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Neural networks have been applied in various fields from signal processing, pattern recognition, associative memory to artifi-
cial intelligence. Recently, nanoscale memristor has renewed interest in experimental realization of neural network. A neural 
network with a memristive synaptic weight is studied in this work. Dynamical properties of the proposed neural network are 
investigated through phase portraits, Poincaré map, and Lyapunov exponents. Interestingly, the memristive neural network can 
generate hyperchaotic attractors without the presence of equilibrium points. Moreover, circuital implementation of such 
memristive neural network is presented to show its feasibility. 
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1  Introduction 

Neural network and neurodynamics have been studied and 
had a variety of applications in science and engineering, i.e. 
character recognition, image compression, stock market 
prediction, system control, electronic nose, etc. [1–16]. Es-
pecially, Hopfield type neural network received significant 
attention in neurocomputing because it can describe brain 
dynamics and provide a model for understanding human 
memory [17–22]. 

Recently, various researches focus on the realization of 
synaptic weights in neural network by using the memristor, 
the fourth circuit element besides resistor, capacitor and 

inductor [23–28]. Memristor is considered as a potential 
candidate to replicate the behavior of neuron’s synapse be-
cause of its nanoscale size and its nonlinear characteristics 
[29–31]. Moreover, the peculiar features of the memristor 
can generate complex dynamics in neural networks, like 
chaos. Buscarino et al. introduced memristive chaotic cir-
cuits based on cellular nonlinear networks [32]. Hyperchaos 
was studied on a small memristive neural network [33], 
which has an unlimited number of equilibrium points. In 
addition, this small memristive network belongs to a new 
class of systems with hidden attractor [34–36]. Investigation 
of hidden attractors in dynamical systems is important in 
academic community and practical problems [37–46]. 

Motivated by special features of memristor, the simplici-
ty of Hopfield type neural network and rare presence of 
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hidden attractors, a novel memristive network with hidden 
attractor is studied in this paper. 

This paper is organized as follows: Section 2 proposes 
the model of the novel memristive neural network. Its fun-
damental dynamics are presented in Section 3, while its 
circuital implementation is discovered in Section 4. Finally, 
conclusions are drawn in the last Section. 

2  Model of the new memristive neural network 

It has been known that a Hopfield neural network can be 
described by circuital equations of each neuron [17,33]. 
Therefore, a Hopfield neural network including n neurons is 
given by 
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where the state xi of the i-th neuron represents the voltage 
on the capacitor Ci. Here, Ri is the membrane resistance 
between the inside and outside of the neuron and the input 
bias current is denoted as Ii. The matrix W=(wij) is defined 
as synaptic weight matrix which presents the strength of 
connection between neurons. The voltage input from the 
j-th neuron vj [17,33] is given by 

  tanh .j jv x  (2) 

In this work, we consider a Hopfield type neural network 
including three neurons as shown in Figure 1. It is noting 
that there is a flux-controlled memristor [23,24,27] which 
plays the role of a synaptic weight. The dynamical equa-
tions of the flux controlled memristor have the following 
form: 

 
 


 




,

,
M M

M

i W v

v
 (3) 

where vM and iM are the voltage across the memristor and 
the current through the memristor, respectively. The mem-
ductance W() is defined as 
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where q and  are the charge and magnetic flux, while a, b 
are parameters. 

From eqs. (1) and (2), let Ci = 1, Ri =1, dynamical equa-
tions of the new memristive neural networks are derived as 
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where i = 1, 2, 3 while the synaptic weight matrix is  

 

Figure 1  Neural network including a memristive synaptic weight. 
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In addition, the input bias current term is selected as 

    T T

1 2 3, , 0,0, ,I I I c I  (7) 

where c is the parameter which indicates the input current at 
the third neuron.  

3  Dynamics of the memristive neural network 

When c = 0, the memristive neural network (5) has the line 
equilibrium E(0, 0, 0, ). In addition, neural network (5) 
can generate hyperchaos for different values of a and b. For 
example, hyperchaos is observed when selecting a = –0.001, 
b = –0.05, and the initial conditions condition (x1(0), x2(0), 
x3(0), (0)) = (0, 0.01, 0.01, 0). In this case, the calculated 
Lyapunov exponents are 1 = 0.0309, 2 = 0.0106, 3 = 0, 
and 4 = –0.1178.  

When c ≠ 0, it is easy to see that neural network (5) has 
no equilibrium points. It is interesting that the novel neural 
network (5) can still exhibit hyperchaos when choosing the 
parameters a = –0.001, b = –0.05, c = –0.001, and the initial 
conditions condition (x1(0), x2(0), x3(0), (0)) = (0, 0.01, 
0.01, 0). Hyperchaotic attractors are presented in Figure 2.  

In this case, the calculated Lyapunov exponents are    
1 = 0.0291, 2 = 0.0095, 3 = 0, and 4 = –0.1140. There-
fore, memristive neural network (5) is a hyperchaotic sys-
tem with hidden attractor [34–36]. This special case will be 
discussed in next sections. 

