. In [38], the decentral-
ized event-triggered cooperative control problem with lim-
ited communication was discussed for multi-agent systems 
with first-order integrator dynamics; the ideas in this case 
can be used to consider practical scenarios where the agents 
can only exchange quantized measurements. 

Motivated by the above observations, this paper investi-
gates distributed consensus problems for multiple Euler- 
Lagrange systems based on event-triggered information 
under undirected communication topologies, such that a 
team of Euler-Lagrange systems is driven into a common 
constant orientation with zero angular velocity. To the best 
of the authors’ knowledge, the proposed algorithm is the 
first event-triggered algorithm that guarantees the distribut-
ed consensus for networked Euler-Lagrange systems. Using 
Lyapunov stability theory, sufficient conditions are obtained 
to enable event-triggered consensus to be achieved. Then, 
the Zeno behavior is excluded by proving that the triggering 
time sequences do not converge to a finite time point. When 
compared with the existing literature on distributed cooper-
ative control for multiple Euler-Lagrange systems with the 
designed controllers operating in real time [10–25], it is 
assumed in this paper that the controller only updates at 
specific sampling instants as time passes, which can effec-
tively reduce the overall energy costs. In contrast to the ex-
isting results on the distributed event-triggered consensus 
problem, where the agent dynamics are represented by first- 
or second-order integrators [26,27,31–38], the event-  
triggered consensus problem for multiple Euler-Lagrange 
systems is investigated, while considering more complex 
dynamics in real applications. 

The rest of this paper is organized as follows. Some pre-
liminary aspects and the model formulation are given in 
Section 2. The main results are then presented and proved in 
Section 3. Simulation results are presented for verification 
of the theoretical results in Section 4. Finally, our conclu-
sions are drawn in Section 5. 

The following notations are used throughout this paper. 
Let R and N  be the sets of real and natural numbers, 

respectively. Let nR  and n nR  be the n-dimensional real 
vector space and the n×n real matrix space, respectively. AT 
denotes the transpose of a matrix A. For a symmetric matrix 
A, A>0 (0) means that A is positive (semi-)definite. 
 denotes the Kronecker product. For a vector x, ||x|| indi-
cates the Euclidean norm of that vector. For a matrix B, 

( ) ( ( ) )  B B represents the maximum (minimum) singular 

value of matrix B. 



 Huang N, et al.   Sci China Tech Sci   January (2016) Vol.59 No.1 35 

2  Preliminaries 

2.1  Graph theory 

Consider a network that consists of N Euler-Lagrange sys-
tems. Let a weighted undirected graph  , ,V EG= A  de-

scribe the communication topology among the agents, 
where  1, ,V N   is the set of nodes, E V V   is the 

set of edges, and [ ] N N
ija RA =  is the adjacency matrix 

with the nonnegative elements ij jia a . The set of neigh-

bors of node i is denoted by   : ,iN j V j i E    and 

| |iN  denotes the cardinality of iN . In addition, the degree 

of the vertex i is defined as 
1,

deg( )
N

ijj j i
i a

 
  . Specifi-

cally, an edge is denoted by a pair of nodes ( , )i j  in G that 

corresponds to an information link between agent i and 
agent j, which means that agent i and agent j. can com-
municate with each other, i.e., j belongs to the communica-
tion set iN  of agent i, and vice versa. As is customary, self- 

loops are not allowed, i.e., 0iia   for all 1, ,i N  , and 

0ija   if and only if ( , )i j E . Note that A is symmetric. 

Let the Laplacian matrix [ ] N N
ijl RL =  associated with A 

be defined as 
1,

N

ii ijj j i
l a

 
   and ijl  ,ija  .i j  Note 

that L is symmetric positive semi-definite. 0 is a simple 
eigenvalue of L with the associated eigenvector 1N, where 
1N is the N×1 vector with each entry being 1, and all other 
eigenvalues of L are positive if and only if G is connected. 

2.2  Model formulation 

Consider a team of N Euler-Lagrange systems indexed by 

 1, ,V N  . The attitude dynamics of agent i is given by 

 ( ) ( , ) , ,i i i i i i i i i V    M C       (1) 

where 
n

i R  is the vector of the generalized coordinates, 

i  is the vector of the torques produced by the actuators, 

( ) n n
i i

RM   is the symmetric positive-definite inertia 

matrix, ( , ) n
i i i i   RC    is the vector of the Coriolis and 

centrifugal torques, and ( ) 2 ( , )i i i i i M C    is a skew- 

symmetric matrix. In addition, there exist , ,m m ck k k  such 

that 0 ( )m i i mk k  M   and ( , )i i i c ik C    (i   

1, , )N , where 0ck  . 

