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1  Introduction 

In recent years, networked control systems (NCSs) whose 
control loops are closed by real-time networks have re-
ceived much attention. NCSs have many advantages com-
pared with traditional point-to-point control systems such as 
efficient resource sharing and energy saving [1,2]. However, 
NCSs have several disadvantages stemming from an intro-
duction of a real-time network such as network-induced 
delay, data dropout, data disorder and quantized error, 
which present challenges to conventional control theories 
built on ideal assumptions. To solve these problems, a 
number of control methodologies have been proposed. To 
mention a few, time-delay system method was used to mod-
el and stabilize NCSs in [3–6]. A switched system approach 
including the switched Lyapunov function approach as well 
as the average dwell-time approach was adopted to provide 
an output feedback stabilization, exponential stabilization or 

disturbance attenuation of NCSs [7–9]. The jump system 
approach was also applied to NCSs by modeling the net-
work-induced delay as a Markov chain [10–12]. Some ad-
vanced control methods such as intelligent control methods 
and adaptive control methods were utilized to realize the 
fault detection, the scheduling and the distributed coordina-
tion of NCSs [13–15]. Other methodologies can be found in 
some good survey papers [16–19] and references therein. 

It should be noted that many existing works attempted to 
design a controller that is sufficiently robust to handle net-
work constraints such as network-induced delay and data 
dropout rather than actively compensate for them. Recently, 
a new model-based method called networked predictive 
control has been proposed to actively compensate for net-
work-induced delay and data dropout [20–28]. This method 
has been demonstrated to be very effective by substantial 
simulations and experiments. The compelling fact is that a 
control performance similar to local control (i.e., there is no 
network in the system) can be obtained using this method. 
However, how to analyze stability of a networked predictive 
control system is a challenging topic which has not been 
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completely solved. In existing results, the common Lya-
punov function approach [20–27]. or the switched Lyapun-
ov function approach [28] are usually applied to obtain a 
stability condition for the closed-loop system and these 
methods can only yield some sufficient stability conditions. 
To the best of authors’ knowledge, there is no necessary and 
sufficient stability condition for a networked predictive 
control system when taking both the network-induced delay 
and data dropout into consideration, which motivates this 
study. 

In this paper, a new formulation of the networked predic-
tive control method is presented. The closed-loop system is 
modeled as a switched system with an upper-triangular 
structure. A necessary and sufficient stability condition is 
obtained. It shows that the stability of a networked predic-
tive control system is related to the network-induced delay 
and the maximum number of successive data dropouts. It 
also indicates that separation principle holds for networked 
predictive control systems which means that the state feed-
back controller and the state observer can be designed in-
dependently. Finally, a numerical example is provided to 
confirm the validity and effectiveness of main results. 

2  Preliminaries 

Consider the following discrete-time plant: 

 ( 1) ( ) ( ),x k Ax k Bu k    (1) 

 ( ) ( ),y k Cx k  (2) 

where ( ) ,nx k   ( ) ,mu k   and ( ) py k   are the 

state vector, the control input vector and the output vector, 
respectively. A, B and C are constant matrices with appro-
priate dimensions. 

For the sake of simplicity, but without loss of generality, 
NCSs with random delay and data dropout in the feedback 
channel are considered in this study as shown in Figure 1. 
The following assumptions are made [22,25]. 

Assumption 1.  Network-induced delay (k) is bounded 
by 1 2( )h k h     with h being the sampling interval. 

The number of successive data packet dropouts is not larger 
than N. Where 2 1 0    and 0N   are integers. 

 

Figure 1  A framework of networked control systems. 

Assumption 2.  All signals in the system are transmitted 
with time-stamps and all components in the system are 
synchronized. 

Let { | 1,2, }···kt kh k   be the sampling instants. The 

sensor samples the output of the plant at tk and sends the 
output of the plant y(tk) together with its time-stamp to the 
controller through a network. Due to the random net-
work-induced delay and data dropout, ‘packet disorder’ will 
exist, which means that data packets sent earlier (later) ar-
rive later (earlier). Another situation will also exist where 
either more than one data packet or no data packet arrives at 
the controller node in one sampling interval. To deal with 
these situations, a logic zero-order-hold (ZOH) [29] is in-
troduced at the controller node to select and store the latest 
data packets. The mechanism of the logic ZOH can be de-
scribed as follows. 

Logic ZOH.  Step 1: Set k=0, 0 0,  and t0=0. Step 2: 

At sampling instant tk, ZOH updates its output to ( )y t   

( )ky h  for 1.k kt t t    Step 3: If there are some data 

packets reaching the ZOH during 1,k kt t t    compare 

their time-stamps and denote the largest one by .  If 
,k    then the ZOH stores ( )y h  and lets 1 .k    

Step 4: Let k=k+1 and go to step 2. 
A data packet that is successfully transmitted from the 

sensor to the ZOH and subsequently stored by the ZOH is 
called an effective data packet. The time-stamp sequence of 
effective data packets is denoted by { | 1,2,· ·}.·iT i   The 

time of an effective data packet is used to update the ZOH is 
called an updating instant. The updating instant sequence is 
denoted by { | 1, 2,· ·}.·iS i   It is clear that the controller 

uses y(Ti) to develop the control law at the updating instant 
Si. To make the above definitions more clear, an illustrative 
example is shown in Figure 2. 

