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In this paper, new solutions for the problem of pose estimation from correspondences between 3D model lines and 2D image 
lines are proposed. Traditional line-based pose estimation methods rely on the assumption that the noises (perpendicular to the 
line) for the two endpoints are statistically independent. However, these two noises are in fact negatively correlated when the 
image line segment is fitted using the least-squares technique. Therefore, we design a new error function expressed by the av-
erage integral of the distance between line segments. Three least-squares techniques that optimize both the rotation and transla-
tion simultaneously are proposed in which the new error function is exploited. In addition, Lie group formalism is utilized to 
describe the pose parameters, and then, the optimization problem can be solved by means of a simple iterative least squares 
method. To enhance the robustness to outliers existing in the match data, an M-estimation method is developed to convert the 
pose optimization problem into an iterative reweighted least squares problem. The proposed methods are validated through 
experiments using both synthetic and real-world data. The experimental results show that the proposed methods yield a clearly 
higher precision than the traditional methods. 
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1  Introduction 

The goal of the pose estimation problem is to determine the 
position and attitude of a calibrated camera or the pose of an 
object with respect to the camera from known 3D features 
and their image projections (corresponding 2D features). 
This constitutes the core of many computer vision tasks and 
has numerous applications in other areas, such as robotic 
manipulation and augmented reality, as well as space ren-
dezvous technology. Regarding point features, much note-
worthy progress [1–5] has been made on the well-known 
Perspective-n-Point (PnP) problem in the last two decades.  

However, from a practical point of view, it is frequently 
advantageous to use lines to estimate the pose of man-made 
objects having little texture. Indeed, line features are abun-
dant in such objects and can be detected more accurately 
and reliably than points. Therefore, the solution of the Per-
spective-n-Line (PnL) problem is both desirable and indis-
pensable in many applications. The use of 3D-2D line cor-
respondences to recover the position and attitude of a cali-
brated camera or the pose of an object has received signifi-
cant research attention for more than two decades. In the 
earliest papers on the subject, a closed-form solution for the 
PnL problem with three line correspondences was proposed 
[6,7]. Navab and Faugeras [8] gave the existence conditions 
and the maximum number of possible solutions for the P3L 
problem and showed that a maximum of three solutions 
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exists for three skew lines.  
To find a unique solution for pose determination and ob-

tain precise results when noise exists, more than three line 
correspondences should be established. Liu et al. [9] solved 
the rotation matrix and the translation vector separately. 
Eight or more line correspondences were utilized to linearly 
constrain the rotation matrix, and then, a linear least squares 
method was employed to obtain an up-to-scale estimation of 
the rotation. However, in the case of noisy observations, this 
approach does not necessarily achieve an appropriate or-
thonormal matrix. Adnan [10] proposed a method that em-
ploys the lifting approach to convert the polynomials deter-
mined by a four or more line correspondences constraint to a 
linear equation system in the components of the rotation 
matrix. However, this approach has O(N2) computational 
complexity, where N is the number of line correspondences 
used. Moreover, its performance is degraded severely with 
increasing measurement-noise variance. Recently, Mirzaei 
and Roumeliotis [11] utilized algebraic geometry techniques 
to directly solve a system of multivariate polynomial equa-
tions formed by the optimality conditions of the nonlinear 
least-squares problem. Although it has O(N) computational 
complexity, the method is still computationally expensive 
and returns an excessive number of candidate solutions, 
with a maximum of 27. Elqursh and Elgammal [12] pro-
posed an algorithm using three lines, where two are parallel 
and orthogonal to the third. They also designed a robust 
hypothesize-and-test framework using which such lines can 
be detected. However, their approach is suitable only for an 
environment where most of the lines are either parallel or 
orthogonal to each other. Zhang et al. [13] divided the ref-
erence lines into triplets by selecting a rotation axis in the 
camera frame, and then, recovered the optimum solution 
from the roots of the derivative of the 16th order cost func-
tion. This method also has O(N) computational complexity. 
Liu et al. [14] proposed a similar linear method in which the 
angle depth of lines in the local coordinate system formed 
by two appropriate lines is recovered and the PnL problem 
is converted to an absolute orientation problem. However, 
this method is computationally expensive because the angle 
depth for each line has to be estimated. 