Lemma 1 [39].  If a differentiable function ( )f t  satis-

fies ( ), ( )f t f t L  and ( ) pf t L  for some value of 

[1, )p  , then ( ) 0f t  as t  . 

3  Main results 

For system (1), two kinds of event-triggered cooperative 
control strategies are developed in this study. 

(1) Decentralized event-triggered cooperative control. 

The state measurement errors ( )i
i te  and  ( )i

i te  are in-

troduced in the following. Let T T T( ) ( ( ), ( ))i i
i i it t t e e e  . In 

this case, a sequence of event times , ,i
kt k N  exists for 

each agent i  according to a decentralized event-triggered 

condition ( ( )) 0i
i i kf t e . The cooperative control law for 

agent i  is updated at both its own event times , ,i
kt k N  

and at the latest event times , ,j
kt k N  of its neighbor 

ij N , i.e., 

     1( ) ( ,{ , }), [ , )i j i i
i i k k i k kt t t j N t t t  , (2) 

where 
 

 
,

arg min { }j
r

j
rt t r N

k t t . 

(2) Distributed event-triggered cooperative control. In 
this context, a sequence of event times ,i

kt k N  exists for 

each agent i  according to a distributed event-triggered 

condition ( ( ),{ ( ) | }) 0i i
i i k ij k if t t j N e e , where ( )i te  is as 

defined above and ( )ij te  will be introduced later. For this 

case, the cooperative control law for agent i  will be up-

dated at its own event times , ,i
kt k N  i.e., 

 1( ) ( ), [ , )i i i
i i k k kt t t t t    . (3) 

3.1  Distributed cooperative consensus based on decen-
tralized event-triggered control 

In this subsection, a decentralized event-triggered function 
( ( ))i if te , which depends only on the information of agent i, 

is designed to achieve consensus with reduced communica-
tions. In this case, each agent will update its control input at 
its own event times and at the latest event times of its 
neighbors according to (2). In retrospect, the event times for 
each agent i V  are denoted by ,i

kt k N  and are ob-

tained from the triggering rule ( ( )) 0, .i if t i V e  Similar-

ly, the next event time is detected by 1 inf{ :i i
k kt t t    

( ( )) 0}.i if t e  

3.1.1  Distributed controller design 
Under this condition, the state measurement errors for agent 
i are defined as 

       ( ) ( ) ( )i i
i i k it t t e   , 

 1( ) ( ) ( ), [ , ),i i i i
i i k i k kt t t t t t i V     e   . (4) 
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For each agent i, a distributed consensus protocol is de-
signed based on a planned event-triggered update rule as 
follows: 


    

1

( ) [ ( ) ( )] ( ),
N

i j i
i ij i k j k i i k

j

t a t t t   K  

 1[ , ),i i
k kt t t i V  , (5) 

where 
,

arg min { }j
r

j
rt t r N

k t t
 

  , which indicates that 
j

kt  

is the latest event time for agent j for 1[ , )i i
k kt t t  . There-

fore, each agent will take the latest state update value of 
each of its neighboring agents into account in its control law. 
In other words, the consensus control law for agent i is up-
dated at both its own event times i

kt  and the latest event 

time instants j
kt   of its neighbor .ij N  Moreover, 

n n
i

RK  is symmetric positive definite. 

As a result, under the distributed consensus control pro-
tocol (5), the closed loop system becomes 

 

d

d
d

d







  

 

  

 

  



1

1

( ( ) ( )) ( ) ( ),

( ) ( ){ ( , ) ( )

               [ ( ) ( )] ( )}.

i j i j

i i i i i i i

N i j i
ij i k j k i i kj

t t t t
t

t t
t

a t t t

   

    

  

M C

K

 (6) 

For notational convenience, the time argument can be 
dropped if it does not cause confusion.  