For Si and Ti, we have the following lemma. 
Lemma 2.1.  For Si and Ti, denote 1( ) / ,i i iS S h    

1( ) / ,i i iT T h    the following inequalities hold 

 2 11 1,i N        (3) 

 2 11 1,i N        (4) 

where 2, 1 and N are as defined in Assumption 1. 
Proof. Clearly, the minimum of i and i is 1. Consider-

ing that the maximum of successive data packet dropouts is 
N, Ti+1Ti reaches its maximum only if Ti+1h, Ti+2h,···, 
Ti+Nh are all dropped out, Ti+Nh+1h suffers the maximum 
delay, Ti+Nh+1h, Ti+Nh+2h,···, Ti+Nh+2h1h are all not 
effective data packets and Ti+Nh+2h1h+1h is stored by 
the ZOH as an effective data packet. In such a case, 
Ti+1Ti=2h1h+Nh+1h. Similarly, we can prove the max-
imum of Si+1Si is 2h1h+Nh+1h. 
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Figure 2  An example to show {Ti} and {Si} of the logic ZOH, where  denotes an effective data packet. 

3  Main results 

In this section, we will focus on stability analysis of net- 
worked predictive control systems. First, the networked 
predictive control method is briefly formulated. And then, a 
necessary and sufficient stability condition for networked 
predictive control systems is developed. 

3.1  Networked predictive control method 

From the above discussion, we can see that y(Ti) is the most 
recent measurement signal available at the sampling time 
Si.The following networked predictive control method is 
proposed to compensate for the network-induced delay and 
data dropout.  

Step 1.  Based on the received measurement signal y(Ti), 
the controller predicts the system’s current state by the fol-
lowing iteration 
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1
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Step 2.  Based on ˆ( | ),i ix S T  a feedback control law is 

 ˆ( ) ( | ),i i iu S Kx S T  (6) 

where L is the observer gain matrix, and K is the controller 
gain matrix which can be determined by some standard 
methods such as pole assignment. 

Using the above networked predictive control method, 
the network-induced delay and data dropout in the feedback 
channel can be well compensated as reported in [22,25].  

Remark 3.1.  Based on the time-stamp sequence of ef-
fective data packet Ti and updating instant sequence Si, a 
new formulation of networked predictive control method is 
proposed. This formulation facilitates the stability analysis 
of the closed-loop system. 

3.2  Stability analysis 

From the iteration (5), we can obtain 

 

1

1

1

1
1

ˆ ˆ( | ) ( | )

                         ( )

ˆ                        ( ( ) ( | )),

i i i i

j
i

j

i i i

x T h T A x T T

A u T h jh

A L y T Cx T T




















 

  

 

  (7) 

where 11 .i iS T     

It is clear that 
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Define ˆ( | ) ( ) ( | )i i i i ie T h T x T h x T h T        and 

subtraction of (7) from (8) yields 

 
1

1 1

1
1

( | ) ( | ) ( | )

                     ( ) ( | ).

i i i i i i

i i
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A A LC e T T
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 (9) 

Therefore, 

 1
1 1( | ) ( ) ( | ).i

i i i ie T T A A LC e T T 
    (10) 

Denote di=SiTi, from (6) and (9), the closed-loop system 
can be obtained as follows 

 

1
1

( 1 ) ( ) ( )
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              ( ) ( ) ( | )
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Similarly, 
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For an integer > 0, it is clear that 
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Therefore, we can obtain  
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Define a new vector 
1
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 the closed-loop 

system can be described as 

 1 ,i i i     (15) 

where 
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with 

 112 1

1
( ) ( ).i i id jj

i j
A BK BKA A LC

   


      

It is clear that i is switched according to i, i and di. 
Therefore, the closed-loop system (15) is a switched system. 
According to the switched system theory [30], a switched 
linear system with a block upper-triangular structure is as-
ymptotically stable if and only if each of its block diagonal 
subsystems is asymptotically stable. Therefore, the 
closed-loop system (15) is asymptotically stable if and only 

if eigenvalues of (A+BK)i and 1( )iA A LC    are within 

the unit circle. Clearly, eigenvalues of (A+BK)i are within 
the unit circle is equivalent to eigenvalues of A+BK are 
within the unit circle. Therefore, we have the following sta-
bility theorem. 

Theorem 3.2.  The closed-loop networked predictive 
control system is asymptotically stable for any delay and 
data dropout satisfying Assumption 1 if and only if eigen-
values of A+BK and A1(ALC), for all 121+N+1 
with  being integers, are within the unit circle. 