Several iterative methods have also been presented to es-
timate the pose parameters from line correspondences using 
nonlinear least-squares techniques. Liu and Phong et al. 
[9,15] proposed an iterative method to estimate the rotation 
first and then the translation (called R_then_T). Kumar and 
Hanson [16] improved the iterative method by optimizing 
the rotation and translation simultaneously (called R_and_T) 
and showed that the performance of the R_and_T algorithm 
is far superior to that of the R_then_T algorithm. Moreover, 
an algorithm called R_and_T_mod was proposed in which 
the 2D alignment error between the image line segment and 
the 3D model line is minimized, which performs more ro-
bustly than the R_and_T_img method based on the infinite 
extended image line. Christy and Horaud [17] extended the 

iterative improvement of a linear camera model already 
used for points-based pose estimation [18] to lines and pro-
posed an iterative algorithm to recover the pose parameters 
based on weak-perspective or para-perspective camera mod-
els. Hanek et al. [19] presented a noise model to describe the 
probabilistic relationship between 3D lines and their corre-
sponding noisy finite image lines and utilized a maxi-
mum-likelihood approach to estimate the pose parameters. 
David et al. [20] improved the SoftPOSIT algorithm [21] 
designed for point features to iteratively estimate the pose 
parameters and the correspondences of model lines to image 
lines simultaneously. Inspired by the point-based orthogonal 
iteration algorithm [4], Zhang et al. [22] proposed an or-
thogonal iteration method for line features in which the ob-
jective function in the object space is iteratively optimized.  

However, all these iterative methods minimize the error 
functions based either on the distance from any point in the 
line to the corresponding line [9,15,22,23] or the distance 
from the endpoints to the corresponding line [16,19,20]. 
The former error functions regard the infinite image lines as 
the observations and neglect significant information about 
the position and length of the observed line segments, whilst 
the latter rely on the assumption that the noise models of 
two endpoints for the image line segment along the normal 
vector are statistically independent. We prove that these two 
noises are incompletely independent and negatively corre-
lated. Therefore, in this study a new error function between 
lines based on the mean of the distance integral was devel-
oped. In contrast to the traditional error function based on 
the distance from the endpoint to the corresponding line, the 
new error function contains the distance from the midpoint 
to the line inherently and gives it a weight 4 times that of 
the endpoint. According to the new error function between 
lines, we propose three pose optimization methods. Moreo-
ver, based on the error function presented in [24], we pro-
pose three additional methods. 

2  Error function 

2.1  Perspective projection 

Throughout this study, a calibrated camera with a perspec-
tive projection model was utilized. As shown in Figure 1, 
the relationship between a 3D world P and its projection p 
can be given by 
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where T( , )x yp pp , C = +P RP T is the coordinate in the 

camera frame for P, and ( )z  is the z-coordinate. R and T 

are the rotation matrix and translation vector from the ref-
erence frame (the object frame) to the camera frame. fx and 
fy are the equivalent focal length. 
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Figure 1  Perspective projection. 

The 3D model line segment L and its projection I onto 
the image plane are represented by their endpoints (P1,P2) 

and (p1,p2). The image line segment l  is represented by its 
two 2D endpoints 1 2( , ) p p . The perspective projection of a 

3D line segment is expressed by the projection of the two 
endpoints, as shown in Figure 1. 

2.2  Error function according to endpoint distance 

Figure 2 shows a typical distance function between two lines. 
The thin line represents the line segment, while the bold line 
represents the infinite line. Then, the error function between 
the line pair can be defined as the sum of the squares of the 
distances from two endpoints of one line segment to the 
other line, which is given by  

  2 2
e 1 2( , ) ,d s s l l  (2) 

where s1 and s2 are the distances from endpoints 1
p  and 

2
p  of the line segment l  to the line l , which is hereafter 

referred to as the endpoint distance. 
According to whether the image line is infinite or not, 

two methods can be used to develop error functions. On the 
basis of the perspective projection of line segments, a detailed  

 

Figure 2  Distance from endpoint to line. 

discussion on obtaining the expression of the corresponding 
endpoint distances is introduced in the following. 

In our approach, an image line is represented in the form 
of     parameters: 

 cos sin 0,x yp p      (3) 

where   is the angle between the normal vector of the 
image line and the horizontal axis and  is the distance from 
the origin to the image line. 

Substituting eq. (1) into (3), we have 
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where  T
cos , sin ,x yf f   N is the normal vector of 

the projection plane formed by the optical center and the 
image line. The left side of eq. (4) corresponds to the dis-
tance from the endpoint of the projected model line segment 
to the infinite image line. 