Let T T T
1( , , )N    , T T T

1( , , )N     , e  
TT T1

1( ( ), , ( )) ,N
Nt te e

 and TT T1
1( ( ), , ( )) .N

Nt t  e e e
 Based 

on the definition of ,k     ( ) ( ) ( )jj
j k j jt t t  e . Then, 

system (6) can be written in a compact form as 

 ( ) ( , ) ( )( ) ( ),n          M C L I e K e         (7) 

where diag 1 1( ) [ ( ), , ( )],N N M M M    ( , ) C    

diag 1 1 1[ ( , ), , ( , )],N N N C C     and diag[ , ,1 K = K  

]NK . 

In retrospect, the controller (5) updates at the time in-
stants , ,i

kt k N  which are determined by an event-   

triggered rule proposed in the following subsection. 

3.1.2  Decentralized event-triggered rule 
For each agent ,i V  the decentralized event-triggered 
function is designed as follows:  

 ( ( )) ( ) ( ) ( ),i i i i i if t t t t i V    e e  , 

where 
0( )( ) i t t

i it e      with 0i   and 0 1i  , i   

2
i i

i

a 


 with 0 1i  , ( ) (| |i i ia N  K ( ) / 2)i K  

0,  max(| |, ( ) / 2) 0,i i iN  K  and 0 ( ) /ia   K  

[2(| | ( ))]i iN  K . 

When the condition ( ( )) 0i if t e  is violated over time,  

an event will be triggered based on 

 ( ( )) 0,i if t i V e . (8) 

The event times are obtained by examining ( ( ))i if te = 0, 

k N , for each agent i V . Without loss of generality, 

assume here that 0 0 ( )it t i V  . The cooperative protocol 

(5) updates at i
kt  and then remains constant until the next 

event time 1
i
kt   occurs. When an event is triggered, the 

measurement errors are reset to zeroes, because at this mo-

ment one has ( ) ( ) ( ) 0i i i i
i k i k i kt t t  e    and ( ) 0i i

i kt e , 

which means that ( ( )) 0i if t e  is effective again. In other 

words, the role of the designed event-triggered rule (8) is to 
ensure that ( ( )) 0i if t e  always holds. 

Remark 1.  Note that both i  and i  are related to 

the number of neighbors of agent i and to the gain matrix 

iK . The function ( )i t  is introduced to fully exclude the 

Zeno behavior. When the event-triggered rule (8) is detect-
ed, each agent i simply needs to collect its own information 

( )i te  and ( )i t , which means that the agents do not 

communicate with their neighbors between any two consec-
utive event instants. In other words, the proposed event- 
triggered strategy (8) is effective in reducing the communi-
cation burden. 

3.1.3  Consensus analysis 
Based on the above developments, sufficient conditions can 
then be concluded to achieve consensus, subject to decen-
tralized event-triggered communications. 

Theorem 1.  For multiple Euler-Lagrange systems (1), 
assume that the undirected communication topology G  is 
connected. Then, the consensus problem of the network (1) 
with the distributed cooperative control law (5) and the de-
centralized event-triggered rule (8) is solved under any ini-
tial conditions (0)i , (0)i , i V .  

Proof. Consider the following Lyapunov function candi-
date for the system (7): 

 T T1 1
( ) ( )

2 2n   V(t) = L I M     . (9) 

It follows that 
T 2

1
( ) 1 / 2 || ||

N

n ij i ji
a


  L I    , 

because G is undirected. Note that G is connected and 
( )M  is symmetric positive-definite, which means that V(t) 

is symmetric positive-definite with respect to i j   and 

i . Note that the system (6) with states i j   and i  

is nonautonomous because of the dependence of iM  and 
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iC  on i . This leads to the nonavailability of LaSalle’s 

invariance principle. However, using Lemma 1, which is a 
special case of Barbalat’s Lemma [40], the problem can be 
solved. 