The Kaplan-Yorke fractional dimension [47], presenting 
the complexity of attractor, is given by 
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Figure 2  The projection of the hyperchaotic attractor in the memristive 
neural network (5) for a=–0.001, b=–0.05, and c=–0.001. (a) in the x1– 
phase plane, (b) in the x2– phase plane, and (c) in the x3– phase plane. 
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 . The calculated fractional dimension of neural 

network (5) when a = –0.001, b = –0.05, and c = –0.001 is 
DKY = 3.3386. This fractional dimension indicates a strange  

attractor. The Poincaré map in Figure 3 also shows the rich 
dynamical behavior of the proposed memristive neural net-
work (5). 

In order to get better insight into dynamics of the new 
neural network, its Lyapunov exponents have been calcu-
lated by using the well-known Wolf’s algorithm [48–50]. 
Three largest Lyapunov exponents of memristive neural 
network (5) are shown in Figure 4 when varying the value 
of the parameter c. Although the positive Lyapunov expo-
nent does not mean chaos every time [51,52], there is no 
ambiguity on the indication of chaos in our regular work. 

It is interesting to consider a new simple system by 
changing the tangent hyperbolic function in system (5) to a 
similar function like the signum function. Although the ob-
tained system is still a no-equilibrium one, it cannot exhibit 
chaos. 

4  Circuit realization 

Implementing chaotic/hyperchaotic systems by using elec-          

 

Figure 3  Poincaré map in the plane x1–x3 when x2=0 for a=–0.001,  
b=–0.05, and c=–0.001. 

 

Figure 4  (Color online) Three largest Lyapunov exponents 1 (dash line), 
2 (solid line), 3 (red dot line) of neural network (5) when changing the 
parameter c for a = –0.001, and b = –0.05. 
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tronic circuits is an effective approach for discovering dy-
namics of such systems [53,54]. Moreover, realization of 
circuits based on theoretical chaotic models has practical 
applications such as in cryptography, image encryption, 
random bit generator, or path planning for mobile robot 
[55–58]. Especially, circuital implementation is one of vital 
existing technologies to produce specialized analog neural 
networks or neuron models [59–65].  

In this section, an electronic circuit is proposed to im-
plement the memristive neural network (5). Using an ap-
proach based on operational amplifiers [54,66–69], the cir-
cuit is designed as shown in Figure 5. The variables x1, x2, 
x3,  of neural network (5) correspond to the voltages across 
the capacitor C1, C2, C3, and C4. As can be seen in Figure 5, 
there are three blocks, denoted as –TANH(), which imple-
ment the inverting tangent hyperbolic functions. The detail 
of each block is presented in Figure 6. It is easy to see that 
the inverting tangent hyperbolic function can be achieved 
by a dual-transistor pair [70,71]. 

By applying Kirchhoff’s circuit laws to the electronic 
circuit in Figure 5, its circuital equations can be derived as 
follows 

 
Figure 5  Designed circuit of the memristive neural network with hidden 
attractor (5). 

 

Figure 6  Schematic of the circuit which generates the inverting tangent 
hyperbolic function. Here the value of the constant current source I0 is 1.1 
mA. 
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The operational amplifiers in this work are TL084 type 
ones, which are connected to power supplies ±15 Volts. The 
values of components are selected to match the values of 
parameters in neural network (5) and listed in Table 1.  

The designed circuit is run in the electronic simulation 
package OrCAD. The transfer characteristic of the inverting 
tangent hyperbolic function is indicated in Figure 7. This  

Table 1  The values of electronics components 

Component name Value Unit 
R0 0.52 k 

R, R1, R4, R5, R9, R12, R14 10 k
R2 6.25 k

R3, R11 5 k
R6, R13 1 M 

R7 2 k
R8 6.667 k
R10 3.333 k
RC 1 k

C1, C2, C3, C4 10 nF 
VC 0.1 VDC 

VCC 15 VDC 

 

 
Figure 7  (Color online) Transfer characteristic of a –TANH() block 
obtained in PSpice. 
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Figure 8  (Color online) Attractor obtained from the designed circuit by 
using OrCAD PSpice (a) in vC1 – vC4 phase plane, (b) in vC2 – vC4 phase 
plane, and (c) in vC3 – vC4 phase plane. 

transfer characteristic in PSpice agrees with the theoretical 
one. Also, the results in Figure 8 verify that the designed 
circuit in PSpice can generate hyperchaotic attractors simi-
lar to the numerical results in Figure 2. 

5  Conclusion 

This paper presents a memristive neural network. The pres-

ence of a memristive synaptic weight creates special fea-
tures, i.e. having no equilibrium points, exhibiting hyper-
chaotic behavior, or being classified as a system with hid-
den attractor. In addition, the designed circuit shows the 
feasibility of the proposed memristive neural network. 
Moreover, hyperchaos of this neural network can be applied 
into practical chaos-based systems such as cryptosystems 
and secure communications in future works.  
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