Let N N N , where N  is the unit normal vector of 

the projection plane; then, eq. (4) can be rewritten as  

 T ( ) 0.+N RP T  (5) 

The left side of eq. (5) corresponds to the distance from 
the endpoint of the model line segment to the projection 
plane. 

In the two constraints described in eqs. (4) and (5) above, 
the 3D line segment is aligned with the infinitely extended 
image line. The image line segment can also be aligned with 
the projection of the 3D line. In the finite image line case, 
the normal vector of the projection plane can be given by 

    1 2( ) ( ),kN RP T RP T  (6) 

where k is a scale factor. 
Let T

1 2( ) ( ) ( , , )x y zA A A   RP T RP T , and then 
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where    22

x x y yA f A f   . 

Then, the constraint that the endpoints of the image line 
segment must lie in the projected model line can be given 
by 

 T
1 2

1
(( ) ( )) 0,


   p RP T RP T  (8) 

where T( , ,1)x x y yp f p fp . The distance from the end-

point of the image line segment to the projected model line 
is given by the left side of eq. (8). 
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2.3  Error function according to distance integral 

When the localization of the image line segment is suffici-     
ently accurate, the error functions defined by eqs. (4), (5) 
and (8) can suffice to optimize the pose successfully. However, 
the location of the endpoint and the continuity of the line 
may be unreliable because of the image noise, illumination, 
and self-occlusion, which has a severe effect on the distance 
functions defined above, in particular, those defined by eqs. 
(4) and (5). Moreover, the distance function defined by eq. 
(8) relies on the assumption that the noise models of two 
endpoints for the image line segment along the normal vec-
tor are statistically independent. It can be proved that these 
two noises are negatively correlated when the series of edge 
points are fitted into the line segment by using the least 
squares technique, as described in Appendix A. 

In [24], the error function according to the distance inte-
gral as shown in Figure 3, is designed for recovering the 
structure and motion from line segments, given by eq. (9): 

       
2

2 2
l 1 2 1 1 2 20
( , ) d ,

3

l l
d s t t s s s sl l  (9) 

where l is the length of the line segment l1. 
As can be seen in eq. (9), the distance function is 

weighted by the line length explicitly, which is a desirable 
property since a longer line segment can be localized more 
accurately than a shorter one [24]. However, in some par-
ticular views, the length of a long line segment may be sev-
eral times, even several decuples, that of a short one. In the 
above formulation of the distance function, the long line 
segment is overweighted, while the contribution of the short 
one can easily be undervalued. If the long line segment is 
not an image model line but rather an outlier near the 
projected model line, then the pose optimizer is disturbed. 

Therefore, we design a new error function between line 
segments. 

Figure 4 shows the new error function in the plane. q1, q2 
are the endpoints of line segment l1. p1, p2 are the endpoints 
of line segment l2. The midpoints of l1 and l2 are q0 and p0, 
respectively. Then, we define the error function between the 
two line segments as 

         
21 T T T

n 1 2 1 1 2 2 0 00

1
( , ) d 4 ,

6
d t t tl l q p s s s s s s  

 (10) 

 

Figure 3  Error function between line segments according to the distance 
integral. 

 
Figure 4  New error function between line segments according to the 
mean of the distance integral. 

where 1 1 1 s q p , 2 2 2 s q p , 0 0 0 s q p . 

It is clear that our new error function is not weighted by 
the length of the line segment explicitly, as compared with 
eq. (9). However, the feature of the proposed error function 
is discussed with reference to Figure 5 in the following. 

In Figure 5(a), the two line segments have the same 
length and s1=s2. The distance between the two line seg-

ments is 
2

2s , whilst the distance in Figure 5(b) is 
2

2

1

3
s . 

When the line segments becoming longer, as seen in Figure 
5(c), the distance remains unchanged, since the distances for 
both the endpoints and midpoint are the same. If the angle 
between the segments shown in Figure 5(b) is fixed and the 
lengths become longer, the distance becomes greater, as 
seen in Figure 5(d). It is clear that the proposed distance 
function is also weighted by the length of the line segments 
inherently. 

According to eq. (9), three error functions between a 3D 
model line and a 2D image line can be defined. In the infi-
nite image line case, two error functions can be given 
according to the distance from the projected model line 
segment in the image plane to the image line and the 3D 
distance from the model line segment to the projected 
model line in the projection plane. 