Taking the time derivative of V(t) along the trajectories 
of (7) yields 

 

T T T

T T

T

T T T

T

T

2

1 1 1

1

( ) ( ) ( ) 1 / 2 ( )

( ) [ ( , ) ( )

( )( )] 1 / 2 ( )

( )

( ) (

)

(

i

j i

n

n

n

n

N N N

i i ij i ii i j

N

j i i ii

i

V t

e

a



  



  

    

   

    

  

 

 

  








     

    
 

   

 



L I M M

L I C K e

L I e M

K L I e K

K e

e K e

K





 



 

       

      

   

   

 



=

T

T T

2

1 1 1

1 1 1

2 2

1 1

2 2

1 1

2 2

1 1

)

( )
( ) + (| | )

2
| | ( )

2

,

i

j i

i i

N N N

i ij i ii i j

N N N

ij i j i i ii j i

N N i
i i i ii i

N Ni i
i ii i

N N i
i i ii i

a

a

a N

N

a a

a









  

  

 

 

 



 

  

 

  

  
  

 

 

 





 

 

 



e

e K e

K
K

K
e e

e



 

 

 

 

 


 

where the inequality T 2 2
| | / 2 1 / (2 )a a x y x y  has 

been used for any , nRx y , where 0a  . Also, the 

equation  
2 2

1 1 1 1
/ (2 ) / (2 )j i

N N N N

ij j ij ii j i j
a a a a

   
   e e   

has been applied because the communication topology is 
symmetric. 

Then, based on the decentralized event-triggered rule (8), 

the condition 
2 2 2( ) ( ) 2 ( )i i

i i i
i

a
t t t

 



 e  is always 

satisfied. It therefore follows that the time derivative of V(t) 
satisfies 

 
2 2

1 1

2
( ) (1 ) ( )

N N i
i i i ii i

V t t
a


  

 
      . (10) 

To move on from this, integrating (10) for any 0t   
yields 

 

d

d

2

1 0

2

1 0
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Therefore, it follows from (11) that V(t) is bounded, 

which implies that both i j   and i  are also bounded 

according to (9), i.e., i j  , i L . Then, by returning 

to (11) again, it follows that 

 d
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The above inequality means that 2i L . Also, remem-

bering that i j  , i L , along with the properties of 

( )i iM   and ( , )i i iC    in subsection 2.2, one has that 

i  is also bounded ( i L ) according to (6). In light of 

Lemma 1, one has lim 0t i  , which in turn implies 

that lim 0t i  . In terms of (6) once more, one has 

'lim ( ( ) ( )) 0,i j
t ij i k j ka t t     or equivalently, 

lim ( ( ) ( )) 0,t ij i ja t t     which means that 

lim ( ) 0t n  L I   as t  , and as a result, i j   

as ,t   , .i j V  Therefore, the multiple Eu-

ler-Lagrange systems described in (1) asymptotically reach 
consensus under the designed event-triggered cooperative 
law. This completes the proof.  

Definition 1.  (Zeno Triggering) An event-triggered 
scheme induces Zeno behavior if the event times 

( )i
kt k  ,i VN  converge to a finite *t  as k  .  

Remark 2.  When Zeno behavior occurs, the designed 
control strategy may become very dangerous and may even 
make the entire system collapse. Hence, to ensure that the 
designed cooperative policy (5) behaves well, it is essential 
to exclude Zeno triggering in the following subsection. 

3.1.4  Exclusion of Zeno behavior 
In the following, an analysis of the minimum inter-event 
interval 1inf { }i i

k k kt t  N  for each agent i is carried out to 

eliminate the Zeno phenomenon. 
Theorem 2.  For the multiple Euler-Lagrange systems 

described in (1) with the distributed control protocol (5) and 
the decentralized event-triggered rule (8), assume that the 
undirected communication topology G  is connected. Then, 

for each agent i V , if i
kt  exists, then no Zeno behavior 

occurs for all i
kt t . 

Proof. For any i
kt t , taking the time derivative of 

( )i te  gives 
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Note that 1 1( )i i mk M   and ( , ) ( )i i i i t  C     

2
( )c ik t , and that k   is a positive number such that 

( ) ( )t k i V    based on the bounded property of ( )t  

that was obtained in the proof of Theorem 1. Then, one can 
obtain 

 ( ) ( 1)
i
kt t

i it e  e . 

To move on, a sufficient condition for ( ( )) 0i if t e  is 

given as follows: 
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In retrospect, 0( )( ) i t t
i it e     , and it thus follows that 

the next event time 1
i
kt   is obtained when 
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Consequently, because ( ) + ( ) 2 ( )i i
i i it t t e e e  , one 

has 
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If lim *i
k kt t    , then according to (12) one has 
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which implies that 0 0.
1
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 This contradiction 

shows that lim i
k kt   . On the other hand, since 

0 1i  , then according to (12) one can derive 
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which implies that 1
i i
k kt t   has a positive lower bound i

k , 

i.e., 1inf { } inf { } 0i i i i
k k k k kt t       N N . Otherwise, if 1

i
kt   

i
kt , then the above inequality cannot be satisfied. 