Remark 3.3.  From Theorem 3.2, it can be seen that the 
state feedback controller and the state observer can de de-
signed independently by guaranteeing eigenvalues of A+BK 

and A1(ALC), for all 121+N+1, are within the unit 
circle. This property is in accordance with the separation 
principle. 

If Ti+1Ti=h, which indicates that there are no packet dis-
order, no packet dropout and not more than one sensor sig-
nal reaching the controller node in a sampling interval, the 
following corollary can be obtained. 

Corollary 3.4.  For Ti+1Ti=h, the closed-loop net-
worked predictive control system is asymptotically stable if 
and only if eigenvalues of A+BK and ALC, are within the 
unit circle. 

4  A numerical example 

In this section, a numerical example is given to confirm the 
efficiency and correctness of the proposed main results. 

Consider the cart-pendulum system [31] whose simpli-
fied and discretized model is as follows. 

  1.0078 0.0301 0.0001
,  ,  1 0 .

0.5202 1.0078 0.0053

   
        

A B C  

The eigenvalues of matrix A are 1.1329 and 0.8827, 
which means that the open-loop system is unstable. The 
feedback control gain matrix K and the observer gain matrix 
L are designed by the pole assignment method to ensure the 
closed-loop system without network delay and data dropout 
is stable. The desired poles of the feedback controller and 
the observer are [0.6, 0.7] and [0.5, 0.2], respectively. K and 
L are as follows. 

   1.3156
846.1460 119.0538 ,  .

14.1481

 
   

 
K L  

The network-induced delay is bounded by h(k)3h as 
shown in Figure 3. The maximum number of successive 
data dropouts is 2 as shown in Figure 4 where ‘1’ indicates 
that data are transferred to the controller successfully and 
‘0’ indicates that data are dropped. 

According to Theorem 3.2, eigenvalues of A+BK and 
A1(ALC), for 15 are listed in Table 1. It can be seen 
that all eigenvalues are within the unit circle. It means that 
the closed-loop networked predictive control system is as-
ymptotically stable for any network-induced delay and data 
dropouts satisfying the above assumptions. 

Let  T(0) 0 0x   and  Tˆ(0) 1 0 ,x    then the 

simulation results are given in Figure 5. It can be seen that 
the closed-loop networked predictive control system is as-
ymptotically stable and the performance of the closed-loop 
networked predictive control system is quite similar to that 
of the local closed-loop system (i.e., there is no network in 
the system). 
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Figure 3  Network-induced delay. 

 

Figure 4  Data dropout. 

 

Figure 5  Response of the closed-loop system.

Next, we will consider another case. If the poles of the 
observer are chosen as [0.5, 0.2], L can be obtained as 

 
2.3156

.
40.9853

 
  
 

L  

The controller gain matrix remains 

  846.1460 119.0538 .K  

The network-induced delay and data dropout are as 
shown in Figures 3 and 4, respectively. For this case, the  
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Figure 6  Response of the closed-loop system. 

Table 1  Eigenvalues of A+BK and A1(ALC) 

Matrices Eigenvalues 

A+BK 0.6, 0.7 
ALC 0.5, 0.2 

A(ALC) 0.1555+0.2754i, 0.15550.2754i 
A2(ALC) 0.0367+0.3141i, 0.03670.3141i 
A3(ALC) 0.2293+0.2177i, 0.22930.2177i 
A4(ALC) 0.7105, 0.1408 

 

Table 2  Eigenvalues of A+BK and A1(ALC) 

Matrices Eigenvalues 

A+BK 0.6, 0.7 
ALC 0.5, 0.2 

A(ALC) 1.5684, 0.0638 
A2(ALC) 2.7690, 0.0638 
A3(ALC) 4.0284, 0.0248 
A4(ALC) 5.3555, 0.0187 

 
eigenvalues of A+BK and A1(ALC), for 15 are listed 
in the Table 2. It is easy to see that eigenvalues of 
A1(ALC), 25 are all outside unit circle. Let 

 T(0) 0 0x   and  Tˆ(0) 1 0 ,x    simulation results 

are given in Figure 6. It can be seen that the closed-loop 
networked predictive control system is unstable. 

5  Conclusion 

In this study, the problem of stability of networked predic-
tive control systems has been investigated. A necessary and 
sufficient stability criterion has been derived using the 
switched system method. In this criterion, the relationship 
between stability of the closed-loop system and some pa-
rameters (feedback controller gain matrix K, observer gain 
matrix L, network-induced delay and data dropout) has been 

established. From the stability criterion, it also can be seen 
that the state feedback controller and the state observer can 
de designed independently. Finally, a numerical example 
has confirmed the efficiency and correctness of the obtained 
results. 

In this study, only plants with perfect linear models have 
been considered. There still exist several challenging issues 
to be further investigated. For example, when the model of 
the plant contains some uncertainties or the model of the 
plant is nonlinear, how to find necessary and sufficient sta-
bility conditions for the closed-loop networked predictive 
control systems is under study. 
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