 1 l( , ) ( , ),d d l L l l  (11) 

 2 l( , ) ( , ),d d
l L L L  (12) 

where 

L  is the projected extended line of the model line 

segment L in the projection plane along the normal vector. 
In the finite image line case, the error function can be 

given by 

 

Figure 5  Examples of new error function between line segments. (a) 
Case 1; (b) Case 2; (c) Case 3; (d) Case 4. 
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 3 l( , ) ( , ).d d l L l l  (13) 

According to the proposed distance function described in 
eq. (10), three additional error functions can be defined. In 
the infinite image line case, since only the part of the 
observed line nearest to the projected model line segment 
contributes to the distance measure, we can define the error 
function between the projected model line segment and the 
image line as 

   
4 1 2 1 2( , ) (( , ), ( , )),nd dl L p p p p  (14) 

where 1 2,p p  are the endpoints of the projected model line 

in the image plane. 1 2, p p  are the projections of 1 2,p p  on 

the line 
l  along the normal direction of l , respectively. 

The error function between the model line segment and 
the projection plane is given by 

   
5 1 2 1 2( , ) (( , ), ( , )),nd dl L P P P P  (15) 

where 1
P , 2

P  is the projection of 1P , 2P  on the projec-

tion plane along the normal vector. 
In the finite image line case, the error function can be 

given by 

   
6 1 2 1 2( , ) (( , ), ( , )),nd dl L p p p p  (16) 

where 1P , 2P  is the projection of 1
P , 2

P  on the pro-

jected model line along the normal vector. 

3  Least squares techniques 

3.1  Objective functions 

Let the correspondences of the model and image line seg-

ments be       1 1 2 2, , , , , ,N N
  I L I L I L , where N is the 

number of line pairs. The real pose can be estimated by 
minimizing the objective function described as 

  
1

, .
N

i i
i

E d


  l L  (17) 

If eq. (2) is selected as the error function, then the opti-
mization problem defined by eq. (17) can be modified as 

    
  

   
2 2
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where s(r) is the observed data corresponding to the end-
point distance, r is the pose parameters, and s  is the de-
sired observed data, equal to 0. The minimization of eq. 
(18) can be handled using a least-squares approach. 

In studies in the literature [16], the distance based on eqs. 

(4), (5), and (8) was selected as the endpoint distance ( )s r . 

If the endpoint distance is given by eq. (5), the first ob-
jective function is developed: 
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The resulting algorithm that minimizes E1 is called 
R_and_T [16]. 

A similar endpoint distance defined in the image plane is 
given by eq. (4), and then, the second optional objective 
function can be obtained by 
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The resulting algorithm that minimizes E2 is called 
R_and_T_img [16]. 

If the endpoint distance is given by eq. (8), another ob-
jective function can be developed as 

       
2

2 T
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1 1

1
.

N
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j
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 p RP T RP T  (21) 

The resulting algorithm that minimizes E3 is called 
R_and_T_mod [16]. 

In contrast to the objective function defined by eq. (18), 
which contains only the distance from the endpoints to the 
corresponding line, three additional objective functions can 
be defined according to the error functions defined in eqs. 
(11)–(13). 

 4 2 l
1 1

( , ) ( , ),
N N

i j j i
i i

E d d
 

   l L L L  (22) 
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1 1
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N N
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( , ) ( , ).
N N

i j i j
i i

E d d
 

   l L l l  (24) 

The resulting algorithms that minimize E4, E5, E6 are 
called R_and_T_len, R_and_T_img _len, and R_and_T_ 
mod_len, respectively. 

According to the proposed new error functions described 
in eqs. (14)–(16), three objective functions are defined: 
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The resulting algorithms that minimize E7, E8, E9 are 
called R_and_T_novel, R_and_T_img _novel, and R_and_ 
T_mod_novel, respectively. 

3.2  Nonlinear technique 

In the initial case, the pose parameters can be provided by 
the PnL method [10,11,13]. At each iteration, the linearized 
error function is minimized to obtain the interframe motion 
vector for the rotation and translation terms. Then, the pose 
parameters are updated until the objective function con-
verges to a minimum. Three endpoint distances defined by 
eqs. (4), (5), and (8) are utilized for the error function in 
E1–E9. The basic components of the nonlinear technique are 
to linearize the error terms about the current estimate for R 
and T. 