Since i  is bounded by 1 2[ deg( )m ck k k k k i      

( )]ik   K  with ( , , ),i j i jk i j V L          

while 0i   and 0 1i   can be chosen such that the 

left side of the inequality above is sufficiently large. From 
the above, Zeno behavior is excluded for any agent i ac-
cording to Definition 1. This completes the proof.  

3.2  Distributed cooperative consensus based on dis-
tributed event-triggered control  

In this subsection, a distributed event-triggered scheme is 
developed based on local information associated with agent 
i and its neighbors. In this case, the control input for each 
agent i V  simply updates at its own event times ,i

kt  

k N , which are computed by a triggered law ( ( ),i if te  

{ ( ) | }) 0ij it j N e  that is provided in the following. 

3.2.1  Distributed controller design 
In this case, the distributed consensus control strategy based 
on the distributed event-triggered rule for the system (1) is 
designed as 
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Using the distributed consensus protocol (13), the closed 
loop system becomes 
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where ( ) ( ) ( )j i
ij j k jt t t  e   , i V , 0j

ij e  if ij N , 

and otherwise 0j

ij e . 

Then, the system (14) can be written in a compact form 
as 
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where diag[deg(1), ,deg( )]ND = , T Tdiag[ , , ]1  Na aE =  

with     T
1 ( 1) ( 1)( , , , , , )i i i i i i iNa a a aa , e  and e  are 

defined as shown above, and TT T1
1

ˆ ( , , )N
N

   e e e  with 
T T TT T1 11

1 ( 1) ( 1)( , , , , , )i i i N
i i i i i i iN
  

   e e e e e   . 

3.2.2  Distributed event-triggered rule 
For each agent i V , a distributed event-triggered function 
is proposed as follows: 
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where 2

i
i ijj N

b a


  , 0( )( ) i t t
i it e      with 0i   

and 0 1i  , and i  is a triggering gain that is to be 

determined later. 
Then, a controller update task is forced at i

kt  in (13), 

when a corresponding event is determined by detecting 

 ( ( ),{ ( ) | }) 0, .i i
i i k ij k if t t j N i V  e e  (16) 

As long as the event is triggered at i
kt , then the meas-

urement errors ( )i
i kte  and ( )i

ij kte  are automatically reset 

to zeroes. As a result, ( ,{ | }) 0i i ij if j N e e  is satisfied 

again. 
Remark 3.  Note that the above distributed event-   

triggered function above is entirely in relation to local in-
formation. When the event-triggered rule (16) is examined 
as time passes, each agent requires to gather the information 

ie  and i  of its own, along with ije  of its neighbor 

ij N . Moreover, the term ( )i t  plays an important role 

in excluding Zeno behavior. 

3.2.3 Consensus analysis 
The following notations will be used in this analysis:  

max
1max { }i N i   , max

1deg max {deg( )}i N i  ,  
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Hereinafter, a sufficient condition will be provided to 
achieve consensus of the network (1) with the distributed 
event-triggered information. 

Theorem 3.  For the multiple Euler-Lagrange systems 
(1), assume that the communication topology G  is undi-
rected and connected. Then, under the distributed coopera-
tive control law (13) and the distributed event-triggered rule 
(16), with the triggering gain i  satisfying 0 i   

2(2 ( ) 1) / (12 )i K , the consensus problem of the net-

work (1) is solved for any set of initial conditions (0)i , 

(0)i , i V .  

Proof. Consider the following Lyapunov function candi-
date again 

T T1 1
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Taking the time derivative of V(t) along the trajectories 
of (15) gives 
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where the following inequalities have been used: 
maxdegD , maxaE , and max( )  K K . 