For the infinitely extended image line, we adopt the Lie 
group formulation to represent the rigid transformation from 
the reference frame to the camera frame. Assuming that we 
have a current estimation of pose Et, the posterior pose Et+1 
can be computed from the prior pose Et given the incre-
mental motion M: 

 1 ,t t E ME  (28) 

where M can be represented in the exponential map as 

 
6

1
exp( ) exp( ),j jj




  M μ G  (29) 

where  is the motion velocities corresponding to transla-
tions in the x, y, and z directions and rotations about the x, y, 
and z axis and jG  is the group generators [25]. 

Then, eq. (5) can be rewritten as 
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Eq. (4) can be rewritten as 
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For the finite image line case, we adopt the Lie group 
formulation to represent the rotation. Assuming that we 
have a current estimation of the rotation Rt, the posterior 
rotation Rt+1 can be computed from the prior rotation Rt 
given the incremental rotation  ˆexp ω : 

  1
ˆexp ,t t R ω R  (34) 

where ω̂  is the corresponding skew-symmetric matrix of 

 T

0 1 2  ω . 

Then, eq. (8) can be rewritten as 

       TT W W
1 1 2

1
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t

s
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where W T T R T  denotes the location of the origin of 

the camera frame in the world frame.  T

0 1 2  ξ  

represents the motion velocities corresponding to translation 
in the x, y, and z directions. 

The partial derivative of the error function ( )i
js r  with 

respect the thk  motion velocities can be computed as 
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where T T T
1 2 3(1,0,0) ,  (0,1,0) ,  (0,0,1)  g g g . 

4 5 6 7 8 9, , , , ,E E E E E E  can be minimized by modifying 

the same basic nonlinear problem defined by eq. (17). 
Therefore, only the technique for minimizing 9E  is pre-

sented. The objective function 9E  can be rewritten as 
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where 1
is , 2

is , and 0
is  denote the distances from the end-

points and midpoint of the image line segment to the corre-
sponding projected model line, respectively. ( )i

js r  is giv-

en by eq. (35). 

3.3  Robust estimation 

When the noise in the measurement data is Gaussian, the 
least squares method has been proven to be optimal and 
reliable. However, when outliers are present, the Gaussian 
assumption is not valid and the results of the least squares 
method are skewed. When outliers (incorrect 3D-2D line 
pairs) are present in the measures, a robust estimation is 
required. An M-estimator is considered a general form of 
maximum likelihood estimator that allows the likelihood 
that uncertain observations are utilized to be lower, and in 
some cases they are discarded. The robust optimization 
problem is then given by 

  
1

,
M

i
i

E   


   (38) 

where ( )u  is a robust function that is symmetric and 

monotonically non-decreasing with increasing u  (see 

Figure 6). Med( )i i is s    is the normalized residue 

( Med( )s  is the median operator).  is the standard devia-

tion of the inlier data. 
Figure 6 shows several robust functions and their corre-

sponding weight functions. Of the various robust functions, 
Tukey’s hard trade-off was selected. For the Tukey function, 

( )u  approximately varies as the square of u , when u  

is a small value, and then, ( )u  tapers to a maximum 

value of C2/6. In this function, the effect of any outliers is 
rejected and cannot be arbitrarily large. This is of interest in 
pose estimation since it means that a detected outlier has no 
effect on the optimization method. Therefore, we selected the 
Tukey function as the robust function in the M-estimation.  

Then, the optimization problem defined by eq. (38) can 
be converted into an equivalent weighted least-squares 
problem: 
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,
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k
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where i ir    and the superscript (k) indicates the itera-

tion number. ( )   is the weight function corresponding to 

Tukey function, 
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otherwise.
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The weight  ( 1)k
ir   should be recomputed after each 

iteration for use in the subsequent iteration. Eq. (39) can be 
solved according to 

 , DJv e Ds  (41) 

where         
T

1 2, , , , ,·· · · · ·m Ms s s ss r r r r is the error 

vector, v is the motion vector, J is the Jacobian matrix that 
links s  to v, and 1 2 ···diag( , , , ·, , )··m M   D  is the 

weight matrix. 
Then, the solution of eq. (41) can be given by 

 
Figure 6  Robust function and weight function for different M-estimators. (a) Robust function; (b) weight function. 
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4  Experimental results 

In this section, we describe the validation of the proposed 
optimization algorithms by utilizing synthetic data and real 
images. All the related methods were implemented using a 
combination of C++ and OpenCV. The same total iterative 
number and terminal value, as well as initial pose, were set 
for all the related methods. 

4.1  Synthetic data results 

In this subsection, a number of comparisons are made with 
the proposed optimization methods based on the new error 
functions (referred to as R_and_T_novel, R_and_T_img_ 
novel, and R_and_T_mod_novel), the proposed methods 
according to the error function presented by Taylor and 
Kriegman [24] (called R_and_T_len, R_and_T_img_len, 
and R_and_T_ mod_len), and three additional algorithms: 
R_and_T, R_and_T_img, and R_and_T_mod proposed by 
Kumar [16]. The 3D line model used for these experiments 
was a (3 m×3 m×2 m) cube. The virtual perspective camera 
was supposed to be 25 m from the cube. The resolution of 
the virtual camera was 1024×1024 with a view angle of 
20°×20°. Given an input pose, nine model line segments 
were projected onto the image plane to generate 2D line 

segments. The endpoints of the 2D line segments were then 
corrupted by measurement noise, which can be decomposed 
into two components: noise perpendicular to the line and 
noise along the length of the line [16]. The first noise was 
modeled as a Gaussian random variable related to the ori-
entation error, whilst the second was assumed to conform to 
uniform distribution related to line fragmentation. 

In the first experiment, the related methods were com-
pared under different levels of line fragmentation. The 
standard deviation of the noise perpendicular to the line was 
fixed to three pixels with the noises for the two endpoints 
negatively correlated. The upper bounding of the noise 
along the line was specified as a percentage of the length. 
Different levels of uniform noise ranging from 0 to 0.6 were 
added to the image line segments. For each noise level, 
1000 test data sets were generated. The standard deviations 
of the pose parameters at different noise levels are shown in 
Figure 7.  

In Figure 7, it can be seen that the related methods per-
form comparably when the noise level along the length of 
the line is low. However, when the noise level becomes 
20% or more of the length, the three methods based on the 
finite image line segment, R_and_T_mod, R_and_T_mod_ 
len, and R_and_T_mod_novel, significantly outperform the 
other methods. Moreover, the proposed method R_and_ 
T_mod_novel performs slightly better than R_and_T_mod 
and R_and_T_mod_len. In addition, since the midpoint dis-
tance was utilized, the performance of the proposed methods  

 
Figure 7  (Color online) Errors vs. the noise level along the image line. (a) Error for angle Ax; (b) error for angle Ay; (c) error for angle Az; (d) error for 
angle Tx; (e) error for angle Ty; (f) error for angle Tz.  
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R_and_T_novel, R_and_T_img_novel, R_and_T_len, and 
R_and_T_img_len is superior to that of the other two 
methods, R_and_T and R_and_T_img, when significant line 
fragmentation exists in the image lines. 

In the second experiment, the noise level along the line 
was fixed to 0.3. Different levels of uniform noise perpen-
dicular to the line ranging from 0 to 6 pixels were added to 
the image line segments. In Figure 8, it can be seen that the 
performance of the related methods quickly degrades as the 
noise perpendicular to the line increases. However, the two 
methods R_and_T_mod_len and R_and_T_mod_novel pro-
vide a significantly better performance than the other 
methods. Moreover, the performance of the proposed 
method, R_and_T_mod_novel, is slightly better than that of 
R_and_T_mod_len. In addition, the performances of the 
proposed methods R_and_T_novel, R_and_T_img_novel, 
R_and_T_len, and R_and_T_img_len are superior to those 
of the other two methods, R_and_T and R_and_T_img, 
when significant line orientation noise exists in the image 
lines. 

In addition, we present two additional sets of simulation 
results for the related pose optimization techniques inte-
grated with M-estimation. In the simulation, synthetic data 
with outliers were used. The first set demonstrates the per-
formance of the aforementioned methods for different levels 
of noise along the line ranging from 0 to 0.6, when the 
standard deviation of noise perpendicular to the line was 
fixed at 3 pixels. The second set shows the performance 

when the standard deviation of noise perpendicular to the 
line was varied in a range from 0 to 6 pixels, and the noise 
level along the line was fixed at 0.3. In Figures (9) and (10), 
it can be seen that the proposed methods according to the 
error functions containing the midpoint distance demon-
strate significantly better robustness than the methods ac-
cording to the endpoint distance. 