In the following, the analysis focuses on treating with the 

term max max maxˆdeg a   e e e   . Because the event- 

triggered rule (16) is always triggered to ensure that 
( ,{ | }) 0i i ij if j N e e , i.e., 

deg( ) ( ) ( )i i i
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Then, 
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In addition, it yields that 
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In a similar trace, one can get 
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Thus, it follows that 
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Following the above developments above, ( )V t  then 

satisfies 
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The subsequent proof is very similar to that of Theorem 
1, and thus is omitted here. This completes the proof.  
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3.2.4  Exclusion of Zeno behavior 
Similarly, an analysis of the minimum inter-event interval 

1inf { }i i
k k kt t  N  for each agent i  is provided to exclude 

the Zeno behavior. 
Theorem 4.  For the multiple Euler-Lagrange systems 

described in (1) with the distributed control protocol (13) 
and the distributed event-triggered rule (16), assume that the 
undirected communication topology G is connected. Then,  
no Zeno behavior occurs for each agent i V . 

Proof. For any i
kt t , one has 
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where 1
mk  , ck , k   are the same as those used in subsec-

tion D1. Denoting 1 2 1
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with 
j

kt  denoting the latest controller update time of 

neighbor ij N , i.e.,
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Consequently, this yields 
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In conclusion, one has 
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On the other hand, a sufficient condition is proposed to 
guarantee that ( ( ),{ ( ) | }) 0i i ij if t t j N e e , 1[ , )i i

k kt t t  : 
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the time of the next event 1
i
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Let 1 '2

i
kw i

kkq  , 2 ' ( )i i i
k kk i kq w t    with 0i

kw  , 

   0i
kk , and    0i

kk . It thus follows that 
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Note the facts that 2 1xx e   and 1xx e   for 
0x  . One then has 
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If lim *i
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  . This contradiction indicates 

that lim i
k kt   . Also, because 0 1i  , then ac-

cording to (18), one can derive 
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which implies that 1
i i
k kt t   has a positive lower bound i
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k k k k kt t       N N  Otherwise, if 1

i
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,i
kt  then the inequality above cannot be satisfied. Since 

1 2q q  is bounded by  
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while 0i   and 0 1i   can be chosen such that the 

left side of the inequality above is sufficiently large. Ac-
cordingly, no Zeno behavior occurs for any agent i , ac-
cording to Definition 1. This completes the proof.  

4  Simulations 

In this section, some numerical results are given to verify 
the effectiveness of the above proposed theoretical analysis. 
A system consists of six two-link manipulators presented in 
Figure 1 [41] is considered, whose dynamics can be explic-
itly written as 
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where 11 1 3 2 4 22 cos 2 sini iM a a a    , 12 21 2M M a   

3 2 4 2cos sin ,i ia a    22 2 ,M a  and 3 2sin ih a   

4 2cos ia   with 2 2 2
1 1 1 1 1c e e ce ea I m l I m l m l     , 2a   

2 ,e e ceI m l  3 1 cose ce ea m l l  , and 4 1 sine ce ea m l l  . 

Furthermore, the undirected communication topology 
G satisfies 12 13 24 26 35 46 1a a a a a a      . In the sim-

ulation, one uses 1 1m  , 1 1l  , 2em  , 30e   , 

1 0.12I  , 1 0.5cl  , 0.25eI  , 0.6cel  . Also, the gain  

 

Figure 1  (Color online) An articulated two-link manipulator. 

matrices are chosen as diag(10,10), 1, ,6i i  K . 

4.1  Decentralized event-triggered cooperative consen-
sus 

For this case, one chooses 1 0.2  , 2 0.3  , 3 0.3  , 

4 0.2  , 5 0.2  , 6 0.4  , and 0.8591a  . By com-

putation, one has 1 1.1341  , 2 0.2750,   3 1.1341  , 

4 1.1341  , 5 1.9932  , 6 1.1341  , 2.5,i   1,i   

3, ,6,  and 2 3.   According to the decentralized 

event-triggered scheme (8), the error bound of each agent 

( 1, ,6)i i   is denoted as 2( ) ( ) ( )i i

i

a
i i iQ t t t 

    

with 0.1( ) 5 t
i t e  . Evolutions of the error bound ( )iQ t  

and the measurement error ( )i te  of each agent are illus-

trated in Figure 2, the corresponding event times of each 
agent are presented in Figure 3. The orientation and angle 
velocity trajectories of all agents are provided in Figure 4. 
Moreover, positive lower bounds i  of the interevent in-
tervals of each agent i  are 1.9, 1.864, 1.92, 1.9, 2.07, and 
1.8 seconds, respectively. Hence, the minimum inter-event 
interval of the whole system is 1.8 seconds. 