4.2  Synthetic image results 

In this subsection, we quantitatively compare the proposed 
methods, R_and_T_mod_len and R_and_T_mod_novel, 
with R_and_T_mod, using synthetic images generated by 
OpenGL with ground truth. In the experiment, the internal 
parameters of the virtual camera were not changed. The 
primary noise source of the procedure for generating syn-
thetic images is the quantized error, since all the image 
points are in a unit of one pixel. After utilizing the mul-
tisampling technique in OpenGL, the influence of the quan-
tized error on the accuracy of the compared methods can be 
neglected. The resolution of the virtual camera was 
640×640 with a view angle 20°×20°. The rotation mode was 
derived using Euler angles with the order of x-y-z. The 
frame rate was 10 frames/s (10 Hz). There are around 350 
frames in the over 35 s-long sequence; the distance along 
the optical axis ranged from 20 to 50 m. In all the tests, the 
image lines were detected using the LSD method [26] with 
the same parameters. 

 
Figure 8  (Color online) Errors vs. the noise level perpendicular to the image line. (a) Error for angle Ax; (b) error for angle Ay; (c) error for angle Az; (d) 
error for angle Tx; (e) error for angle Ty; (f) error for angle Tz. 
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Figure 9  (Color online) Errors vs. the noise level along the image line (with M-estimation). (a) Error for angle Ax; (b) error for angle Ay; (c) error for angle 
Az; (d) error for angle Tx; (e) error for angle Ty; (f) error for angle Tz. 

 

Figure 10  (Color online) Errors vs. the noise level perpendicular to the image line (with M-estimation). (a) Error for angle Ax; (b) error for angle Ay; (c) 
error for angle Az; (d) error for angle Tx; (e) error for angle Ty; (f) error for angle Tz. 

Figure 11 shows the errors (position and rotation) for the 
three methods. Table 1 represents the root mean square er-

rors for the synthetic image sequence. As can be seen in 
Figure 11, the proposed methods perform better than R_and_ 
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Figure 11  Comparisons for pose optimization over simulation sequence. (a) Error for angle Ax; (b) error for angle Ay; (c) error for angle Az; (d) error for 
angle Tx; (e) error for angle Ty; (f) error for angle Tz.

T_mod for the test sequence and return a smaller error range. 
In addition, the performance of R_and_T_mod_novel based 
on the mean of the integral is equivalent to that of R_and_ 
T_mod_len weighted by the length explicitly. In some 
views, the errors of R_and_T_mod_len are much larger than 
those of R_and_T_mod_novel, for the mismatched long line 
segment is drawn with a large weight whilst the correct 
shorter one can easily be underweighted in R_and_T_ 
mod_len. According to the results in Table 1, the perfor-
mances of the proposed methods are slightly better than that 
of R-and-T-mod, since the line segments for the synthetic 
images can be localized with high accuracy. Figure 12 
shows the reprojected model lines for two selected simulated 
images according the pose optimized by the three methods. 

4.3  Real image results 

In order to validate the aforementioned methods in real sit-
uations, we conducted two sets of experiments. First, we 
applied the three methods, R_and_T_mod_len and 
R_and_T_mod_novel together with R_and_T_mod, to five 
chessboard images, as shown in Figure 13 and calculated 
the RMS reprojection errors for each method. In the exper-

iment, the model lines were the four edges of an A4 sheet of 
paper having a size of 297 mm×210 mm. For comparison 
purposes, we also estimated the pose of the camera from the 
chessboard corners by using the OI method [4]. Since the 
chessboard interior corners are a special case of the more 
general Harris corners, they can particularly be localized 
with subpixel accuracy. Therefore, we can treat the output 
of the OI method as the ground truth. Table 2 demonstrates 
that the reprojection errors of the proposed methods are 
lower than that of R_and_T_mod and close to the bench-
mark performance provided by the OI method. 