4.2  Distributed event-triggered cooperative consensus 

In this regard, one chooses 0.6964 ( 1, ,6)i i     by 

some calculations. In the distributed event-triggered rule 
(16), the error bound of each agent ( 1, ,6)i i   is denoted 

as ( ) ( ) ( )i i i iM t t t    with 0.01( ) 50i t e  , while the 

weighted sum of measurement error is denoted as ( )iE t   

deg( ) ( )i i i
i i i i ii b   e e K e   . Evolutions of the error  

 
Figure 2  (Color online) Evolutions of Qi(t) (colorized solid line) and 
||ei(t)|| (black solid line)) for agent i=1 (a), 3 (b), 5(c) in the decentralized 
case. 
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Figure 3  Events times of all agents in the decentralized case. 

 
 

  

Figure 4  For decentralized case, (a) consensus of the orientation trajecto-
ries 1 i  of all agents; (b) consensus of the orientation trajectories 2 i  of 

all agents; (c) consensus of the velocity trajectories 1 i  of all agents; (d) 

consensus of the velocity trajectories 2 i  of all agents. 

bound ( )iM t  and the measurement error ( )iE t  of each 

agent i are illustrated in Figure 5, the corresponding event 
times of each agent are shown in Figure 6. In addition, the 
orientation and angle velocity trajectories of all agents are 
presented in Figure 7. Also, positive lower bounds i  of 
the inter-event intervals of each agent i  are 0.66, 0.66, 
0.545, 0.56, 0.87, and 0.56 seconds, respectively. Therefore, 
the minimum inter-event interval of the whole system is 
0.545 seconds. 

According to Figures 3 and 6, the numbers of event times 
in the first 50 seconds of each agent i for decentralized and 
distributed cases are 8, 12, 10, 11, 11, 14 and 14, 25, 15, 28, 
9, 15, respectively. Note that the latter case generates more 
events, which means more communications are needed ac-
cording to (16). The numbers of the controller update times 
of each agent i for decentralized and distributed cases are 30, 
45, 29, 37, 21, 37 and 14, 25, 15, 28, 9, 15, respectively. It 
turns out that the controller designed based on decentralized  

 

Figure 5  Evolutions of Mi(t) (colorized solid line) and Ei(t) (black solid 
line) for agent i=1 (a), 3 (b), 5 (c) in the distributed case. 

 

Figure 6  Events times of all agents in the distributed case. 
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Figure 7  For distributed case, (a) consensus of the orientation trajectories 

1 i  of all agents; (b) consensus of the orientation trajectories 2 i  of all 

agents; (c) consensus of the velocity trajectories 1i  
of all agents; (d) 

consensus of the velocity trajectories 2 i  of all agents . 

event-triggered scheme (8) has more update times. These 
results are in accordance with intuition: firstly, the distrib-
uted event-triggered strategy (16) designed for each agent i 
obtains more information of the overall system via commu-
nication, while the decentralized event-triggered case (8) 
only uses its own information; in addition, the cooperative 
control policy (5) for each agent i is updated at its own 
event times and the latest event-times of its neighbors, while 
the cooperative protocol (13) for each agent i is just updated 
at its own event times. It indicates that a trade-off between 
communication frequencies and controller update times 
needs to be taken into account. Specifically, if one wants to 
design an event-triggered strategy and to reduce communi-
cation frequencies as far as possible, decentralized approach 
is a better choice. Whereas, when few controller update 
times are concerned, maybe distributed scheme is more ap-
propriate. 

5  Conclusion 

In this study, two event-based consensus strategies have 
been proposed and studied for multiple Euler-Lagrange 
systems under fixed and undirected communication topolo-
gies. Rigorous analyses of the convergence results for the 
proposed protocols have been addressed by using tools from 
graph theory and Lyapunov stability theory. Sufficient con-
ditions have been derived such that the multiple Eu-
ler-Lagrange systems can reach consensus as long as an 
appropriated cooperative control law is designed with a 
reasonably updated rule. Also, Zeno behavior is excluded 
for the triggering time sequences. The simulation results 
show that a trade-off between the communication frequen-
cies and the controller update times must be taken into ac-
count to enable selection of a suitable strategy. Overall, 
larger numbers of available communication frequencies, 
require fewer controller update times, and vice versa. In the 
future, we will focus on the consensus behaviors of multiple 
Euler-Lagrange systems without using absolute velocity 
information. 
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