Second, we applied R_and_T_mod_novel to two image 
sequences with known 3D line models to validate the ro-
bustness and accuracy of the proposed pose optimization 
method. For each image, the image lines were detected by 
using the LSD method [26]. The correspondences between 
the 3D model lines and the 2D image lines were established 
automatically by selecting the image line with the least dis-
tance to the projection of the visible model line as its corre-
spondence. Then, the object pose was optimized using the 
R_and_T_mod_novel algorithm. In order to show the accu-
racy of the obtained results, 3D model lines were reprojected 
onto the image plane by using the optimized pose. Figure 14  

Table 1  Standard deviation of pose errors over simulation sequence 

Error/1 Ax (°) Ay (°) Az (°) Tx (mm) Ty (mm) Tz (mm) 

R_and_T_mod 0.045 0.066 0.018 0.6 0.7 12.1 

R_and_T_mod_len 0.039 0.043 0.008 0.6 0.7 7.9 

R_and_T_mod_novel 0.035 0.052 0.008 0.7 0.7 8.2 
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Figure 12  (Color online) Comparative reprojected results on simulated sequence. The endpoints of projected model lines using the true pose are drawn as 
hexagram and the endpoints of the detected line segment is drawn as asterisk. The projected endpoints of R_and_T_mod, R_and_T_mod_len and 
R_and_T_mod_novel are drawn as square, circle, and plus sign, respectively. The proposed methods, R_and_T_mod_novel and R_and_T_mod_len, achieve 
a similar performance and provide better matches of the projections of the visible model lines with the true positions than R-and-T-mod.  

 
Figure 13  Frames of the chessboard images.  

Table 2  Reprojection errors for the chessboard images  

Reprojection error (pixel) Frame 1 Frame 2 Frame 3 Frame 4 Frame 5 

OI method 0.14 0.16 0.13 0.13 0.14 

R_and_T_mod 0.36 0.52 0.34 0.53 0.36 

R_and_T_mod_novel 0.34 0.48 0.32 0.48 0.32 

R_and_T_mod_len 0.34 0.48 0.32 0.48 0.32 

 

 
Figure 14  (Color online) Pose optimization for real images.  
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illustrates results from the image sequences. The first 3D 
model used was a tea box, as shown in Figure 14(a), while 
the second was a satellite model, as shown in Figure 14(b). 
These two objects were generated by using a structure and 
motion technique. In this case, the source of the noise was 
both the image measurement and the model lines because of 
the 3D position of the model line segments. The results 
demonstrate that the R_and_T_mod_novel method can suc-
cessfully optimize the object pose. 

5  Conclusions 

In this paper, a new error function between line segments 
based on the mean of the distance integral was proposed, 
and then, its application to the problem of pose optimization 
from a set of matched 3D model and 2D image lines was 
described. First, based on the new error function, three pose 
optimization methods according to whether the image line is 
considered finite or not were proposed. Second, the pose 
optimization was converted into a simple iterative least 
squares problem by utilizing the Lie group to represent the 
pose parameters. Moreover, in order to handle data con-
taminated by outliers, an M-estimation method was em-
ployed to solve the pose optimization problem by means of 
iterative reweighted least squares techniques. The superior 
performance of the proposed methods as compared to pre-
vious approaches was verified through extensive simula-
tions and experiments. 
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Appendix A 

Let 1 1 1 2 2 2( , ),  ( , ), ( , )n n nx y x y x y  p p p  is a series 

of image edge points with the presence of the observation 
noise. Then the fitting model can be expressed as following: 

 ,  1, 2, ,  ,i i iy ax b i n      (A1) 

where     1 2, , , , ,i n  are Gaussian random variables 

with 
2E 0,  Di i    and they are mutually independent. 

Thus, the real line parameters can be estimated by the 
least squares technique as follows: 

 ˆˆ ˆ,  ,xy xxa C C b y ax    (A2) 
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 It is easy to obtain the variance and covariance for the 

estimated parameters â  and b̂ . 
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(A3) 

The estimates for the endpoints of the line segment along 
the normal direction can be provided by 

 s 1 e
ˆ ˆˆ ˆ ˆ ˆ,  .ny ax b y ax b     (A4) 

Thus, we can obtain the covariance for ˆ
sy  and ˆ
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Assuming that 1 20 i nx x x x       , then we 

can obtain: 

  s eˆ ˆCov , 0.y y   (A6) 

Let the noises for the endpoints along the vertical direc-
tion be s1 and s2. Thus we have: 

    1 2 s eˆ ˆCov , Cov , 0.s s y y   (A7) 

If the true line is parallel with the horizontal axis, s1 and 
s2 correspond to the noise perpendicular to the line. There-
fore, it is clear that two noises are negatively correlated.  

 


